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ASYMPTOTICS OF GRAPHICAL PROJECTION PURSUIT

By PERSI DiAcoNiIS! AND DAVID FREEDMAN?

Stanford University and University of California, Berkeley

Mathematical tools are developed for describing low-dimensional projec-
tions of high-dimensional data. Theorems are given to show that under
suitable conditions, most projections are approximately Gaussian.

1. Introduction. One mainstay of data-analysis is the use of low-dimen-
sional projections to study high-dimensional data sets. One-dimensional projec-
tions may be represented by histograms; two-dimensional ones, by scatter dia-
grams. A number of interactive data-analysis programs allow projection of a
high-dimensional data set into a low-dimensional subspace selected by the user,
who can search for interesting projections. See Fisherkeller, Friedman and Tukey
(1974) or Donoho, Huber and Thoma (1981) for details. In recent years, Kruskal
(1969, 1972) and Friedman and Tukey (1974) have suggested various algorithms
for finding interesting projections. Heuristically, a projection will be uninteresting
if it is random or unstructured. One standard measure of randomness is entropy.
This gives a numerical criteria suggested by Huber (1981): a projection is
interesting if it has small entropy relative to other projections, using a measure
of randomness such as entropy (—[ f log f) or Fisher information. Huber observes
that the numerical criteria used by Friedman and Tukey essentially minimizes
—J f?, another measure of randomness. If the scale is fixed, maximum entropy is
attained by the Gaussian distribution. This suggests another heuristic: a projec-
tion is interesting if it is far from Gaussian. The data-analytic conclusion is to
look at only a few of the projections which are close to Gaussian, and to look at
more of the ones which are far from Gaussian.

This paper presents a different rationale for looking at non-Gaussian projec-
tions. For many data sets, we show that most projections are nearly the same
and approximately Gaussian. Thus, if a data set is being inspected by projections,
the non-Gaussian projections are the ones that are special. On the other hand,
we also present classes of data sets where most projections are close to the same
non-Gaussian distribution. For such a data set, a different criterion seems in
order—the interesting projections may even be the ones which are close to
Gaussian.

This paper introduces mathematical machinery for describing the distribution
of projections. Most of the results are stated for one-dimensional projections,
although the results generalize (Section 5).
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794 P. DIACONIS AND D. FREEDMAN

The main results will now be stated. Let x;, x;, - - -, x,, be (nonrandom) vectors
in RP. This is the data set. For mathematical convenience, suppose that n, p, and
x; depend on a hidden index ». As » tends to infinity, so do n and p. Suppose that
for o® positive and finite, for any positive ¢, as » tends to infinity,

(1.1) (1/n)card{j < n: || x;[|12— o’ | > ep} = 0
(1.2) (1/n®)cardfl < j, k< n:|x; - x| > ep} — 0.

Condition (1.1) says that most vectors have length near o?p. Condition (1.2) says
that most vectors are nearly orthogonal. The word “nearly” is important: of
course, only p vectors can be exactly orthogonal. The conditions are satisfied if
e.g. the x; are observed values of independent identically distributed vectors with
independent identically distributed L, coordinates (Section 3), or the n = 27
vertices of a unit cube centered at the origin.

Turn now to projections. Let S,_; be the unit sphere in R”. Put the uniform
distribution on S,-;. Let v be a typical element of S,—;. The projected data in
direction v have coordinates

(1.3) YR, Y Xoy s Y+ Xne

Let 60,(y) be the empirical distribution of this sequence, assigning mass 1/n to
each v - x;. The first theorem says that 6,(y) is close to N(0, ¢%) for most v, for
large v. Here “close” is in the sense of the weak topology; “most” is relative to
the uniform distribution on S,—;. A technical description involves convergence
in probability of the random measures 6,(-).

THEOREM 1.1. Under conditions (1.1) and (1.2), as v — o, the empirical
distribution 6, tends to N(0, ¢%) weakly in probability.

Theorem 1.1 is proved in Section 2. The approach is quite similar to the
techniques in Freedman and Lane (1980, 1981). Section 3 gives examples where
conditions (1.1) and (1.2) hold. Section 4 gives examples where most projections
are not normal. The random measures 6,(-) may converge in probability to
nonnormal limits; or in distribution but not in probability to random limits.
Examples include the case of strongly correlated coordinates, and clusters.

The results in Theorem 1.1 continue to hold if the data are standardized using
robust (i.e., weakly continuous) measures of location and scale such as the median
and interquartile range. Consider next the case where the data are standardized,
using the mean and standard deviation. Some notation is needed. Let a, be the
mean of the projected data, s? the variance, and t2 the second moment. Thus

a, = (1/n) 27=1 Y - xj) 3121 = (l/n) E;Ll (’Y * x] - av)2)

(1.4)
ty=(@1/n) I (v - %)%

Let
(1.5) = (1/n) Y %
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The conditions required for Theorem 1.2 are

(1.6) (1/np) ¥ | %112 = 0> where 0<o®<
1.7 (1/n)card{j < n: | | x;|® — po?| > ep} = 0
(1.8) (1/(np)®) X=1 (% - x)* — O.

These conditions imply (1.1-1.2), by Chebychev’s inequality. Let 0%(y) be the
centered empirical measure, assigning mass 1/n to v - x; — a,. Let 0,(y) be the
scaled empirical measure, assigning mass 1/n to v - x;/t,. Let 62(y) be the
standardized empirical measure, assigning mass 1/n to (y - x; — a,)/s,.

