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A ROBUSTIFICATION OF THE SIGN TEST UNDER MIXING
CONDITIONS

By M. FALK AND W. KOHNE
Universitat-Gesamthochschule Siegen

A robustified version of the two sample sign test is defined which is
insensitive to certain deviations from the assumption of the independence of
the observations. These deviations are described in terms of mixing conditions.

The asymptotic value of the power function of this robustified sign test is
computed on contiguous alternatives possessing the same dependence struc-
ture. This entails the calculation of its asymptotic relative efficiencies with
respect to some tests which are optimal on these alternatives in the independ-
ent case. .

It becomes apparent that in general the relative performance of two tests
heavily depends on the structure of dependence of the observations, i.e. it
may either increase or decrease.

1. Introduction. Until now the technical term “robustness of statistical
procedures” mainly stands for distributional robustness. More precisely, those
methods are commonly called robust which are insensitive to slight deviations of
the shape of the true underlying distribution from the model. A presentation of
this particular topic is given in Huber’s (1981) monograph. As Huber points out,
much less is known about what happens when the other standard assumptions
of statistics are not satisfied and about the appropriate safeguards in such cases.

The present article deals with the consequences occuring when the observa-
tions are not necessarily independent but fulfill certain mixing conditions. The
concept of mixing variables has gained more and more importance since its
introduction into probability theory by Rosenblatt (1956), Ibragimov (1959) and
Blum et al. (1963) among others. While there exists a large amount of literature
concerning the probabilistic aspects of this concept, little has been done to carry
it over into statistics.

We mention some relevant results in the field of test theory: the two sample
Wilcoxon-test and the chi-squared goodness-of-fit test were treated by Serfling
(1968) and, respectively, by Chanda (1981) under a strongly mixing process.
Albers (1978) dealt with Student’s ¢-test given m-dependent observations, and
the effects of autoregressive dependence on some tests were studied in several
articles by Gastwirth and Rubin (1971), (1975) and by Gastwirth, Rubin and
Wolff (1967). For a list of further references we refer to the book by Basawa and
Rao (1980).

The above cited results show in which way dependence can change the
asymptotic variance of a test statistic. Therefore, in order to get an asymptotically
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ROBUSTIFICATION OF SIGN TEST 717

robust procedure, one has to “studentize” the usual test procedure. Furthermore,
the question suggests itself whether and to what extent the relative performance
of two robustified tests is influenced by the dependence of the observations. We
shall investigate these probleins in the case of the easily computable sign test.

To study the robustified version of the sign test in more detail, we compute
its power function on translation alternatives and derive its asymptotic relative
efficiency (ARE) with respect to the Neyman-Pearson test. If, in particular, the
observations come from a Gaussian process the ARE can be expressed in terms
of the correlation coefficients and may either decrease or increase. This result
reveals the fact that the ARE of two tests heavily depends on the structure of
dependence of the observations.

To highlight this point, we furthermore compare the modified sign test on
alternatives of the form F5= (1 — A)F + AF? with Serfling’s (1968) robustified
version of the Wilcoxon test. Notice that the Wilcoxoh test is optimal on these
alternatives when the observations are independent. Two examples show that
also in this case the ARE may drastically change. However, whether the relative
merits of two tests can even be reversed remains an open question.

The article is organized as follows: In Section 2 we construct the robustified
version of the sign test. Its asymptotic performance is studied on the level of
efficiency in Sections 3 and 4. To make the article more readable, the proofs are
postponed until Section 5.

2. Construction of the robustified sign test. Let T, n € N, denote the
usual sign test statistic in the two sample case, i.e.

Ta((x,y)) := n722 ¥ Low(yi — %) — n)

where x = (xy, -+, %2), ¥ := (¥1, -+, ¥.) € R" Further let P and @ be
nonatomic probability measures on the real line and define u := (P X Q) {m, >
m1}. Then the Central Limit Theorem for i.i.d. random variables implies (P" X
Q")+T, = Ny iff p =%.

Here = denotes weak convergence, P*" = P X ... X P the n-fold independent
product of P, P+T the probability measure induced by P and T and =; the ith
projection, i.e. m;(x) = x;.

Thus, the critical region C, := {| T| > u./2} for testing H, := {(P, ): P = Q}
against H, := {(P, Q): P # Q} is of asymptotic level « where u,/, denotes the
(1 — «/2)-quantile of N, ,).

If the observations are not independent then, in general, C, . is not of asymp-
totic level a. However, if e.g. the deviation from independence can be described
in terms of mixing conditions the distribution of T, will still converge to a normal
distribution N 4,2, %> 0. Thus, if 62 is a consistent estimator of ¢ the critical
region {| T\,| > 26,u,/2} is again of asymptotic level a.

Henceforth we assume that the observations come from two strictly stationary
independent processes (X;)iey and (Y;)ien which are yY-mixing according to
Definition 2.1 and are defined on the same probability space (2, <7 P).

