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ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATES IN THE MIXED POISSON MODEL

BY DIANE LAMBERT AND LUKE TIERNEY'

Carnegie-Mellon University and University of Minnesota

This paper considers the asymptotic behavior of the maximum likelihood
estimators (mle’s) of the probabilities of a mixed Poisson distribution with a
nonparametric mixing distribution. The vector of estimated probabilities is
shown to converge in probability to the vector of mixed probabilities at rate
nY2~ for any ¢ > 0 under a generalized x? distance function. It is then shown
that any finite set of the mle’s has the same joint limiting distribution as does
the corresponding set of sample proportions when the support of the mixing
distribution G, is an infinite set with a known upper bound and G, satisfies a
certain condition at zero. .

1. Introduction and summary. In many applications count data can be
viewed as arising from a mixed Poisson distribution. That is, the counts can be
viewed as a random sample X;, - - -, X, with

P{Xk = l} = W0 = f f,()\) dGo(A)’

where fi(\) is the probability of a count of i under a Poisson distribution with
mean \. For applications where there is little information about the mixing
distribution, Simar (1976) has proposed estimating G, nonparametrically. (It
follows from results of Teicher (1961) that the mixing distribution of a Poisson
mixture is identifiable.) Specifically, Simar proposes to estimate G, by the
distribution G, on [0, ) that maximizes the log likelihood

Z(@) =n XiZo ﬁi,n10g< f fi(A) dG( 7\)> )

where p; , denotgs the proportion of the n observations equaling i. One algorithm
for computing G, is described in Simar (1976); other computational approaches
are described in Laird (1978). Simar also proves that for each n the maximum
likelihood estimator (mle) G, is a unique distribution on [0, ) with finite support
and that G, is strongly consistent in the sense that, almost surely, G, converges
weakly to Go.

Recently, the results obtained by Simar for mixtures of Poisson distributions
have been extended to mixtures of other families of distributions. Jewell (1982)
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considers mixtures of exponential and Weibull distributions and shows that, in
this case also, G, is unique, has finite support, and is strongly consistent. Lindsay
(1983a, b) shows that the uniqueness and finite support properties of the mle are
closely related to the geometry of the likelihood function and that these properties
hold for many parametric families, including most one parameter exponential
families.

In order for nonparametric maximum likelihood techniques to be useful in
practice, the precision of the mle’s should be known at least approximately. In
this paper we consider the large sample precision of the mle’s 7, , = [ () dG,.()\)
of the mixed Poisson probabilities. Our major result is that if the support of the
mixing distribution Gy is an infinite set with a known upper bound M and Go(x)
— Go(0) tends to zero no faster than some power of x as x tends to zero, then any
finite set of the 7;,’s has the same limiting dlstnbutlon as the corresponding set
of sample proportions.

Our problem can roughly be described as follows. The vector 7, can be viewed
as a projection of the vector p, of sample proportions onto the space .# of all
mixed Poisson probability vectors. If the number of support points of G, say No,
is finite and unknown, then the mixed probability vector m, is on the boundary
of _#. Hence it is unreasonable to expect that 7, is asymptotically normal. On
the other hand, if N, is large then 7, can come closer to the global maximum p,.
The question to be answered is whether the difference between 7, and p, is in
fact asymptotically negligible when the support of Gy is infinite. The somewhat
unexpected answer is yes, at least if G, is well-behaved at the origin and has a
support set with a known upper bound.

Two x2-type norms that are convenient for studying the limiting behavior of
n'%(#, — m) and nY?(p, — m,) are given in Section 2. Both 7, and p, are shown
to converge in these norms to m, at rate n'/> for any ¢ > 0 in Section 3. The
major result of the paper is developed in Section 4. There we show that if the
support of the mixing distribution Gy is an infinite set with a known upper bound
M, then the linear combinations ¥ c;#;,/mi0 and Y ¢;p;n/mi0 have the same
limiting normal distribution when c belongs to a certain class of vectors £;. We
do not know whether the unit vectors e; = (e, €;j, - -+), given by e;;=1if i =j
and 0 otherwise, belong to % in general. The unit vectors do, however, belong
to %, in the special case that Go(x) — Go(0) tends to zero no faster than some
power of x as x tends to zero (Section 4). Consequently, under these conditions
Pn and 7, have the same limiting distributions. Further remarks about the limiting
behavior of %, — m, are made in Section 5.