THEOREM 1.2.

(a) Under conditions (1.6-1.8), as v — o,
e the empirical second moment t2 converges to o in probability
o the scaled empirical 0} converges to N(0, 1) weakly in probability.

(b) If conditions (1.6-1.8) hold for the centered data x; — %, then

o the empirical variance sZ converges to ¢ in probability

e the centered empirical 60 converges to N(0, o) weakly in probability

e the standardized empirical 92 converges to N(0, 1) weakly in probability.

REMARKS. Of course, part (b) of Theorem 1.2 follows from part (a). If the
focus is on the standardized empirical, it is harmless to center the data and scale
it so that (1/n) ¥ | x; — |2 = p. The conditions become

(1= e1/n) Th % — x|
(1.9) <|x—x*?<@+e)1/n) T}t |5 — %|?
except for o(n) indices k=1,2, ..., n
(1.10)  (1/n?) Biu=1 [(x5 — %) - (2 — X)) = 0[(1/n) T} | — )22
Theorem 2 will be proved in Section 2.

2. Proofs of Theorems 1.1 and 1.2. Let { be N(0, 1), i.e., a vector of p
independent N(0, 1) variables. Then {/| ¢| is uniformly distributed over S,_;.
On the other hand, || { ||/ \/5 — 1 almost surely as p — «. Hence, it is enough to
prove the theorems with v replaced by {/ Vp; a variant of Slutzky’s lemma is
involved in this step. The advantage is that normal theory can be used. To

economize on indices, we use v—1 instead of i. The first two lemmas are
standard.

LEMMA 2.1. Let U be a random variable with characteristic function ¢. Then
2 1|
P{|U| z—}s—f [1 - Re (1)) dt.
€ € —e

For the next lemma, let 6§, be a random probability on the line, with random
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characteristic function ¢,. Let 6, be a deterministic probability on the line, with
determiinistic characteristic function ¢,.

LEMMA 2.2. 0, — 6, weakly in probability if and only if the random character-
istic functions ¢,(t) converge to ¢o(t) in probability for each t.

PROOF. “Only if” is clear. In the other direction, let T = (—, 2/6] U
[2/8, ). Then

)
BT} < 5 | (1 - Re Ef,(0)}] dt

and lim sup,E{6,(T5)} < (1/8) [%5 [1 — ¢o(t)] dt is small for 6 small. Given ¢
positive, there is a positive § so small that P{6,(T5) < e} > 1 — ¢ for all v. Thus
{6,} is tight. O
Now let 6,({) be the empirical measure of
(¢ - x)/Vp, -+, (¢ - x)/Vp.

PROPOSITION 2.1. Under conditions (1.1-1.2), 8, — N(0, o) weakly in prob-
ability.

PrOOF. The characteristic function of 6,(¢) is
(2.1) $.($, 1) = (1/n) T exp{v=1¢(s - x)/p}.
Clearly,
(22)  Efeu(-, t)} = (1/n) Tz exp{—1at* | x;|*/p} — exp{—Y4t’s?}
by condition (1.1). Likewise
E{| ¢.(-, 1) 1%} = E{¢u(-, (-, 1)}
(2.3) = (1/n*)ZxElexp[V=1 ¢(§ - (% — x))/Vpl}
= (1/n®)Xexpl{—Yat® | ; — 2 1*/p}.
Of course,
% — xe|1* = "xj"2’+ 2 [I? = 2x; + X

The summands in (2.3) are between 0 and 1. By conditions (1.1) and (1.2), except
for a set of pairs (j, k) of cardinality o(n?), we have simultaneously

o’p —ep < |l x]* < o’p + ep,
o’p —ep < | x)*<o’p +ep
—ep < Xj - X < ¢€p
and hence

202 —4e < || xj — x| */p < 207 + 4e.
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Hence
Ef| ¢.(-, t) |?} — exp{—tZc?.
By Chebychev’s inequality, ¢,(-, t) — exp{—4t*s?} in probability. 0

To prove Theorem 1.2, another estimate is needed.

LEMMA 2.3. E{({ - x)*(¢ - x)% equals 3| x;(|* if j = k, and 2(x; - xx)* +
(EA R EN

ProOF. Clearly, ¢ - x; is normal with mean 0 and variance | x;[|% so the case
J = k is trivial. If j # Kk, consider the regression of x; on x, viz., x; = axx + 6,
where « is a scalar, § € R?, and 6 L x;,. Now { - x; = (af - xz) + ({ - 8), and the
terms on the right are independent. The rest is routine. [

For the scaling, now let ¢,({)? be the empirical second moment:
t($)? = (1/n) Tj=1 (¢ - x)*/p.

The empirical variance s is t? applied to the centered data x; — .

LEMMA 2.4.
(@) npE{t()* =X % |*
(b) nPE(DY =2 X (x - x)? + (5 1 %152

ProoF. Claim (a) is easy. For (b),
Eft(9% = (1/np? i E{§ - 6)*(§ - )}
Using Lemma 2.3, the double sum can be evaluated as
3% Ixll* + 2 Tjse (x5 - %) + Tjosr 211 [l e ||
which can be rewritten as
2 Y (% - 2+ (3, %1% O

As before, let 01({) be the scaled empirical.

