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1. Introduction. A generalized linear model is composed of three parts:

(i) a random component f(y; u) specifying the stochastic behavior of a response
variable Y;

(ii) a systematic component n = xf specifying the variation in the response
variable accounted for by known covariates x; and

(iii) a link function g(u) = 7 specifying the relationship between the random and
systematic components.

The random component f(y; p) is typically an exponential family distribution
with E(Y) = u. The link function g is any strictly monotone differentiable
function.

Particular instances of generalized linear models have appeared in the statis-
tical literature over the past century. These include classical linear models, logit
and probit models for proportions, loglinear models for counts, and regression
models with constant coefficient of variation rather than constant variance.

Grizzle, Starmer, and Koch (1969) proposed the general class of models defined
by (ii) and (iii) above but (implicitly) with f(y; u) = Poisson(u) in (i). Dempster
(1971) proposed the general class of models defined by (i) and (ii) above but
(implicitly) with g(x) = 6, the canonical link, in (iii). Nelder and Wedderburn
(1972) unified the theory and coined the name “generalized linear model.”
Wedderburn (1974) extended the theory to the important class of quasi-like-
lihoods where the assumption of an exponential family distribution in (i) is
relaxed by second-moment assumptions of the form var(Y) « V(u). Numerous
other papers have been written on various aspects of generalized linear models
in the past decade. An international conference on generalized linear models was
held in London (Gilchrist, 1982). An important software package, GLIM (Baker
and Nelder, 1978), specifically designed to fit generalized linear models, is used
widely. '

The monograph by McCullagh and Nelder is the first extensive treatment of
generalized linear models. It is important for at least two reasons:

e it makes the theory and application of generalized linear models accessible to
a wide audience which until now has (largely) been restricted to the British
school; and
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e it can significantly influence the way regression modeling is currently taught
and practiced, emphasizing the similarities between various models rather than
their differences.

This review demonstrates my overall enthusiasm for the monograph. It’s major
shortcoming is that the authors have fallen victim to the generality of their
model. That is, the generalized linear model framework leaves much scope for
testing hypotheses, estimating nuisance parameters, and assessing goodness-of-
fit. The authors do a thorough job of describing the alternatives, but rarely come
out strongly with a preference. Despite this criticism, I believe the monograph
will be exceedingly useful for researchers faced with a nonstandard modeling
problem.

The review is divided into two parts. The first contains an annotated descrip-
tion of the material contained in the monograph. The second contains important
new directions which I think research in generalized linear models is likely to
follow.

2. Review.

2.1 What's there. The monograph begins with a nice historical account of
the origins of generalized linear models. The authors ease the reader into the
material in a manner reminiscent of Cox (1970). Selected examples illustrate
well the scope and flexibility of generalized linear models. Bibliographic notes at
the end of the chapter provide a useful pointer to readers interested in pursuing
details. Unfortunately, this practice is not consistently followed in later chapters.

Next follows the introduction of generalized linear models as a unified theory
of regression modeling as summarized in my initial paragraph. Brief accounts of
goodness of fit, residual analysis, and fitting algorithms are presented. This
chapter would have been an ideal place to contrast the variety of ad hoc methods,
e.g. response variable transformation, for analyzing data which do not follow the
classical linear model assumptions with the unified generalized linear model
framework. Instead this material is dispersed throughout the monograph with
the main thrust appearing in Section 10.3.3 (page 198!).

The next chapter provides an overview of classical linear models. A number
of topics are lucidly discussed including qualitative and continuous covariates,
operators for model specification, aliasing (collinearity), geometry of least
squares, and fitting algorithms. Selection of covariates is the final topic in this
relatively long chapter. The authors justify this length by arguing that methods
for the classical linear model are relevant to the entire class of generalized linear
models. I would have preferred the general development rather than see it done
(yet again!) for least squares.

