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AVERAGE WIDTH OPTIMALITY OF SIMULTANEOUS
CONFIDENCE BOUNDS!

BY DANIEL Q. NAIMAN
The Johns Hopkins University

Simultaneous confidence bounds for multilinear regression functions over
subregions X of Euclidean space are defined to be u-optimal in a class of
bounds C, if they minimize average width with respect to u over X, among all
bounds in C with equal coverage probability. We show that for certain
simultaneous confidence bounds we can find a measure u relative to which
the bounds are u-optimal in C, where C is a large class of bounds. Such results
are obtained for bounds over finite sets, and for bounds for simple linear
regression functions over finite intervals.

.

1. Introduction. In (1973), Bohrer showed that Scheffé-type simultaneous
confidence bounds for a multilinear regression function f(x) = x’8 have smallest
average width with respect to Lebesgue measure among all simultaneous confi-
dence bounds with equal coverage probability (in a certain class of bounds to be
described below), if the region over which the regression function is to be bounded
takes the form of an ellipsoid

X={x:x"(A’A)"'x =a?,

where A is the design matrix. We generalize this result by showing that many
simultaneous confidence bounds share such an optimality property when the
class of competing bounds is restricted in a suitable way.

Consider a multilinear regression model in which we observe

(1.1) Y=A8+e,

where 8 is an unknown k-vector, A is a known n X k matrix, and e has a
multivariate normal distribution with mean vector 0 and covariance matrix ¢2I,,
with o2 unknown.

For a given subset X of R, suppose we are interested in obtaining two-sided
simultaneous confidence bounds for the regression function f(x) = x’g8 over X,
with coverage probability 1 — «, of the form

(1.2) ‘ (x’B — S¢(x), x’B + S¢(x)),
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or one-sided simultaneous confidence bounds of the form
(1.3) (-, x'8 + S¢(x)),

where ¢ is a nonnegative measurable function on X, £ is the least squares
estimator of 8 and S? is the usual unbiased estimator of ¢2.

For any o-finite measure u on X we call the bounds determined by ¢ in (1.2)
(resp. (1.3)), optimal with respect to u, or u-optimal, as two-sided (resp. one-
sided) bounds, if among all bounds of the same form and with equal coverage
probability, they minimize the average width over X with respect to u,
Ix $(x)u(dx).

The problem of finding p-optimal bounds is motivated by the following
practical problem. Suppose that one wants two-sided simultaneous confidence
bounds for the unknown regression function f(x) over X, of the form (1.2), with
coverage probability 1 — a. Suppose further that the actual future points x;, X,
..., X,, at which these bounds will be used, are random vectors which are
independent and identically distributed according to the probability measure u
on X. The accuracy of the resulting intervals, as measured by average width, is
proportional to Y, ¢(x;)/n, which converges a.s. to [x ¢(x)u(dx) by the strong
law of large numbers, provided this integral is finite. Consequently, u-optimal
simultaneous confidence bounds define simultaneous confidence intervals Wwith
optimal average accuracy. A similar remark can be made for one-sided bounds.

Bounds of the form (1.2) and (1.3) have appeared frequently in the literature.
Working and Hotelling (1929) introduced the first such bounds, and Scheffé
(1953, 1959) generalized them to multilinear regression. These bounds have the
property that the probability of any of the intervals (1.2) (resp. (1.3)) covering
f(x) does not depend on x. Bounds defined in this way are referred to as Scheffé-
type bounds. Since 1959, many other bounds of the above form have been
introduced to take into account restrictions on the regressors. See Miller (1977)
for an excellent review of the literature on this subject. A

To simplify notation we reparameterize the linear model (1.1) by expressing
it as

Y=A%8*+e,

where A* = AP™1, 8* = PB, and where P is the k X k symmetric square root of
the matrix A’A. The linear transformation determined by P defines a one-to-one
correspondence between simultaneous confidence bounds for the linear regression
function f(x) = x’g over X and simultaneous confidence bounds for f*(x) = x’8*
over X* = P7'X, and a one-to-one correspondence between o-finite measures on
X and X*.

Henceforth, we will assume without loss of generality that the model has been
transformed in this manner. We will use f(x) = x’8 to denote the regression
function, and X will always denote the region over which it is to be bounded. We
define the random k-vector B = S~'(8 — f). Since the model has been transformed
as above, B has a spherically symmetric multivariate ¢-distribution. Furthermore,
| B| is distributed as {kF},}'/?, where » = n — k. This distribution is unimodal
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with mode mo = {(k — 1)v/(v + 1)}'/%. We use F to denote the distribution function
of | B|, and g to denote the density function for B.