PROPOSITION 2.2. Under conditions (1.6-1.8), the empirical second moment
t2 converges to o® in probability, and the scaled empirical distribution 03({)
converges to N(0, ¢%) weakly in probability.

PROOF. That t? — o2 follows from Lemma 2.4, and 6, — N(0, ¢%) by
Proposition 2.1; then 6} can be handled, in effect by Slutzky’s lemma. 0

3. Examples with most projections Gaussian. This section presents
examples of data sets that satisfy conditions (1, 2) or (6, 7, 8). The examples are
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made up of independent and identically distributed random vectors

Xy
Xy

X,
The first example shows that conditions (1.1) and (1.2) hold almost surely for
independent identically distributed (iid) coordinates.

ExXAMPLE 3.1. iid coordinates. Let X; beiid fori=1,2, ..., and j =1, 2,
.. .. Suppose
EX;) =0, o*=E(X}}>0 and E{|X;|*"} <o

(3.1)
for some 7 >0.

Then, for almost all realizations of the array {X;}, conditions (1.6-1.8) and so
conditions (1.1-1.2) are satisfied, no matter how n and p tend to infinity.

ProoF. Condition (1.6) is easy
3.2) (1/np) X2, ¥, X% — o2 ae.

Convergence in (3.2) is as n and p tend to infinity in any arbitrary way: the null
set does not depend on the path. This strong result fails if it is only assumed
that E(X?) < . See Smythe (1973) for details.

For condition (1.7), fix ¢ > 0. Let &, be 1 if

| (1/p) B X§ = 0| > ¢
otherwise let £,; be 0. We claim
(3.3) limp pe(1/n) Y1 &; =0 ae.

Suppose first E{X{} < . Fix § positive but small. Let A,, be the event Y%, £, =
on. We will show that P{A,,} sums over n > n, and p > p, when n, and p, are
large; Borel-Cantelli completes the proof in the L, case.

Let =, = P{¢,; = 1}. By Chebychev’s inequality, =, < A/e’p where A =
Var{X?} < E{X}}. By a version of Bernstein’s inequality,

P(Apn) < (emp/8)™" < (Ae/e’pd)™.

See Freedman (1973, Theorem 4b). Fix p so large that (Ae/e?pd)® < Y. The sum
on n of (Ae/e?pd)®™ from n = n, to © is at most

2(Ae/epd ).

If no > 1/5, this sums in p, completing the proof of (3.3) under the assumption
E{X}} < oo.
The fourth moment condition is eliminated by truncation. Fix L large but



PROJECTION PURSUIT 799

finite. Let
Y;=X; when |X;|=<L
=0 when |X;|>L
Zij = Xi' - Yij.
Now

X:i=Y:+ Z}
because Y;Z; = 0. So, Yj; is uniformly bounded, and E(Y?) is almost ¢2, while
E(Z3) is small. Now, (1/p) %, Y% can be dealt with under the fourth-moment
condition. On the other hand,
sup,(1/p) T, Z5 =V,

are independent and identically distributed in j. The averages overi =1, ---, p
of Z} form a backwards martingale in p. Fix « a little bit larger than 1. Then
E(V}) = (a/(a — 1))*E(Z}¥) (see Doob, 1953, Theorem 3.4 on page 317).
Now
E(V) = (a/(a — 1))E(Z})=
is small for L large and
lim,.(1/n) Y% V; = E(V)) a.e.

is small. This completes the argument for condition (1.7).
We turn now to condition (1.8). It is convenient to deal first with the term
J = k. We claim

(3.4) (1/n’p?) T (B2, X5)* > 0 ae.

Let V; = sup,(1/p) X2, X3}. Using Doob’s inequality again, V; € L,,,, and the
V; are independent and identically distributed. Even if the V; were just in L, and
identically distributed

(1/n)max;—;,...,V;—0 a.e.

This last follows from V,/n — 0 a.e. which in turn follows from the Borel-
Cantelli lemma. It now follows that

2

1 1 1 1 .

;E 27=1 <E ;P=1 Xg) = (; maxj=i,...,n VJ) X (n_p ;P=1 2j=1 X%) .

The first factor goes to 0 a.e., and the second to ¢2. Thus, (3.4) holds.
We now take up the terms j # k in (1.8). We claim

(3.5) lim, p(1/7°p?) Tisjck=n (T2, X;Xn)? =0 ace.

Suppose first us = E{Xj} < ». Then the idea is to use Hoeffding’s U-statistic
argument. Let

Top = (1/n(n — 1)) Tisjcr=n hp(X;, Xr)
where
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and
ho(x, ¥) = (1/p*)(x - ¥)® — (o*/p)

for column p-vectors x and y. It is enough to show that T, — 0 a.e. By a slightly
tedious calculation,

E{hp(Xn Xk); =0
Var{h,(X;, X.)} = 3(p — 1)o*/p® + pna/p® — o®/p>.

Let
ap(x) = Efhy(x, Xi)} = o | x|?/p® — ¢*/p
SO
Var a,(X)) = (¢*/p®)(us — o).
Let
hi(x, ¥) = hp(x, ¥) — ap(x) = ap(y).
Then
ap(x) = Ethp(x, Xi)} = Eth3(X;, y)} = a}(y) =0

and

Var(h#(X;, X))} < A/p®
for some constant A. Now
Top = (1/n) Ejm1 ap(X)) + Thp
where
(2/n) Zia ap(X)) = (6°/p°n) 32, Ty (XF — 0®) > 0 ae.
and
Th = (1/n(n — 1)) Tisjcrsn h3(X;, Xi)
has mean 0 and variance
(2/n(n — 1))Var{h}(X;, X:)} < B/n*p?

for some constant B. This is the key point; the reason is that « 5 = 0. The upshot
is that

Yo P Thp| > e} <o, so Tk —0 ae.

