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THE LIKELIHOOD RATIO DETECTOR FOR NON-GAUSSIAN
INFINITELY DIVISIBLE, AND LINEAR STOCHASTIC
PROCESSES

By PATRICK L. BROCKETT!
The University of Texas at Austin

We consider the problem of determining absolute continuity, and the
distribution of the likelihood ratio (Radon-Nikodym derivative) of the meas-
ures induced on function space by two infinitely divisible stochastic processes.
The results are applied to linear processes, which are shown to be infinitely
divisible.

1. Introduction. The problem of optimum detection of signals in stochastic
noise has been solved only in a relatively few cases. Most investigators assume
the signal or the noise are Gaussian; however, in many very important practical
situations (e.g., radar, sonar, or satellite transmission), this assumption does not
hold.

Lugannani and Thomas (1967) developed the class of linear processes, as a
potential model for noise, and showed that the class was closed under linear
transformations, a desirable property for modeling purposes. For a specialized
type of linear process, Eastwood and Lugannani (1977) were able to construct an
approximation to the n-dimensional densities of two linear processes evaluated
at (ty, ts, - - -, t,). Consequently they were able to obtain a likelihood ratio test
approximation for this special class of processes. It is of some considerable
importance that the model of Middleton (1967, 1972a, 1972b, 1976) for acoustical
reverberation is a linear process, as are several other models for noise derived
from purely physical reasoning.

In this paper we shall show how to identify a linear process as a subclass of
infinitely divisible processes (i.e., processes with infinitely divisible finite dimen-
sional marginal distributions). Using the results of Maruyama (1970), Brown
(1971), Briggs (1975), Skorokhod (1964) and Veeh (1981), we are then able to
explicitly calculate the Radon-Nikodym derivative of the measures determined
on function space by two infinitely divisible processes and to find its distribution.
This extends the results of several authors and enables us to use the Neyman-
Pearson lemma to obtain an optimal detector applicable directly to the sample
paths of many stochastic process models.

2. Linear processes and infinitely divisible processes. A linear process
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Y(t) is defined by the stochastic integral

b
(1) Y(t) = j; f(t, s) dX(s)

where X(s) is a zero-mean; second order stochastically continuous process with
independent increments and f(t, 5) is real valued and square integrable with
respect to dV(s) = E|dX(s) |2. In brief, Y is an L, filtering of an independent
inicrement process. We shall additionally assume f is L; continuous (so that Y(t)
is stochastically continuous).

Following the method used in Papoulis (1965) for shot noise process, one may
determine the finite dimensional characteristic functions of the linear process
(1) (cf. Lugannani and Thomas, 1967, or Eastwood and Luganrnani, 1977). In the
case without Gaussian component, they are given by’

b e
(2) ®y(u) = exp{f J; {exp(izw) — 1 — izw} M(ds, dz)}

where t = (t1, -+, tn), W = (U1, -+, up) and w = wyf(t1, s) + uaf(ts, 8) + --- +
u,f(t,, 8). The measure M is the tlme-Jump measure of the additive process X
i.e., M((s1, s2] X A) is the expected number of jumps (pulses) of the process X
durmg the time interval (s;, s;] with the magnitude (amplitude) in the Borel set
A. See Gikhman dnd Skorokhod (1969) for a more detailed explanation of the
Lévy measure M and its properties.

Let us now consider the class of infinitely divisible stochastic processes. This
class was first studied by Lee (1967), and subsequently studied by Maruyama
(1970), Briggs (1975), Wright (1975) and Veeh (1981). A stochastic process is
called infinitely divisible if all of its n-dimensional marginal distributions are
n-dimensional infinitely divisible random vectors. Gaussian processes are, of
course, infinitely divisible and by using a variant of the Kolmogorov representa-
tion for second order processes without a Gaussian component, the following
representation holds (cf. Lukacs, 1970, page 119). By definition, for every finite
subcollection A = {t,, ts, - - -, t.} C [a, b], there exists a random vector ¢,, and an
n-dimensional Lévy measure M, such that the characteristic function of
(Y(t), - -+, Y(tn) is

(3) In ®\(u) = w'ey + f fexp(iu’x) — 1 — iu'x} dM\(x).