In terms of B, the given subset X of R*, and specified level a, a nonnegative
measurable function ¢ on X defines two-sided simultaneous confidence bounds
of the form (1.2) for the regression function f(x), over X, if

(1.4) P(|x'B| =¢(x),allx€X)=1—q,
and ¢ defines one-sided simultaneous confidence bounds of the form (1.3) if
(1.5) Pxx'B=¢(x),alxe€X)=1—a.

Simultaneous confidence bounds of form (1.2) (resp. 1.3) will be referred to by
the function ¢ on X that defines them. Given a ¢-finite measure p on X and a
set C of bounds over X, we call an element ¢ of C u-optimal in C, if ¢ minimizes
average width with respect to u among all bounds in C satisfying (1.4) (resp.
(1.5)).

We can now state Bohrer’s (1973) result as follows. If X is a ball centered at
the origin in R*, taking ¢(x) « | x || yields a bound which is m-optimal, where m
is Lebesgue measure in R* restricted to X, provided « is sufficiently small.
Bohrer’s argument is modified easily to yield the u-optimality of ¢ with respect
to any finite measure p on X which is spherically symmetric.

Bohrer’s result does not imply optimality of Scheffé-type bounds when the
multilinear regression model has an intercept parameter since the region X for
bounding the regression function must be restricted to a hyperplane in R*. The
main result of Section 5 (Theorem 5.1) states that the Scheffé-type bound is
m-suboptimal for bounding a simple linear regression function over a sufficiently
large finite interval, where m is Lebesgue measure over the interval.

The paper is organized as follows. For convenience, results will be stated for
one-sided bounds. All of the results of the paper have analogues for two-sided
bounds. The necessary modifications for obtaining these results are summarized
in Appendix 2.

In Section 2 we show that in a certain large class C of bounds for the regression
function over an arbitrary subset X of R*, local u-optimality in C implies global
u-optimality in C. This follows from the fact that on the set C the coverage
probability is concave in ¢, and this leads to the following result (Theorem 2.2).
If X is a finite set and ¢ is a taut bound in C (see Definition 2.2), then there
exists a finite measure y on X relative to which ¢ is optimal in C. If ¢ is in the
interior of C, and X contains at most one point in any direction, then u is unique
up to a constant of proportionality. We show in Lemma 2.2 that C contains all
bounds with sufficiently large coverage probability. Thus, if ¢ is u-optimal in C,
and the coverage probability of ¢ is sufficiently large, then ¢ is y-optimal among
all bounds.

Given a taut bound ¢ on an infinite set X, how do we find the measure u
relative to which ¢ is optimal? The answer is to find the measures for finite
subsets of X and take limits. The results of Sections 3-5 refer to simple linear
regression over a finite closed interval. Let ¢ be any bound which is taut. For
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any finite subset X; of X, let u; be the measure constructed in Theorem 2.2
relative to which the restriction of ¢ to X is optimal. We show in Section 3 that
there is a measure p on X with the following property. For any dense sequence
of points {xX,} in X, the measures u, corresponding to the sets X; = {x,, - - -, X,},
converge weakly to u as n — . Theorem 3.2 states that ¢ is u-optimal.

In Section 4 we derive this measure for some special cases. For the Bohrer
and Francis (1972) Scheffé-type bound over a finite interval, and its two-sided
analogue, the measure is a mixture of a measure with density proportional to
{1+ (x — £)%}732 on the interval, where % is the average of the design points, and
a measure concentrated at the endpoints of the interval. For the trapezoidal
bounds over finite intervals of Bowden and Graybill (1966), which generalize the
uniform bounds of Gafarian (1964), the measure n is shown to be one which is
concentrated at the endpoints of the interval.

Given a measure u on a set X, we would like to be able to find a bound ¢
which is u-optimal. While the results given in this paper do not deal directly with
this problem, they support the following indirect method. For a proposed solution
¢ of the u-optimal bound problem, the methods herein show how to construct a
measure relative to which ¢ is optimal. If this measure is sufficiently close to u,
then ¢ is close to being u-optimal. :

The constructed measure can also be used to indicate how a proposed solution
can be modified to give a bound with smaller average width with respect to the
given measure u. In Sections 3 and 4 we construct a measure relative to which
the Scheffé-type bound over a finite interval is optimal. The fact that the measure
is approximately unimodal indicates why the modification of the bound given in
Section 5 leads to an improvement in average width with respect to Lebesgue
measure. \

2. A general convexity result. Let X be an arbitrary subset of R* and
let ¢ be a (one-sided) bound over X. Recall that F denotes the distribution
function for |B|, and F is unimodal with mode mo. Thus F is convex on
(—, my), and concave on [m,, ). We let U denote the unit sphere in R*.

We use p(¢) to denote the coverage probability (1.5) of ¢. ¢ determines a
convex set containing the origin in R¥,

A(p) = {b E R*: x'b =< ¢(x), all x € X},

so that the coverage probability may be expressed as p(¢) = P[B € A(¢)]. For
u € U, let Ry(u) denote the distance to the boundary of A(¢) from the origin in
the direction u, so that

R,(u) = inf{¢(x)/x'u: x € X, x'u > 0},

where the infimum of the empty set is defined to be +o.
The following lemma is implicit in Bohrer (1973) and gives a convenient
expression for the coverage probability of a general bound ¢.