We now eliminate the fourth moment condition by truncation, and show that
under condition (3.1) only,

(1/n%?) ¥t (X - Xp)2 > 0 ace.
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Let
Y, =X, when |X;| =L
=0 otherwise,
Z; =Xy — Yy,
Ajp = (X; - Xi)/p = (1/p) B, XyXua = Bj + Cjp + Dj + Fj,
where
B, = (1/p) 2%, YiYa, Ci= (1/p) XL, YiZy,
Djx = (1/p) T ZjYi, Fi= (1/p) L, ZyZu.
Then

A} = B} + 2Biu(Cix. + Dy + Fip) + (Cix + Dj + Fip)%
We claim that
(3.6) lim sup,, p.o(1/n%) Y%y Ch < ¢ ace.
where ¢, — 0 as L — o, Indeed,
%= ((1/p) T, YD) X ((1/p) 3L, Z}).
So
(1/n*) Eji=r Ch = ((1/np) EL, Tjaa Y§) X ((1/np) TLy Tha Z5)-

As n, p — o, the first factor on the right converges a.e. to E{Y?}, which is nearly
E{X%} for L large; the second factor converges a.e. to E{Z2}, which is nearly 0
for L large. This proves (3.6); analogous results for D and F may be obtained by
the same argument.

Next, we claim that

(3.7) lim supnp(1/n?) %1 BiCi < 61, ace.,
where 6, — 0 as L — . Indeed,
((1/n®) Yh=1 BixCi)? < ((1/n?) Yh=1 Bf) X ((1/n?) Yh=1 Ch).

The first factor on the right goes to 0 a.e. by (3.4-3.5); the second factor is under
control by (3.6). This proves (3.7). Likewise for D and F. This completes the
verification of condition (1.8).0

Conditions (1.6-1.8) hold for the centered data X; — X, where X =
(1/n) ¥7-1 X;, under the assumptions (3.1). This is comparatively easy to deduce
from example 3.1. One useful fact:

(3.8) (1/p) L, ((1/n) Bj-1 X;)* > 0 ae.

For the proof, observe that (1/n) ¥, X, is a backwards martingale. Fix n, and
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let
Si = 8UPpan((1/n) Ty Xy)2.
Then the S; are iid and
E(S) = 4E{((1/no) ¥, X)) = 40%/no.
So for n > ny,
lim sup,.(1/p) X2, ((1/n) 3% X;)? < 46%/ny ace.
See Doob (1953, Theorem 3.4 on page 317).0

REMARK 1. We have been assuming a 2 + nth moment. We believe the
argument goes through if X% is in L log L, by using a more sophisticated
truncation.

REMARK 2. Let 8(npX¢) be the empirical distribution of
(¢ - X)/Vp, -, (£ - Xa)/p

where ¢ = ({1, &, -+, {) is the first p of a sequence of iid N(0, 1) variables,
independent of {X,;}; and

Xy

Xi=| :
ij
Condition (3.1) implies 8(npX¢{) — N(0, ¢2) weakly in probability as n and p

tend to infinity given X, for almost all realizations of X. Is the convergence a.e.
in {? The answer is negative, even if the X;; are N(0, 1). Here, we are asking
about free convergence of n and p to infinity; however, the answer is still negative
for sufficiently peculiar fixed paths (n,, p,): v =1, 2, ... We do get a positive
answer by letting n — o and having only one p, for each n.

For results a.e., there is no point in conditioning on X, so leave X free. Also,
it is harmless to replace «/— by || ¢|l. Let

_Ezlg‘l u/V p

Each S, is N(0, 1), and the S,; are indgependent for j=1, 2, -... In fact, the
processes {Sp: p = 1, 2, --.} are independent in j, but this is immaterial here.
For each j, the variables S,: p =1, 2, - . ., are dependent, but nearly independent
for widely separated p’s. Let

Apn={Sp>0forall j=1, ..., nl.

Then P{A,,} = 1/2" for each n, and the A,, are nearly independent for widely
separated p’s. So

P{A,, for infinitely many p} = 1.
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Thus
P{A,, for infinitely many p for all n} = 1.

In short, for any n, no matter how large, there are infinitely many p’s such that
the empirical measure 8(npX¢) sits on the positive halfline (0, ). This defeats
convergence to N(0, 1) weakly a.e. as n, p — o freely.

How about convergence along a peculiar path (n,, p,)? Fix any function f from
the positive integers into the positive integers, with f(n) strictly increasing. We
can find g(n) > f(n) so large that

P{A,, for at least one p with f(n) =p < g(n)} =1 — 1/n

Now consider the path [n,, p,] that results from stacking the indices in the
following order:

(1, f(1)]
(1, 1(1) +1]

(1,8(1)]
(2, f(2)]
(2, f(2) + 1]

[2, g(2)]

That is, [n1, p1] = [1, f(1)], and [n2, p2] = [1, f(1) + 1], and so forth. As is easily
seen, P(A,,,, i.0.) = 1, defeating almost sure convergence.