Let A = {A = {t;, ---, t,}} denote the set of all finite subsets of [a, b]. The
collection {(cx, M,), X € A} uniquely determines the distribution of an infinitely
divisible process Y, and vice versa (Maruyama, 1970, Theorems 1 and 3). Using
the partial ordering on A by inclusion, we obtain a system of prOJectlons
{Py, A € A} from R!* onto the coordinate space R*. The system of Lévy measures
{M;, \ € A} is consistent, and Maruyama shows that a measure @ may be defined
on RI*¥ ag the projective limit of the collection {M,, A € A}. The s-algebra on
RI** i the usual product o-algebra.

Thus, corresponding to an infinitely divisible process there is a function c(t),
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and a measure Q such that for A = {t, - - -, t,}, Pxc = (c(t1), - - -, c(t,)) = ¢, and
QPy'(A) = M,(A) are the parameters of the infinitely divisible random vector
(Y(t), -+, Y(tn).

To obtain the appropriate representation of a linear process as an infinitely
divisible process, we first manipulate the characteristic function given by (2) into
the form of (3). Towards this end we first note that if A = {¢;, - - -, t,} is given,
and M, is defined on R* via M\(A) = M({(s, 2):(2f(ts, s), -- -, 2f(tn, ) € A}),
then M, is a Lévy measure on R* concentrated on the curve (zf(t;, ),
2f(t,, s)), s € [a, b], z € R. Moreover, the integral relationship

b oc
f h(x) dM\(x) = f J: h(zf(t1, 8), - - -, 2f(ta, s)) M(dz, ds)

holds for measurable h. The fact that M, is indeed a Lévy measure on R* follows
(after some calculations) from the square integrability of f with respect to V and
from the formula [ h(s)dV(s) = [[ 22h(s) M(ds, dz) which relates the variance
measure to the time-jump measure M.

Now write f(s) = Py f(-, s) = (f(t1, 8), - - -, f(t,, 8)), ¢, = 0, and observe that

’e, + f fexp(iu’x) — 1 — iu’x} M,(dx)
= f f {exp(izu’f\(s)) — 1 — izu’f\(s)} M(ds, dz)

= f f fexp(izw) — 1 — izw} M(ds, dz)

where w = u;f(t1, s) + usf(ts, s) + - -+ + u,f(t,, s) as before. Thus (2) is of the
form (3), and hence linear processes are infinitely divisible processes. Moreover,
we can determine the projective limit @ of the system of Lévy measures
{M,, A\ € A}. Namely, if A C R*® then Q(A) = M({(s, 2):2f(-, s) € A}). This
follows since if B C R, then M,(B) = M({(s, 2):(zf(t,, s), - - -, 2f(tn, s)) € B}) =
M({(s, 2):2P\f(-, s) € B}) = Q(Px'(B)), so that the Ath coordinate projection of
Q is M)\.

3. The likelihood ratio for infinitely divisible processes. We begin by
sketching the construction of an infinitely divisible process Y as a limit of
integrals of Poisson random measures. For details see Gikhman and Skorokhod
(1969) or Maruyuma (1970). A similar representatlon is used by Briggs (1975)
and by Akritas and Johnson (1981).

Let = be a Poisson random measure on R“? which has the corresponding
intensity measure @, i.e., for any set A€ R*? . with Q(A) < , w(A) is a Poisson
random variable with expectation @(A). Moreover, if A,, - - -, A, are disjoint sets,
then w(4,), - - -, 7(A,) are independent random variables. See Kallenburg (1976)
for details.