It might be argued that our asymptotic result is irrelevant or even misleading
when G, is in fact supported on only a few points. This does not appear to be the
case, however. To see this, note that if G, has N, support points and N, is known,
then asymptotic standard errors can be computed by standard techniques. When
N, is unknown, using these formulas with the number of points N, of the mle in
place of Nj should underestimate the true standard errors of the nonparametric
#;,’s. Comparing these estimates with N, in place of N, to our asymptotic
standard error estimates n~""3(#;,(1 — #,,))"/? should indicate the conservatism
of the asymptotics of this paper when the support of G is finite. We have made
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such a comparison for the data given by Simar (1976) on the number of car
accidents of 9461 policyholders of La Royale Belge Insurance Company. The
number of accidents per policyholder ranged from 0 to 7. Simar fit a nonpara-
metric Poisson mixture and obtained an estimated mixing distribution with four
support points. For counts 0, 1 and 2, the estimated standard errors multiplied
by 94612 using N,, = 4 in place of N, and the estimates (#; ,(1 — #;,))"/ agreed
to three digits. With a count of six, for which 7, = .00024, the two standard
error estimates multiplied by 94612 agreed to two digits.

Our results can be described as giving conditions under which the sample
proportions p, are asymptotically as efficient as the mle’s #,. Note, however,
that we are not suggesting that the estimator p, be used instead of ,, but rather
that (#;,(1 — #;,)/n)*? provides a reasonable estimate of the standard error of
;n. Although 7;, need not be more efficient than p;, in large samples, 7, is a
smoother estimator and it may be nonzero when p; , is zero. Smoothness may be
more important than asymptotic efficiency when rare events are of concern.
Neverthless, our results do raise the question of whether there is some estimator
that is more efficient that p,. Tierney and Lambert (1984) show that the answer
is no if only estimators that are “regular” in a sense analogous to that of Hajek
(1970) and Beran (1977) are considered.

2. Two norms for comparing the mle and p,. A comparison of the
limiting behavior of the mle 7, and the nonparametric estimator p, requires that
a distance between 7, and 7, and between p, and m, be defined. We choose to
work with the norm | - |lo on R™ defined by || x [0 = (2o x%/m;0)"/? and its
empirical analogue | - ||, defined by | x|, = (XZo x}/7:.)"/%. Here =, is an
arbitrary but fixed member of the set _# (M) of mixtures of Poisson distributions
with rates in [0, M] for some known finite bound M. To avoid trivialities, =, is
assumed not to be the degenerate Poisson distribution with rate zero. Since
|7 = molld =3 (w1 — 7i0)%/7i0, the norm || - ||, can be thought of as a kind of
x 2-distance.

Let ¥ = {c € R": | ¢|lo < ®}. Note that p, € ¥ for all n and = € ¥ for all
m € #(M). An inner product (-, - ), is defined on & by (x, ¥)o = ¥ x:yi/m;0.
An empirical inner product (-, -), is defined on the set of vectors in R® for
which || x ||, is finite by (x, ¥), = T %:yi/7in.

Some interesting properties of 7, and p,, can be described in terms of the inner
products (-, -)o and (-, -),. For a mixed Poisson probability vector =, the log
likelihood . at = is proportional to

Z(w) = Yo Dinlog ;.

The directional derivative of # at a mixed Poisson probability vector =, in the
direction of a second mixed Poisson probability vector = is defined by

D(my; wo) = limyoe (£ ((1 — &)my + ema) — Z(m1)) = 3, Pinl(min — wi1)/mi1).

The mle 7, satisfies D(,; 7) < 0 for any other mixed Poisson vector «. In terms
of the empirical inner product the directional derivative at 7, can be written as

(2.1) D(wn; m) = (ﬁm T = *n)n = <13n - 7?'m T = 7?n>n = <I5n - T, Tn.
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Therefore, for any n
I = woll2 = 1Pn — FnllZ + |70 — woll2 + 2(Pn — Tn, Tn — To)n
(2.2) = ||pu = Tulli + | #n — 7o I§ — 2D(#n, mo)
z |pn — wall? + |70 — ol

Thus, in finite samples the mle 7, is closer to the underlying mixed Poisson
probability vector m, than is p, when distance is measured according to the
empirical norm | - | ..