In principle, it is possible to get bounds on the rates of convergence in
Theorems 1.1 and 1.2 using Chebychev’s inequality and Esseen’s smoothing
lemma (Feller, 1971, page 536). If

(1/n)card{j: 1< j<nand||x|* - o’p| >ep} <e
and
(1/n®)card{j, k: 1 < j,k<nand |x; - x| >ep} <e
then, except for a set of v’s of measure at most f(¢), the empirical distribution of
N Xiy e, Y+ Xn

is within f(¢) of N(0, ¢%). The function f may be estimated by the argument
indicated above, but so far we have only very crude results; we hope to return to
this issue later.
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Here is a somewhat different argument, with a similar conclusion: for random
data of the type considered in this section, the projections are normal up to a
random error of size

0,(1/¥n) + 0,(1/p).

To be more specific, for distribution functions F and G on the line, let | F — G ||
= sups| F(J) — G(J) |, where J is an interval. Let the X;; be independent with
continuous distributions which may depend on i but not on j. Suppose these
distributions all have mean 0, variance 1, and a finite absolute third moment
bounded by a3 < . For v € S,-;, let 6(v) be the empirical distribution of

v - X1’7 - X, e,y - X,
where
X
X=|:
Xpj
Let ® be the standard normal distribution function.
PROPOSITION 3.1. [60(y) = @l < Unpy + Viuoly)
where:

e VnU,,, is a random variable with a Kolmogorov-Smirnov distribution which
does not depend on p or v, or the laws of X;;, and converges weakly to a limiting
distribution as n — o,

() is a function of p and v only; and \/1; Vo(-) tends to 4Kas/ Vorin probability
as p — o, where K is the universal positive constant in the Berry-Esseen bound.

PROOF. Let F(vy) be the common theoretical law of v - X;. Clearly,
16(y) = @1l < Uppy + Wiy,
where
Unpy = 10(v) = F(Y) I, Wepy, = | F(y) — 2|.

Now the law of vnU,,,, has the usual Kolmogorov-Smirnov distribution, whatever
p or vy or F, may be, and this converges as n — oo.
On the other hand, by the Berry-Esseen bound, W,,, < V,(y), where

Vo(v) = Kag B2, | 7il®

and K is a universal positive constant: see Petrov (1972, page 111) We must now
demonstrate the limiting behavior of \/— V(). Let Z,, Z,, .- -, be independent
standard normal variables. Then vp pVp(-) is distributed as Ka3 tlmes

(1/p) 22, 1Z:1%/((1/p) X2, | Z3|)**
which converges a.e. to E{| Z;|®} = 4/v2x. 0
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4. Examples of non-Gaussian projections. Theorems 1.1 and 1.2 break
down if the conditions are violated. In some cases, it is still possible to describe
the asymptotic distribution of most projections. The examples presented here
include cases in which most projections have the same non-Gaussian distribution
and cases in which the projection depends on the direction «.

With long-tailed data, asymptotic normality can fail. For instance, with
Cauchy data, most projections (suitably scaled) are Cauchy. A bit more generally,
let X;, be independent, with common symmetric stable density of index « < 2,
having characteristic function exp(—| ¢ |*). Let 8(npXy) be the empirical distri-
bution of

pY(y - X)/pY, -, pYA(y - Xa)/pV"
where
Xy
x=|:
X
and v is uniform on the unit sphere S,_; in R”, independent of X. Let Z be a

standard normal variable, and C, = E{| Z|¢}.

PROPOSITION 4.1. As n and p tend to infinity, 6(npX~y) converges weakly in
probability to a symmetric stable law of index «, having characteristic function y(t)
= exp(—C,| t]9).

PROOF. Let ¢,px,(t) be the empirical characteristic function
(1/n) i exp{v=1tp"*(y - X;)/p™}.
Take the expectation over X, holding v fixed, to get
exp{—|t|*(1/p) TL, (P"*]:)}.
As is easily seen,
(1/p) 2%, (p*|7:i|)* = C. in probability.
Hence, E{¢.px,(t)} — ¥(t). Likewise, E{| ¢npx,(t) |*} — ¢(¢)%.0

REMARK 1. Replace vpy by ¢ and take expectations over { to get dnpx. This
will not converge a.e.: see the corresponding remark in Section 3.

REMARK 2. Proposition 4.1 remains valid if Xj; are in the domain of attraction
of a symmetric stable law.

If the lengths of the vectors x; depend strongly on j, so condition (1.1) fails,
but the inner products are negligible in the sense of condition (1.2), then the
empiricals of the projections converge in probability to scale mixtures of normals.
To be more precise, let F, be the empirical measure of the n numbers | x; ||/ vp.
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Let F be a distribution function on (0, «). A condition generalizing (1.1) is
(4.1) F,— F weakly.

If F is nondegenerate, this captures the idea that || x; ||/ Vp depends strongly on
J.If Z and Y are independent, with Z being standard normal and Y = 0 having
law F, the variable ZY is said to be an F-scale mixture of normals.

PROPOSITION 4.2.  Suppose (4.1) and (1.2). As v tends to infinity, the empirical
distribution 0, tends to the F-scale mixture of normals weakly in probability.