LEMMA 2.1. The coverage probability p(¢) is given by
(2.1) E{F[R,(B/| B[]}
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PROOF. For an arbitrary bound ¢,
p(¢) = P{B € A(¢)} = E{P[B € A(¢) | B/ B|]},
= E{P[|B| = R,(B/|B)|B/IB|1}
= E{F[R,B/[ B )]},
where the last equality uses the independence of B and B/| B | .0

Let C be the set of bounds ¢ such that R,(u) = m, for every u € U. The main
results of this paper give conditions for optimality of bounds in C. However, the
following lemma shows that C consists of all bounds with sufficiently large
coverage probability. Thus, optimality among bounds in C implies optimality
among all bounds.

REMARK 2.1. By the Cauchy-Schwartz inequality, ¢ € C if and only if ¢(x)
=mg| x| for every x € X.

LEMMA 2.2.

(a) C contains all bounds with coverage probability greater than 1 — «
(le., {¢p: p(¢) >1 — a} € C) if and only if P(t, = my) <1 — a, wherev=n — k,
t, denotes a random variable with a t-distribution with v degrees of freedom,
and my = {(k — 1)v/(v + 1)}'2

(b) ¢ & C if p(¢) < F(my).

PrROOF. For (a), suppose P(t, < mg) =1 — a. If ¢ & C there exists xo € X
such that ¢(xo) < mo || Xo ||, by Remark 2.1. Using the fact that B has a spherically
symmetric distribution and B;, the first coordinate function of B, has a
t-distribution with » degrees of freedom, we obtain

p(¢) = P(x'B = ¢(x), all x € X)
< P(x(B<mo|%xoll) =PBr<mo) =P(t, =mo) <1— a.

Thus, p(¢) > 1 — « implies ¢ € C.
Conversely, if P(t, < my) > 1 — a, let § > 0 be such that P(t, < my— 6) > 1 —
o. For any fixed xo € X and K > 0, we can construct a bound ¢x as follows:

¢k(X0) = (Mo — 8) [ X0 ll, ¢x(x) =K, for x# x,.
It follows that |
limg o p(¢x) = P(t, =my—06) >1—a,
so for K sufficiently large, p(¢x) > 1 — a and ¢ is not in C.
(b) follows immediately from Lemma 2.1.0

For two-sided bounds, (a) holds with P(t, < m,) replaced by P(|t,| < m,) and
(b) holds as stated. Table 1 gives P(t, < my), P(|t,| < mo) and F(m,) for various
values of » and k. For any value of the coverage probability smaller than the
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TABLE 1
P(t, = my), P(| t,| < my), and F(mo) (see Lemma 2.2).
k P(t,=mo) P(lt|=mo) F(mo) P, =<mo) P(|t,|=<mo) F(mo)
r=1 y = 00

1 500 .000 .000 .500 .000 .000

2 .696 .392 184 841 .683 .393

3 .750 500 .182 921 .843 428

4 782 564 178 958 917 442

5 .804 .608 175 977 955 451

6 .820 641 172 987 974 456

7 .833 667 170 993 .986 .460

8 844 .687 .169 996 992 463

9 852 .705 .168 998 995 .466
10 .860 720 167 999 . 997 .468

value in the column P(t, < m,), C does not contain all bounds. Although this
appears somewhat discouraging for large values of k and v, we should note that
the class C does contain the level 1 — a Scheffé bound (when X = R*), and hence
nearby bounds, for a < F(m).

LEMMA 2.3.
(a) R,(u) is concave in ¢ for any u € U.

(b) The set C is convex.

PrOOF. Concavity of Rs(u) follows immediately from the definition and (b)
follows from (a). 0

THEOREM 2.1. The function p is concave in ¢ on the set C. Consequently, for
any a € (0, 1), the set of bounds ¢ € C such that p(¢) = 1 — a is a convex set.

PROOF. Let ¢ and ¢ be any two bounds in C and fix A € [0, 1]. Set p = A¢ +
(1 — A\)y. Lemma 2.3 gives
R,(u) = AR,(u) + (1 — NRy(u)

for any u € U. Using the monotonicity of F, the fact that ¢ and ¢ are in C, and
the concavity qf F on [m,, ), we obtain

F[R,(B/|B )] = F[AR,B/|B|) + (1 — MR,(B/| B )]
= AF[R,(B/|B )] + (1 — MF[R,(B/| B])].
The proof is completed by taking expectations and using Lemma 2.1.0

From the point of view of optimality, a minimal requirement that any bound
should satisfy is that of tautness, defined as follows.

