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RESULTS ON DOUBLE SAMPLE ESTIMATION FOR THE
BINOMIAL DISTRIBUTION':2

By ARTHUR COHEN AND HAROLD B. SACKROWITZ

Rutgers University

A complete class result is obtained for double sample estimation of a
binomial parameter. The complete class leads to some inadmissibility results
for some procedures that are likely to be used in practice. It is also shown

. that the sample proportion as a true double estimator is not unbiased.

1. Introduction and summary. In a companion paper, Cohen and Sack-
rowitz (1984a), Bayes double sample estimation procedures are obtained for the
binomial distribution. The model in this paper is the same as the model in
Section 3 of that paper: namely, X;, i = 1, 2, --- are i.i.d. Bernoulli variables
with parameter p, 0 < p < 1. Results of this paper are as follows:

(1.1) A complete class result is obtained for double sample estimation and
sequential estimation. The result is that the Bayes terminal decision (estimator)
is unique. This sharply contrasts with the fixed sample estimation problem where
Bayes procedures are not always unique.

(1.2) The complete class result can be applied to prove that if the loss is a
linear combination of squared error and cost of sampling then any estimation
procedure (with its sampling rule) where the sample proportion is the terminal
decision is inadmissible except for the case where the total sample is a single
observation. Thus the inadmissibility result is true for any fixed sample procedure
in the sequential setting as long as the sample size is at least two. This is a very
surprising finding which contrasts sharply with the fixed sample situation.

(1.3) If the terminal decision loss function is squared error divided by
p(1 — p) and the overall loss is a linear combination, then any double sample
procedure (n, > 0, n, not always constant) in which the estimate is the sample
proportion is inadmissible. These last two results demonstrate the inadmissibility
of the Miller-Freund (MF) procedure for various linear combination loss func-
tions. See Cohen and Sackrowitz (1984a) Section 3 for the description of the
Miller-Freund procedure.

(1.4) The sample proportion as a true double sample estimate is not unbiased.
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1110 COHEN AND SACKROWITZ

Section 2 contains complete class and admissibility results. Section 3 contains
results on the Miller-Freund procedure and unbiasedness.

2. Complete class theorem and admisibility results for binomial
case. In this section we prove an interesting complete class result that is true
for double samples and is also true for sequential estimation. We'll treat this
latter case when the loss function is

(2.1) L(p,a) = W(|7r—=p]) + c(n),

with W(0) = 0, W(-) strictly convex, C(0) = 0, C(n) strictly increasing,
lim,_.C(n) = . Since the parameter space is compact, the Bayes procedures
form a complete class. For the fixed sample problem of estimating p with loss
function W(| 7 — p|), Bayes estimators with priors putting all mass on p = 0
and p = 1 are not unique. Brown (1981) gives conditions under which such Bayes
estimators are admissible. In the sequential problem here, no matter what the
prior distribution is, the Bayes estimator will always be an admissible terminal
decision. Bayes estimators (terminal decision) are unique for any specified sample
size dictated by the Bayes stopping rule.

Let £ be a prior probability distribution, é; = (7,, ¢;) a Bayes procedure with
respect to ¢ where 7; is the Bayes terminal decision and ¢; the Bayes stopping
rule. We prove

THEOREM 2.1. For every &, there exists a ¢; such that (1¢, ¢;) is admissible.

PrROOF. If £ puts any mass on the open interval (0, 1), clearly 7, is unique
and the conclusion is obvious. If £ puts all its mass at 0 the Bayes rule is to take
0 observations and estimate p by 0. If £ puts all its mass at 1, the Bayes rule is
to take 0 observations and estimate p by 1. Now suppose £ puts mass 7 at 0 and
mass (1 — «) at 1. The expected risk with respect to such a prior when no
observations are taken is

(2.2) faW(r*)+ QA -mW(r*=1])}

where 7* is the unique value of a which minimizes the expected risk when no
observations are taken. The expected risk when one observation is taken is C(1).
To see this, note that the Bayes terminal decision is to estimate p by 0 if the
single observation is 0 and estimate p by 1 if the single observation is 1. Thus
the risk is ‘

(2.3) Wl p)(1—-p)+ W(1=pl)p+C(1)

and hence the expected risk is C(1). Since C(n) is strictly increasing, the Bayes
procedure cannot take more than 1 observation. In fact the Bayes procedure is
to take 0 observations if (2.2) < C(1), and take 1 observation if (2.2) > C(1). If
(2.2) = C(1) then one can randomize. Hence the Bayes procedure is unique for
these priors except if (2.2) = C(1). In this latter case, the procedure with no
observations is easily seen to be admissible since its risk is zero at p = 7*.
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REMARK 2.2. In the fixed sample problem, priors which put mass only at {0}
and {1} yield many inadmissible Bayes procedures. In the sequential or & stage
problem, this does not happen.