The random measure 7*(A) = w(A) — Q(A) is used to give a pathwise
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representation of the second order linear process Y, namely we may write

(4) Y() = lim in Prob..;o J; x(t)m*(dx) where A, = {x:|x(t)| = ¢}.

To see this, note that Y, = (Y(t)), - - -, Y(t,)) has a characteristic function given
by

log ¢.(u) = log E(exp ¢ Y- u, Y(t))

= f fexp(i Y- wx(t)) — 1 — i Y- ux(t;)}Q(dx)
= f {exp(iu’Px) — 1 — iu’Pyx}Q(dx)

= f fexp(iu’y) — 1 = iu’y}My(dy):

Thus, the finite dimensional distributions given by the right-hand side of (4)
agree with those of the linear process.

We are now in a position to calculate the likelihood ratio of two infinitely
divisible processes without trend functions. The multivariate Lévy measures M,
and M, induce (via projective limits) the measures €, and @, on function space
as described earlier. The processes Y;, i = 1, 2 determine measures on function
space via u(A) = P[Y(-) € A], and we wish to determine when u; < p,, and the
corresponding density (du,/du.)(x), x € RI*?). ‘

The following theorem generalizes the results of Briggs (1975) to include
general infinitely divisible processes (not just those with nonatomic projective
measures Q). Additionally it generalizes some results of Veeh (1981), Brockett,
Hudson, and Tucker (1978) and Akritas and Johnson (1981). Moreover, we are
able to substantially reduce the length and complexity of the proof of both the
results of Briggs (1975) and of Brockett, Hudson and Tucker (1978).

We now state our first results concerning the case with projective mean
measures @, and @, finite.

THEOREM 1 (nonstationary compound Poisson case). Suppose Yi(t) and
Y.(t) are two stochastically continuous infinitely divisible processes with corre-
sponding projective limit measures @, and @ finite.

a) If @ < @ and [ x(@ — @;)(dx) = 0, then u, = PYT' < pp = PY;".

Moreover, using the representation (4),

= f In p(x) m(dx) + Q(RI*Y) — Q(RI*)  where p(x) = g% (x).
2

b) The u, distribution of the log likelihood ratio in (a) is given via the charac-
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teristic function whose logarithm is

In ¢(w) = wl(@ — Q)R] + f (expfiu In p(x)} — 1) @i(dx).

Thus In(du,/du2)(Y:(-, w)) is a translated compound Poisson random variable on
R with intensity measure v(A) = Q:({x:1n p(x) € A}).

PrROOF. The proof of a) will follow immediately from Theorem 1 of Brown
(1971) once we notice that according to (4), and the corresponding representation
for Poisson point processes as measures on a sequence space, we have Y(., w) =
S({xi(w)}) where S({x;}) = Yizo xi — ¢, = Y x; — ¢o and {x; is a realization of the
point process w. Here ¢; = [ x d@i(x) = c2 = [ x dQ»(x) by the assumption
[ x d(@: — Q»)(x) = 0. Now, under the assumptions of, the theorem,

w=mST K pp = w87
and by Theorem 1 of Brown (1971) ‘

diy _dmST . dm
s (Y1(+)) = dr S (f) = s

= exp[Q,(R*?) — Qz(@[a’b] ) TR p(xi(w)),

which is the formula in a) once the product is converted to integral form. Here
we have used the fact that if » and n are two measures on 2 with » << 5, and
S: Z— % then vS™! <3S~ and (dvS~/dnS™")(y) = (dv/dn)(S™'y). See Lemma
1 of Brockett, Hudson, and Tucker (1978). Note that (ii) and (iii) of the lemma
are obviously satisfied in this finite measure case.

To prove b) we simply notice that, according to the lemma, we are dealing
with a Poisson sum (e.g., 7;(R*?)) of random variables, In p(x;(w)). The char-
acteristic function now follows from routine calculations.

Using the results of Theorem 1, it is now just a short step to obtain the general
thoerem.