DEFINITION 2.1. A function ¢ on X defines a taut set of inequalities
{x'b < ¢(X)}xex if whenever another function y on X satisfies ¢ < ¢, with strict
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inequality holding for some x € X, there exists a solution b to {xX'b = ¢(X)}xex
which is not a solution to {X’b =< Y/(X)}xex.

DEFINITION 2.2. (Wynn and Bloomfield, 1971). A bound ¢ is taut if ¢ defines
a taut set of inequalities {x'b < ¢(X)}xex.

If a bound ¢ is not taut then there exists a bound with the same coverage
probability but which defines intervals which are at least as accurate as the ones
defined by ¢, with at least one interval being strictly more accurate. For this
reason we restrict our attention te taut bounds for the remainder of this paper.

Clearly, a bound ¢ over X is taut if and only if the hyperplane {x’b = ¢(x)} is
a support hyperplane for A(¢) for each x € X. For a given bound ¢ over X, define
a bound ¢* over X by

¢*(x) = sup{x'y: y € A(¢)}.

It is easily verified that the hyperplane {x’b = ¢*(x)} is a support hyperplane to
A(¢), so that A(¢*) = A(¢). It follows that ¢ is taut if and only if ¢*(x) = ¢(x)
for every x € X.

We now give a characterization of taut bounds.

LEMMA 2.4. Let X be any subset of R* and let ¢ be any bound over X. If ¢ is
taut then ¢ is convex and positively homogeneous on X. Conversely, if ¢ is convex
and positively homogeneous on X and {(x, ¢(x)): x € X} is a closed and bounded
subset of R**', then ¢ is taut.

PrROOF. If ¢ is taut then ¢* = ¢ and clearly ¢* is convex and positively
homogeneous on X. The converse follows immediately from Rockafellar (1970)
Theorem 17.3.0

REMARK 2.2. The following example shows that convexity and positive
homogeneity are not sufficient conditions for tautness. Let X = {(1, x)’: 0 <
x < 1} and define ¢((1, x)’) =1 + x* for 0 < x < 1, and ¢(0) = 2. Then ¢ is
convex and positively homogeneous on X but ¢ is not taut since we can take
Y((1,x)’) =1+ x%for 0 < x < 1, so that A(y) = A(¢).

We define the equivalence relation ~ on R* by x; ~ x; if x; = ¢X, for some
¢ > 0. Thus ¢ is positively homogeneous if and only if ¢(x)/| x || is constant on
equivalence classes of X and ¢(0) =0if 0 € X.

THEOREM 2.2. If X is a finite set and ¢ is a taut bound over X which is in C
and satisfies p(¢) > 0, then we have the following.
(a) ¢ is u-optimal in C for some probability measure u on X.

(b) Let X, - .-, X, be the equivalence classes of X — {0} under ~. If u’ and u are
probability measures on X satisfying

(2-2) ExGX,- M,({x})"xu = EXEX; p,({x})"xll, for "= 1’ RPN (A
and ¢ is u-optimal in C, then ¢ is u’-optimal in C.
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(c) If ¢ is in the interior of C, i.e., if §(X) > mo| x|, for all x € X, then for any
probability measure u relative to which ¢ is optimal, Yxex, p({X}) I x| is
determined uniquely fori =1, - - ., m. In particular, if ¢ is in the interior of C
and X contains at most one point in each ~-equivalence class then the
probability measure in (a) is unique.

ProOOF. Fix a taut bound ¢ in C satisfying p(¢) > 0. For (a) it suffices to
show that there exists a finite measure u on X such that ¢ is u-optimal among
all positively homogeneous bounds in C.

Let X, ---, X,. denote the equivalence classes of X — {0} under ~ and let
x;€EXfori=1 ---,mLet V={vER"viZmy,i=1, .-, m}. We can
define a one-to-one correspondence between positively homogeneous bounds
¥ € C and m-vectors v = v(y¥) = (v1, - - -, Un)’ € V by letting v; = ¥(x;)/ | x: |,
fori=1, ---, m. For v and ¢ related in this way define G(v) = p(y) so that
G(v)=Px/B=uvlx:l,i=1, ---, m). Clearly G is differentiable.

For any measure u on X concentrated on {x,, - - -, X»}, if v = v(y) then the
average width of ¢ under u is

L Y(x)u(dx) = TZ; vip({xd) | x|

It follows that ¢ is u-optimal if and only if v = v(¢) minimizes 7’v, among all
v € V satisfying G(v) = p(¢), where
(23) = wEDlIxl, for i=1,--.,m.

Define 7 = VG(V) | v=v(¢). Since G(v) is nondecreasing in each component
v;, 7 has nonnegative components and defines a measure x on X concentrated

on {X;, - --, X,,} via (2.3). 7 is nonzero since p(¢) > 0 and the density function

for B is nonvanishing.
We proceed to show ¢ is u-optimal in C. Let v = v(¢) and suppose w in V has
smaller average width than v (i.e., 7w < 7’v). It suffices to show that w has

smaller coverage probability (i.e., G(w) < G(v)).