The next four chapters deal with specific instances of generalized linear models
for dichotomous (binary) data, polytomous data, count data, and continuous data
with constant coefficient of variation. The examples tend to be somewhat
complicated, but each is done with much clarity, and with emphasis correctly
placed on interpretation of results. Asymptotic results are touched upon in each
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chapter though the details are relegated to appendices. Conditional methods are
discussed in detail, another reminder of the Coxian style of this monograph.
However, the connection between the neat, unified theory of generalized linear
models and specific conditional models is a bit tenuous.

Chapter 8 introduces quasi-likelihood models, which were hinted at in nearly
every preceding chapter. The presentation of this particularly exciting area is
very clear. Basically, optimal (in a generalized Gauss—-Markov sense) estimates
of 8 can be obtained by making only second-moment assumptions about the
random variation in the response Y. In particular, the assumption of an expo-
nential family distribution f(y; ) is relaxed to the functional relationship var(Y)
= ¢ V(u), where ¢ is assumed constant across samples. This is extremely useful
in applied work when data are limited and information on the distribution of Y
is lacking. Indeed, if Tukey’s Rule of 5 (that is, don’t even think of estimating
the kth moment of a distribution unless you have 5 cbservations) is generally
applicable, one is seldom in the comfortable position of having enough informa-
tion to estimate a distribution (say by the first four moments). However one may
have enough data to reliably estimate a relationship between the first two
moments as required by the quasi-likelihood model. My only criticism of the
chapter is that the first example is introduced in some detail and then rather
abruptly dismissed. For those unfamiliar with Wedderburn’s (1974) paper, the
exposition is likely to be somewhat terse.

The next chapter deals with models for survival data. This is my least favorite
chapter. Essentially it demonstrates that censored survival data can be “bent” to
fit into the generalized linear model framework. This is undesirable since I feel
much of the motivation for generalized linear models comes from the desire to
obviate the need to “bend” data (via transformations) to fit the classical linear
model. In defense of the authors, when I taught a course on generalized linear
models at the University of Washington in 1981, I too included the tricks
necessary to analyze censored survival data within the generalized linear model
framework. This proved confusing to the students and in retrospect should have
been avoided.

Chapter 10 is concerned with formal parametric methods and Chapter 11 with
informal graphical methods for assessing a fitted generalized linear model. Both
of these chapters are essential and represent much of the recent research on
generalized linear models. Topics include methods for assessing link function
adequacy, residual analysis, and the detection of influential points. An extended
quasi-likelihood model is introduced (see below) which relaxes the assumption
that the variance function is known up to a multiplicative constant, to include
nonlinear parameters, e.g. V() = u*. An important implication of this extension
is that the adequacy of an hypothesized variance function can be assessed without
replication. An example which required much hand-waving to justify in Chapter
7 is used to illustrate many of the methods. This is indeed useful but I can’t help
wonder why this material couldn’t have come before particular instances of
generalized linear models rather than after.

The final chapter is a five page look at what the authors see as the important
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topics for future research. The section headings are “Second-moment assump-
tions,” “Higher-order asymptotic approximations,” “Composite link functions,”
“Missing values and the EM algorithm”, and “Components of dispersion.” The
list is short and clearly demonstrates the authors’ research interests. The section
entitled “Components of Dispersion” is a superb start into the important and
difficult extension of the theory of generalized linear models to random effects
models.

2.2 What’s not there. Page constraints for monographs in this series make
it easy for a reviewer to identify areas which the authors failed to give adequate
coverage. In order to be fair then, the reviewer must indicate areas of the
monograph which should have been deemphasized to make room for the addi-
tional material. My suggestion would have been to exclude some of the material
in Chapter 3 dealing with the classical linear model, €.g. the sections on estimation
and algorithms for least squares, and the whole of Chapter 9 (Models for survival
data), to make room for the following.

The unified theory of regression-type modeling encompassed by generalized
linear models suggests that the monograph would be an ideal text for teaching a
one-semester course on the subject. Although I feel this is indeed the case, more
could have been done along these lines. One simple mechanism would be through
a collection of exercises at the end of each chapter. These could stress both
theoretical and practical aspects of the material. The availability of the computer
program GLIM would allow instructors to concentrate their teaching efforts on
interpretation, rather than on computation, in the applied exercises.