(Sf) = jl ()}
T2

THEOREM 2. Suppose Yl(t) and Y,(t) are two stochastically continuous infi-
nitely divisible processes with corresponding projective limit measures , and Q.

a) If 1) @ < Q. with p(x) = (dQ,/dQ,)(x)
i) [ xd(Q; — Q) (x) =0
iii) [ (1 — p%(x))? dQx(x) < oo,
Then u, = PY7! < uy, = PY3L.

b) Under the conditions of a)

d[.l,l

In A (Y1(+)) = f In p(x)7w(dx) + f In p(x)Q:(dx)
Lo B - B,

+ J; [1 = p(x) + In p(x)]@r(dx) + fB [1 = p(x)]Qu(dx)

where, as before, ¥ = m; — @, and B, = {x:| p(x) — 1| > t}.
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c) The logarithm of the characteristic function of In(du,/du,) is

. _ In p(x) f iuy _ _ luy og~1
u f <1 o(x) + 1+ (n p@) p(x))2> dQ, + (e 1 T y2>Q1 g~ (dy)

where g = In p. Thus it is the translate of an infinitely divisible random variable
with Lévy measure M(A) = @Q:({x:In p(x) € A}).

PrROOF. Veeh (1981) proves a), or it could be derived from Brown (1971) in
the previous manner. The proof of b) is given in Briggs (1975), and can follow
from Theorem 1 by using her techniques. It should be noted that she does not
explicitly state assumption' (ii), although it is used in her proof. An alternative
proof for b) can be constructed from Theorem 1 by using the techniques of
Brockett, Hudson and Tucker (1978). The distribution in ¢) is obtained by a
limiting argument from Theorem 1 after appropriately centering in a manner
analogous to that used in Brockett, Hudson and Tucker (1978).

Let us now turn to a development for the likelihood ratio in the linear process
case when both driving functions X; and X, do have Gaussian components. Our
development requires the additional assumption that the same filter f is used on
both processes. The key step in the development is a result due to Skorokhod
(1969, page 245, Theorem 2). We state this result below since it is of independent
interest.

LEMMA 1 (Skorokhod, 1964). Suppose X:(t) and X.(t) are two stochastic
processes inducing measures v, = PX 71! and vo = PX3" on function space. Let S be
a measurable mapping from function space to function space, and Y, = SX,;, Y, =
SX, be two stochastic processes with induced measures u; = PY7' and u, =
PX3' If vy < vy then py < py and (duy/dus) (Ys(t)) = E[(dvi/dvo)(Xo(t)) | Ya(t)].

Using the result of Skorokhod (1964) and Brockett and Tucker (1977) and
Brockett, Hudson and Tucker (1978) we have the following:

THEOREM 3. Suppose Y, and Y, are linear processes given by (1) with the
same filter function f for both Y, and Y.. If the absolute continuity conditions (i)-
(iv) of Brockett and Tucker (1977) all hold, then u; = PY1! ~ u; = PY3" and by
Skorokhod (1969, page 245, Theorem 2) we have du,/du,, given by

d/»‘l

dV]
dis (Y1(®)) = E{

dv

(X)) | Ya(e) = ff(t, s) dX:(S)].

The quantity dv,/dv, is determined explicitly in Brockett, Hudson and Tucker
(1978).
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PROOF. By Lemma 1 it is clear that »- = PX7! ~ v, = PX3' and dv,/dv, is
as given. ' )

We now use the results in Brockett, Hudson and Tucker (1978) to calculate
the general likelihood ratio. Let S:D[0, Tl — D[0, T'] be defined by

(Sg)(t) = f f(t, s) dg(s) = lim Y f(t, s){g(sjs1) — &(s)}

where the limit is as the mesh of the partition converges to zero. By the definition
of Y; in equation (1), and by the results of Brockett and Hudson (1982) it is
easily seen that S is defined a.s. with respect to both the measures », = PX7!
and v, = PX3'. The stated likelihood ratio now follows from Brockett, Hudson
and Tucker (1978).
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