Finally, note that % the set of ¢ € R™ for which | c ||, < o, is identical to the
set of vectors ¢ for which the quantity n'/?( p,, c)o has finite variance for all n,
and for ¢ € & the variance of n'2( p,, c)o is ¢%(c), where

(2.3) a*(c) = llcll§ = (mo, ¢)3.

To see this, note that if we write h(i) = ¢;/m;o then (p,, c)o = T, h(X;)/n where
{h(Xj)} are iid random variables with mean (o, c), and variance ¢2(c). Thus for
any ¢ € ¥ the quantity n'/?(p, — mo, ¢)o has a limiting normal distribution with
mean zero and variance ¢%(c).

3. Consistency of the mle and p,. One source of difficulty in analyzing
the asymptotic behavior of the mle #, is that n'?||p, — mo|lo diverges as n
increases. Nevertheless, both ||p, — wollo and | #, — ol tend to zero in
probability faster than n'/2~ for any ¢ > 0.

PROPOSITION 3.1. For any ¢ > 0 the four quantities (i) n2~|| p, — mo || o, (ii)
n2|| pp = mo |, (iii) n¥2|| 7, — mo llo and (iv) n'/*™*|| %, — mo || » tend to zero in
probability. More generally, the convergence of (i) holds for any infinite dimensional
multinomial vector w, for which the moment generating function ¥, «; e’ is finite
for some t > 0.

PRrOOF. Since Gy(0) < 1, there are positive constants b, B and m such that
(*) bf:(m) < w;0 < Bf:(M) for all i. Furthermore, since G, is a consistent estimator
of Go, () almost surely bf;(m) < =, < Bf:(M) for all i for n sufficiently large.

First consider (i). Fix an ¢ > 0, choose ay >0in (1 — 2, 1) andana > 1. In
view of (x), ¥ m;0a’ < . Set A = a"~"/3, By Holder’s Inequality,

nE| B, — woll = n'* ¥ (pin — mi0)’7idATA
= n"* Y (Pin — m0)* T AT (Bin — mi0)?mig AVO M,
Since A > 1, we have nE[Y, (P, — mi0)?7isA™/"] <= ¥ A7/ < o, and thus
Y (Bin — mi0) w0 AT = Op(n™).

So it suffices to show that ¥ (p;, — m,0)* 7 dAYC™ =3 (pin — mi0)’mida
bounded in probability.

i/3 is
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Expanding the quadratic gives
(3.1) Y (Pin — mio)?wida? = ¥ piawiba® + ¥ wioa’s.

Since a > 1, the second term on the right is bounded by ¥ ;.a’ which is finite
by (+). For any fixed k > 0, define E,, to be the event {p;, > kmr;oa”® for some i}.
Then by Markov’s inequality

P(E,) = Y P{pin > kri0a”®} <= k' ¥ E(pi)7wida™
= k—l Z a—i/a = k—l(l —_ a—1/3)—1.

Thus P(E,) can be made arbitrarily small by choosing & sufficiently large. On

the complement of E,,, ¥ p?,wisa"”® < k? ¥ m;0a’ < ». Thus the first term on the

right of (3.1) is bounded in probability, and the convergence of (i) is proved.
Next, consider (ii). For ¢ and v as above and all large n,

n%| p — mo |l

=n'"% Y (Pin — mi0)*mi0(mi0/Tin)
n'#Bb™' ¥ (Pin — mio)’wio(M/m)’
PI2Bb™ | o — o I37[E (Bun — mi0) mid( (M/m) /O]
where the first inequality follows from (*) and (**) and the second inequality
follows from Holder’s inequality. The same argument used to show (i) implies

that the term in square brackets is bounded in probability. Consequently, (ii)
follows from (i).

Now consider (iv). Inequality (2.2) implies that || #, — w0 |2 < || pn — 7ol 2,
and thus (iv) follows from (ii).