None of the examples in the monograph correspond to the large observational
studies which are now the rule rather than the exception. In contrast to well-
defined experimental studies, the problems of model specification (especially
variable selection) and goodness of fit (especially influential data) are particularly
acute here. One or two examples of this sort would have provided the authors
with superb motivation for some of their proposals, while forcing them to address
the difficult issues which they discussed in passing.

Finally the monograph is almost totally void of recent statistical methodology
of general applicability. These include jackknifing and bootstrapping to reduce
bias and assess variability, nonlinear smoothing to enhance scatter plots, and
monte carlo as an alternative to asymptotics. Some of these areas appear below
as “Future Research”, though ample opportunity existed for their introduction
in the monograph:

o reducing the bias in the estimate of the dispersion parameter ¢;
e interpreting plots with varying density of points along the abcissa; and

¢ the general applicability of monte carlo methods to study distributional prop-
erties for small samples where asymptotics are not applicable.

Limited discussion of these topics as they apply to generalized linear models
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would have made the monograph more current without detracting from the
overall theme.

3. Future research directions. Much of the future research on general-
ized linear models will be based on refining and extending methods discussed in
the monograph. Other research will be aimed at extensions of state-of-the-art
methodology for linear models to the class of generalized linear models. Most of
this methodology is a result of advances in computing hardware and software in
the past ten years. The areas listed below emphasize the importance of computing
in statistics research.

Graphical methods. Informal graphical methods enable the modeler to detect
unexpected deviations from the fitted model. Many of the author’s suggestions
in Chapter 11 are extensions of standard plots used fot linear models. The extent
to which these will be useful for generalized linear models is uncertain. Recent
work by Landwehr et al. (1984) for logistic regression is encouraging but not the
final word.

Estimation. In the past two decades, a number of alternatives to least squares -
have been proposed for linear models. These include ridge/shrinkage/empirical-
Bayes estimators for sparse or ill-conditioned data, and robust/resistant esti-
mators to accommodate outliers and influential observations. The problems these
methods address are likely to be present in generalized linear models as well as
the classical linear model, and I expect this will also be an active research area.
Some progress has been made on generalizing M-estimators to generalized linear
models (Pregibon, 1982) though more work is needed here. The quasi-likelihood
formulation should prove useful in this respect as it provides a direct analogy to
the normal theory ¢-contamination model. In particular, let E(Y) = u, and

_ J¢V(u) with probability 1 — e
var(Y) = {kqu(u) with probability .

Robust estimates, g, of x can now be considered along the lines of Huber (1981).
Note in particular that there is no ambiguity in what 4 is estimating, even when
the distribution of Y is asymmetric.

Goodness of fit. Much of the theory of generalized linear models is concerned
with estimation and testing of the regression coefficients 8. Formal methods of
assessing goodness of fit have received less attention. This situation is unlikely
to change in the future but the latter will still be a lively and important research
area. McCullagh (1984a, b) has already made an important contribution by
arguing that the use of the marginal distributions of the standard goodness-of-
fit statistics is misguided. Instead he considers asymptotic approximations to
their conditional distributions, where the conditioning is on the complete suffi-
cient statistic for 8. The theoretical derivations are tedious but result in relatively
easy computing formulae. Alternatively, the conditional distributions can be
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approximated by Monte Carlo sampling methods. In either case, some relief from
the inadequacies of current procedures is in sight.

Further generalizations. The class of generalized linear models encompasses
a large number of useful models. The class is overly restrictive in that

(1) it presupposes a linear predictor 5 = x0;

(2) the class of distributions proper is restricted to the exponential family;
(3) it presupposes independent observations {y;:i=1, ---, n}; and

(4) the dispersion parameter ¢ is assumed constant across observations.