The proof is just like that of Theorem 1.1 and is omitted. For a discussion of
scale mixtures of normals, see Efron and Olshen (1979). Here is an example of
data satisfying the conditions (4.1) and (1.2). Let W; be iid with mean zero,
variance 1, and finite 2 + 6th moment. Let o1, o9, - - -, be iid with a common
distribution F on (0, »). Suppose that F has a finite fourth moment. Let ¢2 =
E(O'J2) Let le =0j W,J and

Xy
Xj =
X,
PROPOSITION 4.3. For almost all realizations of W; and oj, the array X;
satisfies (4.1) and (1.2). Further

(@) (1/np) 5= |l X; 2> o2

(b) card{j: j=1, ---,nand | | X;|®> — 6}p| > ep} < en, for all large n and p, for
any positive .

(¢) (1/n’p?) Yt (X - Xi)?* — 0.

Thus, condition (1.1) fails, but (1.2) holds. The proof of Proposition 4.3 is
omitted, being quite similar to the arguments in Section 3. Together with
Proposition 4.2, it implies that for most v, the empirical distribution of v - X is
close to the F-scale mixture of normals. Further, the empirical mean of the
projections v - X; is for most v nearly 0 and the variance is nearly ¢? so
standardizing still results in a scale mixture of normals.

We turn next to models suggested by factor analysis. In these models, condition
(1.1) and (1.2) fail, and so does the conclusion of Theorem 1.1; indeed, the
empirical distribution 6(y) depends strongly on y. We consider nonrandom
p-vectors x1, X2, - - -, X,. Define

fi=Q/p) Ty x; and & = x; — f.
The following conditions are assumed:

(4.2) The empirical distribution of f,, - - -, f, converges to a continuous
distribution function F.
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(4.3) The vectors ¢ satisfy conditions (1.1) and (1.2), where
€y
g =
Epj
For distribution functions G and H, recall |G — H| = sups| G(J) — H(J) |,

where ¢/ ranges over intervals.

PROPOSITION 4.4. Assume (4.2-4.3). Let 0,(vy) be the empirical distribution of
Yo X1, oo,y - Xp. Let Ty = Y2, ;. Let U and Z be independent, with U having
distribution F and Z being normal with mean 0 and variance o2. Let y,(v) be the
distribution of

r,U+Z.

Then || 0, — ¢, | — 0 in probability as v tends to infinity.

PROOF. Let 0?(y) be the joint empirical distribution of
(fisy - &) j=1,---,n.
Let ¢ = F x N(0, 62), another probability on the plane. We claim
(4.4) 02 — y@ weakly in probability.

For this purpose, it is harmless to replace v; by §;/vp, the {’s being independent
standard normals. Let ¢?(t, u) be the empirical characteristic function

(1/n) 51 exp[V=1tf; + V=1ug - &/Vp]
where ¢ is the column p-vector ({3, - - -, {,). As usual
E{o@(t, u)} — F(t)exp[—Yeo?u?]
where F is the characteristic function of F. Likewise,
E{| $2(t, w) 1"} — | () |*exp[—o™u’].

This proves (4.4), see Lemma 2.2.
For probabilities « and 8 on R?, let

| — B = supf| a(K) — B(K) |: K is Borel and convex.}.

Because y® assigns measure 0 to the bé)undary of each K, a theorem of Ranga
Rao (1962) entails

(4.5) 62 —¢@| — 0 in probability.

Clearly,
Y% =Tpfi+ (v - g).

Let J be a linear interval. So v - x; € J iff (f;, v - ¢;) falls in the convex set
{(u, v): Tou+vEJ.
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Thus
16,(v) = () | = [16(y) —¢@(y) . O

REMARK 1. Suppose F is non-Gaussian. Then the limiting distribution
I,U + Z is non-Gaussian too. Also, this limit depends strongly on . Indeed, T,
is nearly N(0, 1) and therefore must vary with . As is easily verified, the law of
I',U + Z determines T',.

REMARK 2. In the theorems above we have used the uniform distribution on
an i dimensional sphere. It is possible to realize all of these uniform distributions
on a common probability space and then ask about almost sure convergence of
0,(v:): fix a sequence {1, {3, - - -, of independent standard normals; realize v; as
&/ €1l. Even in this restricted model, 6, converges in law but not in probability,
because the same is true of T',.

REMARK 3. The conclusions of Theorem 1 fail here; what of the hypotheses?
Suppose 72 = [ x?F(dx) is positive and finite; and (1/n) Y% f7 — 72 By
orthogonality,

(4.6) A/ 512 =f; + A/p)l&l* = f} + o*
is strongly dependent on j; and
(4.7) (1/p) (% - xx) = fife + (1/D)e; - &) = fifr.

Both (1.1) and (1.2) fail.

REMARK 4. Consider the one-factor model
Xij = Uvj + V,]

Suppose the U; are independent, with common distribution F’; the V;; are iid with
mean 0, variance o2, and finite 2 + 6th moment. Then conditions (4.2-4.3) hold
for almost all realizations of X; independence of U and V is not required, nor
any moment condition on U. Indeed, let

V.= (@1/p) X%, Vy
which is negligible for most j by previous arguments. Then
=) EL Xs=Ui+ Vy, e5=Xj—f;=V; =V,

Lemma 4.1 below is useful in verifying condition (4.2).