Since V is convex, v + h(w — v) € V for all 0 < h < 1. Since G is concave on
V, it suffices to show G(v + h(w — v)) < G(v) for all h sufficiently small and
positive. This follows from the Taylor expansion

"~ G(v + h(w = V) =G(V) + hr'(w — v) + o(h)

as h — 0%, so the proof of (a) is complete.
(b) follows from the fact that if ¥ is positively homogeneous and p and u’
satisfy (2.2) then we have

f Y(x)u'(dx) = f Y(x)u(dx).
X X

To prove (c), assume v is in the interior of V and minimizes n’v among all v
in V satisfying G(v) = p(¢). We proceed to show that 7 is a nonnegative multiple
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of 7 = VG(V) | y=v(s). Suppose w is any m-vector such that +’w > 0. By Taylor
expansion,
G(v + hw) = G(v) + hr'w + o(h).

For all h > 0 sufficiently small it follows that G(v + hw) > G(v) and v + hw €
V, hence #'(v + hw) = v, i.e.,, ’w = 0. Thus 7w > 0 implies n’w = 0. By
Lemma 3 in Naiman (1984) it follows that n is a nonnegative multiple of 7.0

REMARK 2.3. The following description of the measure u will be used in
Section 3. Assume X contains at most one point in any direction u € U. For any
X € X, the hyperplane H = {b: x’b = ¢(x)} is a support hyperplane to the region
A(¢). Let F denote the face formed by the intersecting H with A(¢). Then u({x})
= [r g(x)m(dx)/| x ||, where m denotes k — 1 dimensional Lebesgue measure on
H, and g is the multivariate t-density.

3. Simple linear regression over a finite interval. In the remainder of
this paper we give results for bounding a simple linear regression function with
intercept ¥ = (1, x)’8, for x in a finite closed interval. In this situation we can
assume that the average of the design points is 0, since we can, if necessary,
redefine the regressors by subtracting x. We take X = {(1, x)’: a < x < b}.

The main result of this section concerns the u-optimality of taut bounds. For
any taut bound ¢ over X and for any finite subset X, of X, the restriction ¢, of
¢ to X, is a taut bound over X,. In Theorem 2.2 we constructed a measure uo on
Xo such that ¢, is uo-optimal.

Now suppose {(1, x;)}; is a dense sequence of points in X and define X, =
{1, x1), - - -, (1, x,)}. Let u, be the measure from Theorem 2.2 relative to which
¢n, the restriction of ¢ to X, is optimal. u, defines a measure on X in the obvious
way. In Theorem 3.1 we prove that u, converges weakly to a measure p (not
depending on the sequence {x,}), and the main result of this section, Theorem
3.2, states that ¢ is u-optimal if ¢ is continuous.

We introduce some notation. Fix a taut bound ¢ over X. For any subset Y of
(a, b), let ¢y denote the bound defined by restricting ¢ to Xy = {(1, y)’: y € Y}.
Define the convex set Ay = {b: (1, y)b = ¢((1, ¥)’), all y € Y}, so that p(¢y) =
P(B € Ay). Define

Hy(t) = —sup{s: (s, t)’ € Ay},

for t € R, so that
Ay= {(S, t):s< —'Hy(t)}.

This description is possible because of the special form of Xy. It is easy to see
that Hy is a convex function.

The following facts are consequences of the convexity of Hy on closed intervals
J. For a proof see Rockafellar (1970), Theorem 24.1. Hy is absolutely continuous
on J. The left- and right-hand derivatives D"H and D*H exist at each point of
J and are equal to each other except on a countable set. The funtions D~H and
D*H are monotone nondecreasing, D*H is right continuous, D™H is left contin-
uous, and at each point D"H < D*H.
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Let {y.} be a dense sequence of distinct points in (a, b), and take Y to be
Y. ={w, -+, y»}. We use X,, to denote Xy, ¢, to denote ¢y, A, to denote Ay,
and H, to denote Hy. We also let H denote H,; and we let A denote A(,s).

In Theorem 2.2 we constructed a measure u, on X, relative to which ¢, is
optimal. This measure can be described as follows. For each i, the face F;, of A,
corresponding to the support line {(1, y;)b = ¢((1, :))} is a line segment in R?
of the form {(—H,(t), t): tic1n < t < t;,}. Let I , = [ti—1n, tin) fori=1, - .-, n, so
that the intervals I;, partition R. The measure u, is given by

uai(1, 3:)'} = J; g(—H,(t), t) dt
where g denotes the density function of B. Furthermore, if ¢ is in the interior of
the interval I, , then y; = DH,(t). It follows that '

(3.1) Bn =V, °© DYH;' o 77},

where », is the measure on R with density function g(—H,(t), t), and = is the
mapping from [a, b] to X defined by =(x) = (1, x)’.
We now define the limiting measure

(3.2) pw=voD*H og

where v is the measure on R with density g(—H(t), t) and H = H .