Further research will be concerned with eliminating these restrictions. And this
research is well underway! Jorgensen (1983) presents the “extended class of
generalized linear models” which allows arbitrary predictors n = 5(x, 8), a wider
class of distributions for Y: f(y, u, ¢) = c(y, ¢)expia(¢)t(y, u)}, and correlated
observations (Y can be vector valued). He shows that the extended class has
properties similar to those of generalized linear models, including computing
considerations. An (as yet) unresearched approach to relax (4) is to generalize
. the quasi-likelihood model according to

g(p) = xB, var(Y)=o¢V(n), h(®) =2y

where h is yet another link function and z is a vector of explanatory and/or
stratification variables, possibly, though not necessarily equal to x. For the
particular case var(Y) = ¢, i.e. normal theory models, the above generalization
was independently suggested by John Henstridge (University of Western Aus-
tralia) and William H. Rogers (The Rand Corporation), both by personal com-
munication. Otherwise the generalization is apparently new. Tests of homoge-
neity of ¢ (H: v = 0) are analogous to classical homogeneity of variance tests.
Fitting this model would require the notion of the “extended quasi-likelihood
function” (Nelder and Pregibon, 1984)

Q (y; 1, ) = —Y2log ¢ V(y) — (1/2¢)d(y; )

where d(y; p) is the generalized linear model deviance function, and V(y) is the
variance function applied to the datum y.

Bootstrapping and other cross-validation methods. The possibility of using
current data to obtain “honest” estimates of model adequacy is attractive.
Computers make it a reality. Extending bootstrapping methods to generalized
linear models is one area challenging both computing resources and statistical
ingenuity. Since I assume an interactive computing environment, bootstrapping
nonlinear models with quick response time will challenge our desktop computers.
Since no one has yet defined identically distributed residuals for generalized
linear models, a statistical challenge is to determine exactly how the bootstrap
samples are to be constructed. More headway is likely to be made using the
related technique of jackknifing. In particular, Wu (1984) discusses a weighted
jackknife and briefly indicates how it applies to generalized linear models.
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Nonparametric smoothing. Smoothing is a flexible mechanism for fitting
linear models. Hastie (1984) has suggested a way of generalizing logistic regression
so that the systematic component of the model logit(p) = 3, x;8; is replaced by
logit(p) = ¥ ¥;(x;) where the y’s are smooth nonparametric (and not necessarily
monotone!) functions of the original covariates. This is accomplished by using
the concept of “local likelihood” to smoothly estimate the form of y for a
particular x;. The extension of Hastie’s method to the class of generalized linear
models is, in effect, a relaxing of the linearity assumption in the systematic
component from n = Y x;8;to n = Y ¢;(x;). A further generalization would relax
the link function specification in (iii) from g(x) = 7 to Yo(x) = n where o is a
smooth nonparametric function of u perhaps restricted to be monotone. A final
generalization would be to estimate the variance function in a similar fashion.
The resulting generalized-generalized linear model would appear to be a very
flexible class of models. Future research will tell if this generalization is too
flexible.

Modeling strategies. Knowledge-based “expert” systems are computer pro-
grams designed to capture, utilize, and explicitly describe how a trained individual
solves problems. Such systems have been developed in a number of domains,
including chemistry, medicine, mineral exploration, and even statistics (Gale and
Pregibon, 1982). The problems in building such systems in the data analysis
domain are many, but an important fact of life has emerged: statisticians just
haven’t paid enough attention to how data analysis is actually done. Much
attention is given to details concerning individual tests, so that under ideal
conditions (i.e., all assumptions are satisfied except perhaps the one(s) relevant
to the test in question), a “good” statistician can describe the operating charac-
teristics of the test in more detail than anyone would care to know. The problem
is that although we understand the limitations of our theories and accordingly
take them with a grain of salt when actually analyzing data, we have not made
this expertise and heuristic judgement available to the less statistically sophisti-
cated. The introduction of generalized linear models onto the scene seems to
accentuate the problem, as the additional leeway in model specification will tend
to bewilder the nonexperienced modeler. What is needed here is not a flood of
papers on specific aspects of generalized linear models, but rather careful thought
on strategies for analyzing data in the generalized framework.
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