An interesting application of Theorem 2.1 can be made for the case where
(2.1) becomes

(2.4) L(p, a) = (r — p)* + C(n).
Let y, = Yt Xi.

THEOREM 2.3. Any two stage procedure with either n, > 0, n, not constant or
ny > 1, and estimator p,, = y./n is inadmissible.

PROOF. It is known that the only proper prior for which p, can be a Bayes
terminal decision is the prior which puts mass only on {0} and {1}. In the proof
of Theorem 2.1 we saw that the Bayes procedure with respect to such a prior
takes at most one observation. Hence the procedure with terminal decision p can
only be Bayes if n; = 1 and n, = 0. Since the Bayes procedures are a complete
class, the theorem follows.

REMARK 2.4. Theorem 2.3 applies to any sequential procedure where the
sample size exceeds 1 with positive probability. This includes the somewhat
surprising result that any fixed sample size procedure with n > 1 and estimator
Dn is inadmissible! For a hypothesis testing problem, a comparable type of result
was obtained by Brown, Cohen, and Strawderman (1980). It is of further interest
to consider the fixed sample size procedure with n = 2, estimator p,, and cost
function C(n) = cn. If ¢ > Y the procedure taking one observation and estimating
D1 is better. If Yes < ¢ < 1, the procedure is better that takes one observation and
estimates by ke if X, = 0 and estimates by 1 — kv if X, =1, for any k such
that (1/8\/5) =< k = 1. However, if ¢ < Y4 there is no procedure which takes exactly
one observation that is better than the procedure with n = 2 and estimator p,.
Nevertheless this latter procedure is inadmissible.

3. Properties of Miller-Freund procedure. In this section we study MF
procedures regarding the optimality properties of admissibility and unbiasedness.
Theorem 2.3 implies that the MF procedure is inadmissible for linear combination
loss functions with squared error loss for the terminal decision. Theorem 4.2
below will imply inadmissibility for the linear combination loss function with
(r — p)? replaced by (= — p)?/p(1 — p). This is of interest since in the fixed sample
case the sample proportion is proper Bayes for such a loss function. Note that in
this case the Bayes terminal decision with respect to prior £ is

[3 P’ = p)™ 7 di(p) _ i (“LCETME)
BP0 = d(p) | 35 (DO )M (@)

whenever y = y; + y, satisfies 0 < y < n, n = n; + ny, and M;(¢) denotes the
ith moment of ¢ For y = 0 or n, if £ puts mass in a neighborhood of 0 and 1,

(3.1) TE(yl’ Yo) =
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7y, ¥2) = 0if y = 0 and 7:(y1, y2) = 1 if y = n. If £ does not put mass in a
neighborhood of 0 and/or 1, then 7; in (3.1) is correct even if y = 0 and/or n.

The integer m will be called a strong number for the double sampling procedure
4 if the probability that the total sample size (using this procedure) equals m is
greater than zero. Let S; denote the set of strong numbers for the procedure é.

It is clear from (3.1) that if N, is the largest strong number for the Bayes
procedure versus the prior distribution £, then any prior distribution having the
same first N; — 1 moments as ¢ will yield the same terminal decision rule. The
converse is also true.

LEMMA 3.1. Let T; be the Bayes terminal decision rule for the prior distribution
¢. If n is a strong number, then T; determines the first (n — 1) moments of &.

PrROOF. The method of proof is to show that the system of equations in (3.1)

has at most one solution in M;(§), ---, M,_,(¢) for any fixed n;, ny(0), ny(1),
-+, na(ny). To this end we define
' Bf=BJ’?_1_BJI‘e:111 j=011""9 k=2’37' ‘.