The following result plays an important role in the proof of Theorem 3.2,
which is the main result of this section. A sketch of the proof appears in Appendix
1.

THEOREM 3.1. pu, converges weakly to u as n — o,
LEMMA 3.1. If ¥ is any bound over X then p(y + 6) > p(y) for any 6 > 0.

PROOF. Let r = inf{y(x): x € X} and define
S={veER:r+4/2<x'v<r+ forx=(1,a), (1, b)’}.

FixveS Ifx=>01-MN1,a) +X1,b) and A€ [0, 1], then X'V<r+ 4 =<
Y(x) + 6, so v € A(Y + 8). Furthermore, there exists x, € X such that y(x,)
<r+ 8/2. Since xo = (1 — N)(1, @)’ + A(1, b)’ for some \ € [0, 1], it follows
that xfv > r + 8/2 > Y(xo), so v & A(Y). Thus, S C Ay + 8) — A®Y). Clearly,
A(Y) C A(Y + 6) and it is easy to verify that P(B € S) > 0, so the result follows. 0

LEMMA 3.2. If ¢ is any continuous bound over X then p({|x,) — p(¥) as
n— oo,

PROOF. Let ¢, denote the restriction of ¥ to X,,. For any u € U the minimum
of Y(x)/x’u is attained in the interior of {x € X: x"u > 0} since y being bounded
and continuous on X makes the ratio infinite on the boundary. It follows that
R, (u) = Ry(u) as n — o. The result follows from Lemma 2.1 and Lebesgue’s
dominated convergence theorem. [
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THEOREM 3.2. Let ¢ be a taut continuous bound over X in C and let u be the
measure defined by (3.2). Then ¢ is u-optimal in C.

PROOF. Suppose ¢ is not u-optimal so that for some ¢y € C and for some
6> 0, p(y) = p(¢) and

f¢dn<f¢du—5u(X)-
X X

We can assume y is taut since otherwise we can replace ¢ by ¥* and the above
statements still hold. It follows from Lemma 2.4 that ¢ is a convex function so
that ¢ is bounded, and by Theorem 10.2 in Rockafellar (1970), ¢ is upper

semicontinuous.
Since u, converges weakly to u and ¢ is continuous and bounded on X, it

follows that
fqbdun—»fd)du as n— o,
X X

and using the upper semicontinuity and boundedness of y + 6 on X,

1imsup,.,.wL(¢+a) dunsL(¢+6) du<£¢du.

This follows from Ash (1970) Theorem 4.5.1(b’). It follows that there exists N

such that for alln = N
[ w9 duns |6 dun
X X

We use ¢, to denote ¢ | x, and we use ¥, to denote (¥ + 6) | x,. It is easy to
verify that R, = R, so that ¢, € C for every n. Since the measure pu, is
concentrated on X, and ¢, is u,-optimal, p(¢.) = p(¥») for all n = N.

We have p(y + 6) < p(¥») < p(¢»,) for n = N, and by Lemma 3.2, p(¢,) — p(¢)
as n — o, so it follows that

pWY + ) = p(¢) = pWY).
This contradicts Lemma 3.1 and completes the proof. 0

Thus far we have considered optimality among bounds whose width is finite
at every point in X. It is reasonable to ask whether a given bound ¢ is optimal
among bounds whose width can be infinite at certain points. Corollary 3.1 states
that for many bounds this turns out to be the case. We let C* denote the set of
measurable functions on X taking values in [my, ©]. We continue to refer to
bounds by the functions which define them.

COROLLARY 3.1. For a given bound ¢ as in the statement of Theorem 3.1
define F, = A(¢) N {b: (1, a)b = ¢((1, a)’)} and

Fy = A(¢) N {b: (1, )b = ¢((1, b)’)}.
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If either of the sets F, or F, consists of more than one point then
#{(1, a)'} + p{(1, 8)'} >0,

and ¢ is u-optimal in C*.

PROOF. The statement that u{(1, a)’} + x{(1, b)’} > 0 follows immediately
from the definition of u.
Suppose ¢ is suboptimal in C*. There exists ¥ in C* such that p(y) = p(¢) and

3.3) fl//du<f¢du<+0°.
X X

As in the proof of Theorem 3.2, we can assume y is taut and hence convex by
Lemma 2.4. Note that the proof of Lemma 2.4 is still valid for bounds taking
values in [0, +]. If ¥(x) is infinite for some x in X, then by convexity ¥((1, a)’)
=+ or ¥((1, b)’) = +o, but this implies [x ¥ du = +, which contradicts (3.3),
so ¢ must be in C and this contradicts Theorem 3.2. 0

4. Examples. In this section we compute the measure u given in (3.2), for
some examples of bounds that have appeared in the literature for simple linear
regression functions over a finite interval.