Finally, with ¢ and v as above, for large n

IA

IA

n' %z, — w3
=n'""% Y (Fin — m,0) 7 in(mio/Tin) ™
= n'"*Bb7! T (fin — o) Rin(M/m)
< pl~2Bp-! ||, #n — o " 3;1[2 (1;.1,'" - Wi’o)lﬁ.Z'll(M/m)i/(l—‘v)]l—‘v.
The term in square brackets is bounded by
3 #in(M/m)707 + 3 adod A (M/m) /O,
which by (+) and () is bounded for all large n by 2Bb™! ¥ =;o(M/m)?/0—,

which is finite. Thus, (iii) follows from (iv) and the proof is complete.

4. Asymptotic normality. In this section a subset % of & of vectors ¢
such that (nY2(#, — pn), ¢)o tends to zero in probability is given. For ¢ € % the
quantities (n'/2(p, — m), ¢)o and (n*(#, — o), ¢)o thus have the same limiting
normal distribution. The set % is shown to be dense in £ when the support of
Gy is an infinite set, but the convergence result on % is not uniform and thus
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an immediate extension to all of % does not seem possible. Each unit vector e;,
however, can be shown to belong to %, when G, has a certain bekavior at zero.
The required behavior is prescribed in Condition 4.1. Thus, nV*(#, — m,) and
n'2(p, — m) have the same finite dimensional limiting normal distributions
when G, satisfies Condition 4.1.

An important step towards establishing the limiting behavior of 7, is provided
by the following lemma.

LEMMA 4.1. For anye> 0, n'™(7, — Py, mo), tends to zero in probability.

PrROOF. Recall from inequality (2.1) that (7, — pn, T}, = —D(7n; mo) = 0.
Concavity of the log-likelihood # along with the observations of Section 2 imply
that .

0 = —n'"*D(#,; o) < n'™ ¥ Pinlog(win/mi0) <= n'~°D(mo; 7,)

=n""(Pn — mo, Tn — To)o = N || Po — wollo | Fr — mollo,

which tends to zero by Proposition 3.1.0

Before proceeding, we give a brief outline of our approach. Qur objective is to
substitute % for e, e; for mo and (-, - )o for (-, - ), in the statement of Lemma 4.1.
The major difficulty lies in substituting e; for m,. Our approach is to first con-
sider a class %, of vectors ¢ for which n'/?(p, — 7x, c)o tends to zero in proba-
bility. In particular, we consider the class %; of all vectors in % for which
there is a bounded function h such that the ith component of ¢ can be written as
J fN)R(N) dGo(N), where f;()) is the probability of a count of i under the Poisson
distribution with mean A. Denote the vector in %, corresponding to the function
h by c(h). %, is dense in % in terms of (-, -)o, but the convergence of
(n*(p, — 7,), c(h))o to zero in probability apparently depends on the function
h (see the proof of Theorem 4.1). Therefore, the convergence may not be uniform
and need not hold for all of C even though % is dense in %, Since the unit
vector e; does not belong to %, convergence in %; thus does not yet imply
convergence of n'/2( p, — 7., €;)o to zero in probability.

The convergence of n'/?( p, — #,, ¢)o to zero in probability does hold, however,
for a larger class than %;. In particular, this convergence holds for those c € ¥
that can be approximated by a sequence c(h;) of vectors in %; that grow at most
linearly in k (specifically, we assume that | h,()\) | < & for all A € [0, M]) and
approach c sufficiently fast (that is, ||c — c(hy) |0 = O(k™?) for some 8 > 0).
Denote the set of vectors ¢ that can be so approximated by %;. Theorem
4.1, which establishes this convergence result for %), then implies that
n'2(p, — mo, c)o and n'% (%, — m, c)o have the same limiting distribution if
cE %4.

The final step is to show that e; belongs to %] by constructing a sequence of
appropriate approximations c(h;) to e;. First note that differentiation of each
component of f(\) i times and evaluation of the derivatives at zero gives a vector
that has a one in the ith position and zeros elsewhere, in other words, the vector
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e;. Consequently we have a linear mapping H such that H(f(-)) = e;. It suffices
to show that this H can be suitably approximated by mappings H of the form
H(f); = J f;{(N)h(x) dGo(x) for some bounded function k. To ensure that such H’s
exist, we impose Condition 4.1 on Gy. The desired result is then proved as
Theorem 4.2. Whether Condition 4.1 is necessary as well as sufficient is not
known.