DEFINITION 2.1 (Blum, Hanson, Koopmans, 1963). A sequence (Z;)icys of
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measurable functions on a probability space (2, =7, P) with values in a measurable
space (¥, ¥) is called y-mixing if there exist K € ¥ and a sequence ¢ (n) —,c,
0 such that

(2.2) | P(A N B) = P(A)P(B)| < y(n)P(A)P(B)

foralln =z K, A € &/%, B € &/}, k € N. Here /% denotes the o-algebra
generated by the random variables Z,, - - - , Z,. Note that an m-dependent process
is Y-mixing with K =m + 1.

The following lemma is essential to our considerations.

LEMMA 2.3. Let (X;)iexs and (Y;)ie,: be independent processes which are strictly
stationary and y-mixing with
(2.4) Sr=r(n)¥? < 0.

Then the process ((Xi, Yi))iew which takes values in (R?)™ is again strictly
stationary and y-mixing with (2.4). Thus, this is also true for the process
(L0, (Y — Xi))ieny-

Lemma 2.3 and the Central Limit Theorem for mixing variables, see e.g.
Billingsley (1968), Theorem 20.1, imply
(2.5) (Pn X Qu)*Tn = Nuorasey if p="%
where
Py = P«(X)) -1, @ := Px(Y))],
and
o*(w) = w1 = p) + Tez2fELom (Y1 = Xi) Lo (Ya = Xi)) = o3,

Hereafter we assume o2(%) > 0. Next we define a sequence of estimators 62,
n €N, of ¢2. Put

on((x:)ien, (¥i)ien)
= {n7 Bl Lom (¥ — x)HL = n7' B Low (¥ — x:)}
+ 2 Ds [n/k] 7 BT (Lo (Yrker = Xoke1(Vosnr = Eear)
= (7' T Low (¥ — %))

where (x;)ie1;, (¥:)ien € R", [x] denotes the integral part of x and m = m(n) is
such that

(2.7 m?**" = O(n) for some vy > 0.

(2.6)

The next lemma states the strong consistency of ¢2.

LEMMA 2.8. Under the conditions of Lemma 2.3
limnem(;',zl = 0'2 Poo X Qoo—a.e.

where P, := Px(X;)ien and Qw := P+(Y)iexn.
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The robustified version of the sign test is now defined by
(2.9) Croo := {1 Tal > 204Ue}.

~ The following Theorem is an in}mediate consequence of (2.5), Lemma 2.8 and
Slutzky’s Theorem. It states that C, ., n € N, is a consistent test sequence which
is asymptotically of level a.

THEOREM 2.10. Let (X;)ien and (Y;)i;en be independent processes which are
strictly stationary and y-mixing with (2.4). Then,

N ; =1
limnEN (Pn X Qn)(cn,a) = {? Z: z # lf;

3. Asymptotic relative efficiencies against translation alterna-
tives. The aim of this section is to investigate the performance of the robusti-
fied sign test against translation alternatives. Moreover, its asymptotic relative
efficiency w.r.t. the Neyman-Pearson test is computed in the special case of
Gaussian processes.

Define alternatives P,, X Q.., n € N, by P,,:= P+((X; — cn'l/“’));‘=1 and
Qnn:= Px((Y; + cn™%?)),, ¢ > 0. Notice that

(3.1) pni=Px(X; —en™V2 Y, + enV){my > m) = W

if P, = @), is nonatomic. Thus, the appropriate critical region for the one-sided
testing problem Hj, := {(P+X;) X (P+Y1)} against H, , := {(P*(X; — cn™"/?)) X
(Px(Yy + en )} is Cpo := {T, > 26,u.}, which is obviously better adapted to
this situation than C,,...

The asymptotic value of the power function of the robustified sign test statistic
is given in the following result.

PROPOSITION 3.2. Let (Xi)ien arid (Y;);en be independent processes which are
strictly stationary and y-mixing with (2.4). Furthermore we assume P, = Q,, i.e.
u = Y4, and that P, has a Lebesgue density f such that [ f*(x) dx < . Then,

limnEN (Pn,n X Qn,n)(én,a) =1- d>(u“ - 260_1 ffz(x) dx)

where ® denotes the distribution function of N ).

In the following, let (X;)ie;y and (Y;);ex be two independent strictly stationary
N-dependent Gaussian processes with P., = Q< and P; = @; = No,;). Note that a
Y-mixing Gaussian process is already m-dependent (see Theorem 5, Chapter
IV.2., page 125, in Ibragimov and Rozanov, 1978). Further we assume that the
covariance matrix R, := (p;j)1=ij<n with pij == pji-j; = E(X1X)i-j)+1) is positive
definite and 1 + 2Y1<p<npr > 0.

According to Ibragimov and Rozanov (1978), Chapter V.6, Theorem 11, these
assumptions imply that the spectral density s of (X;);ey has the form s(y) =
SN pre™ = A(e®)A(e™) = | A(e?) | where p_x := pr, 1 < k< N, po =1 and
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A(z) = YN arz™*is a polynomial of degree N with real coefficients. We assume
that the roots m, of the equation A(m) = 0 fulfill | m;| <1,1< k< N.