(i) Scheffé-type bounds. Bohrer and Francis (1972) introduced a one-sided
analogue to the Working-Hotelling (1929) bound which is of the form ¢((1, x)’)
« {1 + x%}*2 For this bound

P\(tl) +N@)E-t) t<b
]Mtz) + Nt —t) t>t,,

where \(t) = —{R? — t?}'/2, for some positive constant R, t; = Ra{l + a*~"%, and
t, = Rb{1 + b%}~/2. See Bohrer and Francis (1972).

Since the distribution of B is symmetric about O, g(—H(t), t) is constant on
[t1, 2], so that the density function for v (see (3.2)) is of the form

I‘hl(t) t<t
. C tl =t= t2
lhz(t) t =1,

h(t) =

for some constant C > 0 and positive functions h; and h,. Also

fa t<t
DH(t) = 1t/{R2—t}2 tist=st
1b t = t,.

Since DH is constant on the intervals (—, t;) and (¢,, +), the functional form
of the h; is not particularly important for determining the form of u. It follows
that u assigns some positive measure to {a} and to {b}, and on (a, b), u is absolutely
continuous with respect to Lebesgue measure, with density function proportional
to (1 + t2)732,
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As @ —» —» and b — +, u converges weakly to a distribution whose density
is proportional to (1 + t2)~%2, Hoel (1951) gave a heuristic argument for the
optimality of the Working-Hotelling (1929) bound over R with respect to this
measure, and the result may be obtained by an argument analogous to the one
given in Bohrer (1973).

(ii) Trapezoidal bounds. Bowden and Graybill (1966) introduced two-sided
bounds whose width is a linear function. These bounds generalize the uniform
width bounds of Gafarian (1964). For such bounds H(t) is a continuous function
which is linear on (—, t) and (¢, +%) for some t,, and DH takes only two
values, @ and b. Thus p puts all of its mass at the endpoints of the interval. In
the balanced case, when the center of the interval is the average of the design
points, the measure for the Gafarian bound puts equal mass at each endpoint of
the interval, but this needn’t be true in the general case.

More generally, if the bound ¢ is continuous and piecewise linear, then p is
concentrated on the at most countably many points where ¢’ is discontinuous.

5. Suboptimality of Scheffé-type bounds. In this section we state a
result giving the m-suboptimality of Scheffé-type bounds for simple linear regres-
sion functions over sufficiently large finite intervals, where m is Lebesgue
measure. We obtain the result by constructing an improvement to the Scheffé-
type bound.

It is assumed that we have a balanced design, i.e. the design matrix is such
that the average of its columns is the center of the interval for bounding the
regression function. After centering of the regressors about their mean, we can
assume without loss of generality that the region X is given by X, = {(1, x)’: | x|
< v}, for some v > 0.

Consider the class of bounds over X, of the form

o Jefl + x%2 x| =u
Seunl(l, )7) = {c{l +ul 4+ culx—ul/fl +u? us|x| =<y,

where 0 < u < v, and ¢ = 0. This bound has the hyperbolic shape of the Scheffé-
type bound on the subinterval {| x| < u}, and is extended linearly outside this
interval, so that ¢ is differentiable on X,. Note that ¢ is constant for u = 0 and
¢ is a Scheffé-type bound for u = v. We can think of this new class of bounds as
bridging a gap between the Scheffé-type and the constant width bounds.

The main result of this section is.the following theorem. A proof is available
from the author.

THEOREM 5.1. For any fixed u > 0 and ¢’ > 0, let c(v) be the constant such
that the Scheffé-type bound ..., has coverage probability equal to that of the
bound ¢, for each v > u, thus p(dcw),o,0) = P(@c,u,0).- Then there exists v’ such
that for all v = v’, the bound ¢. ., has smaller average width with respect to
Lebesgue measure on X, than has ¢cw)v,v. 0

The improvement to the Scheffé-type bound is hyperbolic in shape on a
subinterval and becomes linear outside of the subinterval. Thus, the width of the
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Scheffé-type bound grows too quickly toward the boundary of the interval. On
the other hand, the constant width bound is improved by making the width grow
by some degree.

We could have anticipated such a result since the Scheffé-type bound is
optimal with respect to a measure which has approximate central tendency on
the interval. In trying to optimize average width with respect to Lebesgue measure
instead of a measure with central tendency, we are asking for more accuracy near
the endpoints of the interval, and less at the center.

On the other hand, we may be interested in finding a bound which is optimal
with respect to a truncated normal distribution. In this case, the above result
suggests that for sufficiently large intervals we would obtain a smaller average
width by using a bound which is less accurate than the Scheffé-type bound at
the endpoints of the interval. Naiman (1982, Section 4.3) gives a class of bounds
that may be useful for this purpose.