THEOREM 4.1. For c € £, (n**(#, — Pn), ¢)o tends to zero in probability and,
thus, (n"*(#t, — mo), ¢)o has. a limiting normal distribution with mean zero and
variance o*(c). If the support of Gy is an infinite subset of [0, M), then %, (and
hence %)) is dense in & under (-, - )o.

PrOOF. Choose and fix ¢ € %, its corresponding sequence ¢, € %, and its
exponent 8> 0. Fix an ¢ € (0, 1) and let k(n) be a sequence of integers such that
k(n) ~ n'/*=. Now write

(4-1) (nl/z("?n - ﬁn)’ c)O = <n1/2(7?n - Isn)’ c - ck(n))O + <n1/2(7?n - Isn), ck(n))O-
The first term on the right is bounded by
| <n1/2(7?n - ﬁn)’ (i ck(n))Ol = n1/2( " 7Fn - To "O + " ﬁn - To " O) " C — Cr(n) "0

Since || ¢ — ckm llo = O(n~73/279), this tends to zero in probability by Proposition
3.1. The second term on the right of (4.1) can be written as

<n1/2(7?n - ﬁo)’ Ck(n))o

(4'2) 1/2( A A 1/2 A A A Ci,k(n)
={(n (7n — pi,n), Chmy)n — N / Y (7I'i,n - Pi,n)(m,o - 7ri,n) — .
Ti,0Ti,n

Since | ¢;nmy | = k(n)m;o, the second term on the right of (4.2) is no larger in
absolute value than

nY2Y | ®in = Din| | Tin — mio | (R(R)mi0/mi07in)
= nl/zk(n) " 7?'n - Isn "n " 7?n - Mo "n - nl—t " *n - ﬁn "n " *n — To "ny

which tends to zero in probability by Proposition 3.1. Finally, for the first term
on the right of (4.2)

I <n1/2(7";n - ﬁn)’ ck(n))nl = l f (n1/2(7?n - ﬁn): f(x))nhk(n)(x) dGO()\)

= f I (nl/z(*n - ﬁn): f(x))nl Ihk(n)(x) I dGO(A)

= nl/zk(n) f I (ﬁn - ﬁm f(x))nl dGO(A)

Now (#, = Dn, f(A) ) = —=D(#,, f(\)) = 0 for all A € [0, M] by (2.1) with = = f(\).
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So
nl/zk(n) f I <7?'n - Ism f(x))nl dGO(A)

= n'2k(n) f (Tn = Pn, f(N))n dGo(N)

= n1/2k(n)(1f' - ﬁn’ To)n ~ nl—c(*n - ﬁ"’ T0)ns

since {7, — Pn, f(A)), = 0 for all A € [0, M] by (2.1) with = = f(\). Lemma 4.1
implies that the final term tends to zero in probability. '

To show that %; is dense in & suppose that z € ¥ and that z is orthogonal
to %, in the inner product (-, - )o. Then for any ¢ = c(h) € %, it holds that
Y czi/mio = [ X zifi(ANR(N) dGo(N)/m;0 = 0. Hence,. Y, 2if{(N\)/mj0 = 0 for Go-
almost all \. Therefore, if the support of Gy is an infinite subset of [0, M], z; =0
for all j.O

In order to show that e; € ¥, we impose the following condition on Gj.

CONDITION 4.1. There exist positive constants d, 8, ¢ such that Go(x + y) —
Go(x) = dy” for all x, y in (0, ). /

Note that Condition 4.1 implies that the support of G, is an infinite set.
Condition 4.1 is satisfied if the derivative G§(x) exists and is continuous for
x> 0 in some neighborhood of the origin and G§(x) = d in a neighborhood of the
origin. More generally, Condition 4.1 is satisfied if for some %k the derivatives
GP(x) = dGo(x)/dx, - - -, GE(x) = d*Go(x)/dx" exist and are continuous in some
neighborhood of the origin and G§’(0) = -.- = G§#(0) = 0, but G§(0) > 0.
These requirements on G, are sufficient even if Go(0) > 0.