REMARK 5. What happens to the scaled empirical? Assume that U with law
F has mean 0 and finite variance 72. Then I',U + Z has mean 0 and a variance
given y of I'272 + o2, suggesting that the scale of 6,(y) depends strongly on v. To
pin this down, assume the stronger conditions (6 — 7 — 8) on ¢;. Then, as is

easily verified, the mean of 6,(y) does tend to 0 in probability, and the variance
to I'27% + ¢ The standardized empirical ,(y) will therefore look, for most v,
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like the distribution of
(T,U + Z)/VT272 + o2
Again, this is non-Gaussian and strongly dependent on v, for non-Gaussian U.
REMARK 6. What happens if we scale the vectors separately? The idea is to
make condition (1.1) hold by brute force, replacing x; by
& = vpx/ I 5.
We assume conditions (4.2-4.3) hold for x;. Recall (4.6-4.7):

1oL A
(% - %) \/ff+02x\/f%+a2

and condition (1.2) fails. )
We turn to the asymptotic behavior of 6,(y), the empirical distribution for
j=1,..-,nof

v - &= (Tpfi + (v - ))/VNfP + (/D) &>
This 6,(7) merges with 1@,(7), the theoretical distribution of
(T,U + Z)/VU? + %

To make the idea of merging precise, we introduce a metric for weak conver-
gence, similar to Prokhorov’s. If u and u’ are two probabilities on the line, let
d(u, u’) be the inf of ¢ positive such that for all intervals K containing the origin

wK) =p'(eK) +e, p'(K)=ueK)+e

where if A is real and K = (a, b), then AK = (\a, Ab). Clearly, d(u, p’) < ||p —
u .
We claim

(4.8) d@,, y,) — 0 in probability as » — oo.

Indeed,
d@,, ¥,) < d@,, 6, + d@,, ¥,

where 6, is the empirical distribution of
(Tof; + (v - ))/VFT + o
Fix real a, b, c. Now the planar set
{(x, ¥): (ax + y)/Vx% + b2 < ¢}
either is convex or has a convex complement. So
d@,, §) < 16, = ¥ = 16 = ¥{? || - 0 in probability

by (4.5). But d(éy, d,) — 0 too, because for large n, except for o(n) indices j = 1,
e, n, by (43)y
e e < (1/p)l&l* < e*s®
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SO

eV + @ <VE+ W5 <eVfi + o

The following lemma shows that small perturbations of empirical distributions
do not change them much in the metric p. This was used in Remark 4 above.

LEMMA 4.1. Let u be the empirical distribution of the n numbers &, - - -, &,;
and u’ the empirical distribution of &, + 1, - - -, £, + nn. Let ¢ > 0. Suppose that
|| < e except for en indices j = 1, ---, n. Let p be Prokhorov’s metric. Then

plu, u') <e.
The next example determines the behavior of projections of data clustered
about k centers. The following assumptions will be made:

(4.9) Letcy,cy, - -, c; be distinct p-vectors.

(4.10) Let Vj; be iid with mean zero, variance ¢* and a finite 3rd moment.
Let Vi = (Vll, Tty Vip)T-

(4.11) For each n there is a sequence {n,} of integers satisfying
n=0<m<nn<---<m=n
with
n/n—oX, AMM=0<MN<h< .. . <M1<1=)\ as n-—o x,

Define X, =c¢,+ V., forni s <i<n;,j=1,2,---, k.

PROPOSITION 4.5. Assume (4.9-4.11). For i =1, - .-, k let ', be the law of a
normal variable having mean v - ¢; and variance o°. Let {., be the mixture of ¥/,
with weights \; — N\i—;. Let 6., be the empirical measure of v - Xy, ---,v - X,,. Let

D, = sup,| 6,(t) — ¥,(¢) |.

Then, for almost all realizations of the array V;,, D, tends to zero in probability.

PrROOF. Let 67, be the empirical measure of the points in the jth cluster—
that is, of the points v - ¢, + v - V;, nj-; < i < n;. Proposition 3.1 implies that
the sup norm between 6/ and a normal (0, ¢?) variable tends to zero almost
surely, in probability. The empirical 6, is a mixture of §/, with mixing weights
that tend to A\, — A\j—;. O

Data generated from a model like the one just described is the base of Example
B in Friedman and Tukey (1974). In that example, 65 points were centered at
each of the 15 corners of a simplex in 15-dimensions. The coordinates of the
points were independent standard normal. The simplex was scaled so that the
ith vector ¢; was a vector with 10/v2 in the ith coordinate and zeros elsewhere.
Thus the distance between the vertices was 10. The 65 vectors from the ith
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cluster thus project to points of the form
vi(10/v2) + Z

where v; is, approximately, normal with mean zero and variance Ys, and Z is
standard normal. The data has 15 clusters, and a plot in a typical direction will
look like the result of choosing 15 independent centers v:(10/v2) and putting a
normal histogram based on a sample of size 65 about each center. As Friedman
and Tukey demonstrate empirically, such a display will not be structured; it is
not particularly normal either. Their projection pursuit algorithm found projec-
tions that clearly separate each cluster from the rest of the data.

5. Final remarks. This section treats normal data and higher dimensional
projections.

Projection pursuit algorithms try to find nonnormal projections. One natural
question is: suppose X; are iid p-dimensional vectors with independent standard
normal coordinates. How much “structure” can be found? Figure 1 shows three
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FI1G. 1. Histograms of a highly nonnormal projection from three samples of 50
from a 10-dimensional spherically symmetric normal distribution.
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clustered projections based on normal samples of 50 points in 10 dimensions.
The data appear quite structured. These figures are based on simulations reported
in Day (1969).