Note that

3.3) =3 (- 1)( ) M;.i(£)

and so (3.1) may be rewritten as
Zyﬁ-nz ( 1)1("2-y2)B"1'y1

(34) Te(yl’ y2) y:?";zz ( 1) "2_3’2)3"1_3’1 Nn= 0’ 1’ RPN (]
=71 2
and
an+n2—1 (- l)J(M—yz—l)Bl
TE(nl’ y2) = n:"')'l:zt);z( 1)1 nz-yz—l)B for y, = n,.

J=n+Yy2
For each fixed y; = 0, 1, - - -, n,, call the set of equations generated by (3.4) for

y2=0,1, - .-, ny the y; th set of equations. (Recall from (3.1) that we exclude the
equations for y1 =y =0 and y;, = n, y. = ny). The y,th set of equations permits

us to obtain each B"™, j = y;, - -+, y1 + ng, in terms (in fact as a multiple) of
Bj73'. Thus we will have a system of equations of the form
Bf=q,Bt, j=r+1,.--.,r+n,

forr=0, --.,n; — 1, k= n; — 1 — r. This with the system of equations in (3.2)
guarantees the uniqueness of My(£), - - -, My 4n,—1(£).

Let ¢™'/2 be an integer. The following theorem indicates the implications the
set of strong numbers has on the terminal decision rule y/n.

THEOREM 3.2. Let & be a procedure whose terminal decision rule is y/n and
for which S; contains more than one non-zero element. Then & is not a Bayes
procedure.
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PRrOOF. Let N be an element of S; and say & is Bayes with respect to £*.
Since equation (3.1) is satisfied for 7(y;, ¥2) = y/n and ¢ is taken to be uniform
on [0, 1], it follows from Lemma 3.1 that £* and the uniform distribution must
agree in at least the first (N — 1) moments. Thus M;(¢*) = (i + 1)}, i =1, 2,
..., N.

We now consider the posterior terminal decision risk, R.(y;), given X; = y,
for such an estimator. That is

Re(y1) = E[(y/n — p)’p™'(1 — p)7" | 1]
= E[E[(y/n — p)*’p™'(1 = p)™!| y1, ¥2] | 3]
_ 5 Jo (y/n — p)’p*'(1 = p)" dE*(p)
(3.5) e J3p*(1 = p)*™ dt*(p)
. Jo G)p*(1 = p)"~ dE*(p)
J6 p7(1 = p)™1 dE*(p)
2o (52 Jo (y/n = p)’p>7'(1 — p)*! dE*(p)
J6 (1 = p)"™ dE*(p) ’

For any n = N and letting £ denote the uniform distribution, it follows from
(3.5) and equality of the first (n — 1) moments that

1
Re(y1) J; p>'(1 — p)"™ d¢*(p)
1
= Ry(y1) fo p>(1 = p)"™1 déo(p)
1 2
= Zyimo (;:){[ J; (% - p) p>7'(1 = p)"7t dEX(p) — (-1
1 1
. J; p" dé*(p)] + (-1)">1 J; p" d&*(p)}
1 2
-5 ([ - for -
1 1
+ (—1)”“3“‘1(1: p" dt*(p) — J{: p" dfo(ﬁ))}

as the expression in square brackets depends only on the first n — 1 moments of
£*. Thus

Ru(y1) = R (y1) + (=1)n!

(3.6)

Mn(é*) - Mn(fo) ny (n2)(_1)n2_y2
J8 p71(1 — p)™ dEo(p) <770 \ e

1
= Rgo(yl) = ; .

Therefore the posterior risk given Y; = y, in taking an additional n, = ny(y,)
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observations is
(n1 + n2)™ + ¢(ny + ny)

independently of y;. Thus S; can contain only one element N = ¢~%/2.[0

Theorem 3.2 implies that the Miller-Freund procedure cannot be admissible
for the loss functions (7 — p)? + c(n; + n;) even when the loss due to terminal
decision is modified to (r — p)?/p(1 — p). The same conclusion is true if the loss
function is (r — p)? + ¢ log(n, + ny).

There is one very special formulation for which the Miller-Freund procedure
is admissible. Such a formulation requires the loss vector

(8.7 ((r = p)*/p(1 = p), ¢ log(n, + ny)),

and also must limit procedures whose first sample size is n,, the first sample size
(whatever it may be) of the MF procedure.