Recall that the mapping H(f) described above involves differentiation of f
i times and evaluation of the derivatives at the origin. Also recall that

B o (ﬁ)(—l)"ﬂg(i) -2 o

as k — o if g is i times differentiable near zero. The latter fact is exploited to
construct mappings H(f) into %, that approximate H appropriately (cf. the proof
of Theorem 4.2). The proof requires the following simple combinatorial lemma
(cf. problem 16 on page 65 of Feller, 1968.)

x=0

LEMMA 4.2. Ifr < n then (1/n!) i (=1)"*(})k" equals 0 if r < n and 1 if
r=n. '

THEOREM 4.2. Suppose G, satisfies Condition 4.1. Then for any i the vector e
belongs to C,. Thus nY*(#;, — mio) and n'*(p;, — m0) have the same finite
dimensional limiting normal distributions.
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ProOF. Fix i and define the constants

[RG) D rsi
0

ANp = .
ik otherwise

fork=1ii+1,---andr=0,1, ---, k Define a set of i intervals near the origin
by I(r, k) = [r/k, (r/k) + (1/E“*V)] and set

-1
hi(x) = Tico >\r,k11<r,k)(x)< J;( o e dGoO\)) .

Once k is large enough, h, is finite and bounded by a constant times k“*#¢+D,
Thus it is enough to show that || e; — c(h:) | o = O(k™) for some v > 0. To show
this, set ¢, = c(hy), let ¢; » denote the jth component of ¢, and note that the mean
value theorem implies

= | HOOMO) dGo(n) = Jl, | 3mve dagn - 5 S x,,k<,—2 + .s,,k)

for some &, € [0, k~“*V]; the dependence of the £’s on j has been suppressed.
We now show that co, - - -, Ci—1.k, 1 = Cik, and Y5is1 c4/7;0 are all O(k™"), which
gives ||e; — c(hy) |lo = O(k™') as needed. Consider the values j < i. For some
i € [0, k™),

Zr—O Ark k
(the coefficient of the second term is written as j/j! to allow for the case j = 0).
Since £, = O(k~"*"), the second term on the right is O(k™'). By Lemma 4.2 the
first term equals zero if j < i and one if j = i. So ¢co, -+, Cic1k, 1 — Cip are
O(k™). For j > i, the ¢; are bounded by

13+ 12 16+ 1)72¢

|cj,k| S; Bi-1 =~k j!

Jj-1
+ Zr=0 Ar kEr k< + ., k)

Hence,
2 2 > 2j
Cir 2 G+ 17
21—""1 , k2 21—0 (j!)21rj,0 .

The sum on the right is finite since there are positive numbers b and m such
that 7o = bf.(m) for all i. Thus Y21 clix/m0 = O(k™') as well, and therefore
lle: = c(hi) llo = O(k™").0

5. Some remarks. The results in Section 4 can be extended to functionals
T on ¥ that are smooth at =, in the sense that there is a ¢ € ¥ such that
(5.1) T(x) — T(wo) = (x — mo, c)o + O(|| x — w0 [|3)

for some v > 1. In particular, if T satisfies (5.1) for ¢ € %, then n'*(T(x,) —
T(m,)) and n'?( p, — o, ¢)o both have limiting normal distributions with mean
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zero and variance o%(c) where o%(c) is given by (2.3). If, as we conjecture, the
more general result that n/%(#, — p,, c¢)o has a limiting normal distribution for
all c € € when G, has infinite bounded support is true, then nY?(T(#,) — T(m,))
is asymptotically normal (0, ¢%(c)) for any T satisfying (5.1) for some ¢ € &,

For the case where G, has finite support consisting of N, points, say, certain
linear combinations of the 7;,’s can be shown to be asymptotically normal. For
example, Theorem 4.1 implies the following Corollary 5.1 which applies whenever
A is a support point in (0, ) of G,.

COROLLARY 5.1. If X is such that (i) [Go(A + ¢) — Go(X — )] = O(cP) for
some 8> 0, then f(\) € %, and thus (n'*(#, — o), f(\))o has a limiting normal
distribution with mean zero and variance o*(f()\)). If, in addition, (i) 0 < A < M,
then (n**(%, — m), f’(\)) has a limiting normal distribution with mean zero and

variance ¢*(f’(\)), where f’(\) is the derivative of f()).