The following result shows that if n and p tend to infinity in such a way that
p/n — 0, then the least normal projection is close to normal. We would like to
thank Ken Alexander for showing us how to improve an earlier result by making
careful use of the results of Vapnik and Cervonenkis (1971).

PROPOSITION 5.1. Let F be a continuous probability on RP. Let X, -- -, X, be
a sample from F with empirical measure F,. Let F" denote the law of v - X. Let

D = sup,sup;| F* — F}|.

If n and p tend to infinity in such a way that p/n — 0, then for any fixed ¢ > 0,
P{D>¢} — 0.

ProOOF. Theorem 2 of Vapnik and Cervonenkis (1971) implies that the
probability that D is larger than ¢ is bounded above by

4m(p, 2n)exp(—¢°n/8),

where m(p, 2n) = Y2_(3") for 2n > p. This is 22" times the lower tail of a binomial
distribution. Feller (1968, VI.3) gives

2n> 2n —p

, 2n) < )
m(p, 2n) <p n=p

Now routine use of Stirling’s formula shows that for universal positive
constants c;,

m(p, 2n) < ciexp(c.p log(n/p)).
It follows that m(p, 2n)exp(—¢*n/8) — 0.0

REMARK 1. If F is p-dimensional standard normal, then F” is standard
normal for any v, so this result says that even the least normal projection of
normal data is close to normal.

REMARK 2. There is an evident discrepancy between Proposition 5.1 and the
example in Figure 1. Just how large p/n may be for practical values of n and p
requires further simulation and theory.

REMARK 3. Work of Geman (1980) implies that if n and p = p, tend to
infinity in such a way that p/n — 5 > 0, then the least normal projection of
normal data will deviate from normality in some aspects. Indeed, if X; are iid p-
dimersional standard normal for 1 < j < n, the maximum variance of X, ---,
X, is almost surely larger than (1 + 2~/;) instead of 1. More specifically, let M
be the n X p matrix whose ji element is X;;. Let L be the largest eigenvalue of
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M™M. Then Geman showed that (1/n)L = supy,=1(1/n) Y%, (v - X)? —
(1 + V)% as. (As usual, v is a p-vector.) But

sup,(=1variance(y - Xy, ---, v - Xp)

1 1 2
= SUpjyI-1 Yy - X)) — Sup||7||=1<r—1 Xy - X,-)

and

2 2
1 1
= r—z p <ﬁ 27=1 Xij)

is distributed as x2 = p/n — 7 a.s., completing the argument.

De Wet, Venter, and van Wyck (1979) give some results on the maximum
third and fourth moments in connection with a projection pursuit test for
normality.

Thus far we have been working with 1-dimensional projections. These deter-
mine the behavior of most 2 or 3 dimensional projections. Consider the case
where most projections are normal.

1, 2 1,
supy\ Yy - X)) = - > X,

PROPOSITION 5.2. Suppose conditions (1.1) and (1.2) are satisfied. For 8 and
v in S,-1 let 85, be the empirical distribution of (8 - X1, v - X1), -+, (B8 + X, v -
X.). Choose v uniformly on S, and 8 uniformly among vectors orthogonal to 8.
As v — o, O, tends to a standard bivariate normal measure, weakly in probability.

ProoF. This can be proved directly via the argument for Theorem 1, using
bivariate characteristic functions; further details are omitted. O

Similar results can be given for scale mixtures of normals. Under the conditions
of Theorem 1.3, for most pairs v, 8 with v L 3, the empirical 65, converges to the
bivariate law of Zos where Z is a standard bivariate normal and ¢ is independent
of Z with law F. For the factor analysis situation, as in Proposition 4.4, the limit
of 65, tends to the law of

B, f+ Z,, T.f+ Z,,

where Z, and Z, are independent normal variables, f has law F, independent of
(Zl, Z,) and

BP=E:3i’ Fp=z7i-

Further details are omitted.

Recall that 6,(v) is the empirical distribution of the data projected in direction
v. We view 6,(v) as a random probability: random because it depends on v, which
is uniformly distributed over S,-,. In particular, 6, itself has a distribution =,
that is a probability on the probabilities on R'. When does =, converge? Arguing
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as in Proposition 2.1, we can prove the following sufficient conditions:
u,(s) converges weakly for each s
u,(s, t) converges weakly for each pair (s, t)

w,(s, t, u) converges weakly for each triple (s, ¢, u)

where
u.(s) 1is the empirical of | sx;|%/p: j=1,---,n
w.(s, t) is the empirical of | sx; + txx||*/p: j, k=1, ---, n

u.(s, t, u) is the empirical of | sx; + txp + ux,|?/p: j,k,Z=1,---,n

Let «, be the three-dimensional empirical distribution of

(5.1) I 11%/p, (x5 - x)/p, Il % 11%/p.

At one time, we thought that the weak convergence of «, might suffice for the
weak convergence of w,. This, however, turns out to be false in general, although
there may be some germ of truth in it. A counterexample is given in Diaconis
and Freedman (1982).

Acknowledgement. This work began during a seminar at Harvard with
David Donoho and Peter Huber. It owes much to their suggestions. We thank
Michael Steele and Ken Alexander for helping with Proposition 5.1.
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