6. Acknowledgements. Many thanks are due to one of the referees and
the Associate Editor, whose detailed and insightful comments led to a much
improved version of the original paper.

APPENDIX 1

Sketch of the proof of Theorem 3.1. The proof of Theorem 3.1 uses a
sequence of lemmas (A.1-A.8), which are stated below, and whose proofs are
available from the author.

LEMMA A.l.

(i) For each n there exist points T;, fori =1, - - -, n such that
(a) (_H(Ti,n)y Ti,n) (S Fi,n
(b) ti—l,n = Ti,n = ti,n
(C) Hn(Ti,n) = H(Ti,n)
(d) D~H(T;,) = D"H,(T;,) < D*H.(T;,) = D*H(T\,).
(ii) The sets {T;n,i=1, - --, n} may be chosen so that for some sequence of points
{T,.} we have {T;,,i=1, ---,n} = {T},i =1, - - -, n}, for every n.

DEFINITION A.1l. A point ¢ is a point of increase of DH if for every u <t <wv
we have Df”H (1) < D™H(v). Note that we do not require that DH exist at t. We
use Q to denote the set of points of increase of DH.

LEMMA A.2. Any sequence {T,} satisfying the conditions of Lemma A.1 is
dense in Q.

LEMMA A3. Ift € Q then H,(t) — H(t) as n — .
LEMMA A4. If t € Q then lim inf,_.D H,(t) = D H(t) and

lim sup,_.D*H,(t) < D*H(t). Furthermore, if t € Q and DH(t) exists then
lim inf, D~ H,(t) = lim sup,_..D*H,(t) = DH(t). ‘
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LEMMA A5. H,(t) — H(t) as n — x for every t.

LEMMA A.6. DH,(t) — DH(t) if DH,(t) exists for all n and DH(t) exists.
LEMMA A.7. v, converges weakly to v as n — o,

LEMMA A8. Foranyu € R if m{t: D*H(t) = u} = 0 then
m({t: DYVHt) = u} A{t: D*H,(t) <=u}) >0 as n— o,
where m denotes Lebesgue measure.
PROOF OF THEOREM 3.1. The fact that u,(X) — u(X) as n — o follows from
Lemma A.7. Fix u € [a, b] such that u({u}) = 0. It suffic‘es to show
v, © D*H;'[a, u] > v o D*H Ya,u] as n — .
Since g is nonvanishing m{t: D*H(t) = u} = 0, and
m({t: DYH(t) =u} A{t: D*H,(t) <= u}) >0 as n—ox
by Lemma A.8. It follows that
v, © D*HYa, u] — v, © D+H'1[d, ul—0 as n— x,
by Lebesgue’s dominated convergence theorem. Thus
vp © D*H;'a, u] — v © DYH Y[a, u]
= {v, c D*Hy[a, u] — v, ° D*H [a, u]}
+ v, e D'H[a,u] —ve D*H Y[a,u]} -0 as n— o,

by Lemma A.7, and the proof is complete. 0

APPENDIX 2

Results for two-sided bounds. We summarize the modifications necessary
for results for two-sided bounds corresponding to the results for one-sided bounds
given in Sections 2-5.

For subsets X of R* over which two-sided bounds are defined, we will always
require that —x & X whenever x € X. This is not an unreasonable assumption
since for given x € X, the bounds (1.2) for x’b define bounds for —x’b
automatically. Therefore, if necessary, we can replace a given X by a set which
contains at most one of the points x and —x for each x € R*. Henceforth, it will
be assumed that X satisfies the above condition.

For a given X and a two-sided bound ¢ over X let p’(¢) denote the coverage
probability (1.4) of ¢. ¢ determines a convex set containing the origin in R*,

A’(¢) ={bE R*: | x’b| < ¢(x), all x € X},

so that p’(¢) = P{B € A’(¢)}. We can define a one-sided bound ¢, over X; =
{x € R*: x € X or —x € X} by ¢1(x) = ¢(x) if x € X and ¢,(x) = ¢(—x) if
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—x € X. It is easy to verify that A’(¢) = A(¢1), where A(¢;) is defined in Section
2.

The above correspondence between two-sided bounds ¢ over X and one-sided
bounds ¢; over X, leads to obvious analogues to the definitions and results of
Section 2. The results of Sections 3-5 are valid after some minor modifications.
For the two-sided case, the optimal measure u of Section 3 is still of the form
(3.2), but » is the measure with density function g(—H(t), t)I; <1}, for some T >
0. For each example of Section 4, the optimal measure p is obtained from the
one-sided analogue by removing some of the mass from the boundary of [a, b].
Theorem 5.1 remains valid for the two-sided case.
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