THEOREM 3.3. Among all procedures whose first sample size is n,, the
MF-n,, A = ¢(n, + 1)/n,, is admissible for the loss vector (3.7).

PrROOF. Cohen and Sackrowitz (1984b) show that a decision theory problem
whose admissible rules are the same as those for the given vector loss problem
can be formulated by introducing the dummy parameter v as follows. Let v = 1,
2. Define

— p)2 —_ i =
(3.8) L(p, v); ) = J[c(:TlogIr)z) =P :g = ;

In this setting it makes sense to speak of Bayes rules (with respect to priors on
(p, v)). We consider the prior distribution for which the conditional distribution
of p given » = 1 is uniform on [0, 1] while the conditional distribution of p given
v = 2 is Beta (a, ), where B(-, -) denotes the Beta function. Also let P(y = 2) =
B(a, a)/(1 + B(e, a)) =1 — P(v = 1). It is easy to see that for this prior the
terminal decision rule for any fixed n;, + ny(y;) is p = (y1 + y2)/(ny + na(y1)).
The posterior risk given Y; = y; is then a multiple (which depends only on y;)
of

1
(m + ma(3)™ f 67(1 — 0)"~>: db
3.9)

1
+ ¢ log(ny + na(y1)) f grrra-1(1 — g)ymyta-l gg
0

The value of ny(y;) = 0 which minimizes (3.9) is

I'(y: + 1)T'(n, = y1 + 1)T(n; + 2a) ) "
- n,.

(3.10)  ma(3n) = max(CF(nl + 2)I(y, + )I(ny — 1 + @)’ ™
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Taking o — 0, we obtain

na(y1) = maX<zinl—_3-@l, n1> - = [[—L— pi(1 = py) — nl]] .
c(n, + Dny c(ny + 1)

See Cohen and Sackrowitz (1984a), Section 2 for the definition of [[-]]*. Thus
MF-n,, A is seen to be the limit of a sequence of Bayes procedures for loss
function (3.8) among the class of procedures with fixed n;. Admissibility can be
established by using a Blyth type argument. (See for example, Ferguson (1967),
page 141.)

REMARK 3.4. If one does not limit the class of procedures to those whose
first sample is n; then MF-n,, A will not be a limit of the sequence of Bayes
procedures given in the proof of Theorem 3.3. The sequence of priors there is
eventually putting all the mass on the cost of the observations part of the problem
and so a limit of such Bayes procedures would not take more than one observation.

Another result is concerned with the question of whether the sample propor-
tion as an estimator, resulting from a true double sample procedure, is unbiased.
The answer is no.

THEOREM 3.5. Let 6 be a true double sample procedure with estimator p =
[(y1 + y2)/(n1 + na(31))]. The estimator is not unbiased.

PROOF. Suppose p is unbiased. Then letting p, = y1/n1, P2 = y2/na(y:) we
have

_EYi+Y)
p n + n2( Yl)
3 nip: na(Y1)ps
(3.11) - E(,,l + n2(Y1)) + E<n1 + nz(Yl))

niby na(Y1) )
=FE———— ) 4+ pEl —————).
(nl + nZ(Yl)) P (nl + ny(Yy)
Let n(Y;) = n; + nao(Y;). (Note below we need n(—1) so define n(—1) = 1). Thus
(3.11) becomes

_ Y, —mp) _ Yi(1=p)—(ma— Y)p
312) 0= E<_n(Y1) ) = E( - >, all 0<p<l1.

Some algebra shows that forall 0 <p <1
E(p(n, — Y1)/n(Y1)) = E((1 - p)Y/n(Y; - 1)).
Thus (3.12) becomes
E(Yi(ni%(Y1) — ni'(Y1—=1)) =0 al 0<p<l1

which by completeness of the binomial distribution implies n;(y,) is constant.
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REMARK 3.6. Consider the loss functions [(r — p)?/p(1 — p)] + c(n;, + ny),
and [(r — p)?/p(1 — p)] + ¢ log(n; + ny). Suppose only nonrandomized procedures
are permitted. Then it can be shown that the only admissible unbiased estimator
resulting from a double sample procedure is a single sample procedure. This can
be established using the information inequality for sequential estimators. See
Wetherill (1966), page 134. The analogue of this fact will be true for estimating
the expectation parameter for all one-dimensional exponential families satisfying
the appropriate regularity conditions.
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