PROOF. Suppose \ satisfies (i) for a particular 3. Define h, by
h.(x) = [GOO\ +¢e) — Go(N — 8)]_11[A—c,>\+c](x)-

Then if ¢, = ¢(h.), we have

AN —cllg=% [fi(k) - f fi(x)h.(x) dGo(x)] / i

=X [fi(N) = fl&)/mi0
for some £ € [\ — ¢, A + ¢] by the mean value theorem. Applying the mean value
theorem a second time gives

(5.2) T [N = fil&)Pris < *  fi(n)*nis

for some n; € [\ — ¢, A + ¢]. Since f/(N) = fi-1(A) — f;(\), the sum on the right of
equation (5.2) is finite, and thus || f(\) —c.[o — 0 and

1AV = e.llo = OUGo(X + &) — Go(X — ¢))'P)

ase—0.So f(\) isin %.
To prove the second claim, assume A satisfies (ii) in addition to (i). Then
arguments along the lines of the proof of Proposition 3.1 show that

(nl/z("?n - ﬁn)y f(>\)>n - (nl/z(*n - ﬁn)y f(A))O

tends to zero in probability. Note that f(A\) € %;. Hence, a variant of the proof
of Theorem 4.1 shows that (n*/*(#, — p,), f(\)), = —D(#,, f(\)) tends to zero in
probability. Now assume (n'/*(#, — B,), f'(A\))» = —dD(w,, f(A\))/d\ does not
tend to zero in probability for some A € (0, M). Then there is a subsequence n,
for which almost surely 3 nY2(#;,, — Pin )f{ (N)/7in, is bounded away from zero
but ¥ nY(min, — Bin )i(A)/Tin, converges to zero. Then for any large enough n,
there must exist some & near X such that (nY*(7,, — B,.), f(8))n, = —D(7n,, f(5))
< 0. This contradicts the fact that D(x,, ) < 0 for all mixed Poisson vectors «
since 7, is the mle.
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For mixing distributions G, with finite support, Corollary 5.1 implies that
(n*2(#, — o), c)o has a limiting normal distribution if ¢ belongs to the finite
dimensional vector space %, = span({f(A\): A\ € support(Go)}U{f’(\): 0 <A< M,
\ € support(Go)}). For other c¢’s, (n**(#, — m), ¢)o may not have a nondegenerate
limiting normal distribution. When ¢ corresponds to a support hyperplane of
M (M), (f(N\) — mo, c)o = 0. For example, if Ny = 1 and Gj is supported on A,
then (f(A\) — mo, f”(Xo))o = 0 for all A, so that (n**(z, — mo), f”(Xo))o being
nonnegative cannot have a nondegenerate limiting normal distribution. This
reasoning suggests that if G, has finite support then all the finite dimensional
limiting distributions of n'/*(#, — ) cannot be nondegenerate normal. (Never-
theless, as the numerical calculation mentioned in Section 1 suggests, the formula
(7in(1 = 7:,))"% may provide a reasonable estimate of the standard deviation of
nY*#;, — m;0) even if N, is finite.) .

It should be possible to extend the results of the previous sections to mixtures
of an exponential family {f(x, 6)} of densities with respect to a measure x on the
real line for a parameter set that is a subset of the extended real line. Lindsay
(1983a, b) gives conditions under which the mle G, of G, exists, is unique and
has finite support. Let f.(x) = [ f(x, 8) dG,(8) be the mle of the mixed density f.
Define a norm || gllo = (f g%/fo dr)"/? an empirical analogue

"g"n = (f gz/fn dﬂ)l/z

and the associated inner products. Also define £ to be the set of functions ¢ for
which | ¢[lo < =, define o(c) = | ¢||3 — (¢, fo)3, and define the linear functional
((H, ¢))o = [ (c/fo) dH for any signed measure for which it is meaningful. The
analogue of (p,, c)o would then be ((dF,, c)),, where F, is the empirical
distribution function.

Analogues of Lemma 4.1 and Theorem 4.1 for suitably defined sets %, and %
are straightforward to establish, and Corollary 5.1 can be extended to this more
general context. But producing an analogue of Theorem 4.2 is more difficult,
since for most classes of ¢’s of practical interest, such as indicator functions,
there is no obvious way to establish membership in %;. It may be possible,
however, to use a differentiation approach to determine conditions under which
polynomials belong to £, We have not pursued this in detail.
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