Denote by C} ., the critical region of level a of Neyman-Pearson type for the
testing problem P, X @, against Py, X Q. Then, under the above assumptions

the following result about the power functions of C¥*, and C, ., can be obtained.
PROPOSITION 3.3.

(i) limpen, (Prn X Qun)(Cho) =1 — Rlue — (2¢*/(1 + 2 33, px))/?  and

(i) limaey, (Ppp X Qun)(Cra)

=1- ®{u, — 2¢/((x(1 + 4z~* zi\,=1 arcsin(pz))) 1/2)},

Our first main result is now immediate from Proposition 3.3.

THEOREM 3.4. The ARE (Pitman-efficiency) of C:,w w.r.t. Ck, is given by

ARE(Cro: Ciol| Pun X Qun)
=271 + 2 iy pr)/(1 + 4x7 T, arcsin(py)).

For examgle, let p, € (=%, %) and put p, = 0, & > 1. Then for the ARE =
ARE(p,) of C',,,“ w.r.t. C¥, we have ARE — (6/5)2% ' if p — % and ARE — 0 if
p1— —Y%. This shows that the ARE may be larger or less than 27! which is its
value in the independent case.

REMARK 3.5. Let p, and g, be Lebesgue densities of P, X @, and P, , X Q,. .,
respectively. As is shown in the proof of Proposition 3.3 (i) we have
(Pn X Qn)*lOg(qn/pn) = N(—K2/2,K2)9 where K2 = 262/(1 + 2 ziil pk) > 0. Thusa
Le Cam’s First Lemma (see Hajek and Sidak, 1967, page 204) implies that
(Pp,n X Qn.n)new is contiguous to (P, X Qp)nex.

4. Asymptotic relative efficiencies against alternatives of the form
Fy=(1-A)F + AF2. In this section we compare the studentized sign test
with the robustified Wilcoxon two sample test which is defined by

Clo:={n"%71Z, > u,}

where Z,(u, v) := n? Z?Fl sign(v; — u;) and 72 is a consistent estimator of the
asymptotic variance 72 of n'/?Z,,.

Let (X;):ern and (Y;);en be two independent stationary ¢-mixing processes on
(Q, o7 P) fulfilling (2.4). Furthermore we assume P. = Q. and P, = @, = Q,
where @ denotes the uniform distribution on (0, 1).

Let F be a continuous distribution function and denote by F~!its generalized
inverse, i.e. F7'(t) := inf{s € R: F(s) = t}, t € (0, 1). Define P} :=
P(F X))y, Q1 == Pr(F(Y))Ly, Phn = Px(F7A (X)), and Q. =
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P+(F31(Y))™,, where Fy:= (1 — A)F + AF’, A€ (-1,1) and A, :=cn"% c €
0,1), nE N.

Note that U; := F7(X;) and V;:= F71(Y}), i € N, are distributed according to
F and again form two independent stationary y-mixing processes with (2.4).

Finally we assume contiguity of P}, X Q;.., n €N, to P} X @}, n € N, which
is true in the independent case and can also be achieved e.g. under suitable
Markov properties (see Chapter 2 in Roussas, 1972).

It was proved by Serfling (1968) that (P} X Q.)*(n'?Z,) = N, 72 =2/3 +
16 Y k-2 (E(X1X;) — %). The following result specifies the asymptotic values of
C}.. and C,, under the above alternatives P}, X Q} ., n € N.

PROPOSITION 4.1
(i) limuen (Pha X Q1) (Ch)
=1 — ®fu, — ¢/(3/2 + 36 Tusz (E(X: Xi) — )2},
(i) limue (Pl X Q4n)(Crc)
=1 — ®lu, — c/(9/4 + 18 Ji=a(P{Y: > Xy, Yi > X} — %)) V2.
THEOREM 4.2.

(2/3){1 + 24 Yi=2(E(X: X)) — )}
1+ 8 Yi=2(P{Y1 > X1, Y > Xi} — %)

which equals 2/3 in the independent case as is well known.

ARE(C,o: Chol Pin X Qin) =

Let for example (W;)ic;, and (W,);en be two independent sequences of inde-
pendent and uniformly on (0, 1) distributed random variables. Denote by F, the
distribution function of W, W%, ¢ € R, and define the processes (X.;)ien :=
(F.(W;Wi1))ier and (Yei)ien = (Fc(Winﬂ))iem. Straightforward calculations
show that for the ARE = ARE(c) of C, . w.r.t. C}.. sup.enARE(c) = 7/9 and
inf.c,,ARE(c) = 1/9. However, the question of whether the ARE may become
greater than one under appropriate dependence, i.e. whether the relative perform-
ance of two tests can ever be reversed, is still open.

5. Auxiliary results and proofs.

ProOOF OF LEMMA 2.3. The stationarity of ((X;, Y:))ien is immediate from
the independence and the stationarity of the components. To establish the mixing
property of ((Xi, Y:))ien:, one proves by means of standard arguments from
measure theory that

| P{((Xi, Yi) iz, € A, (X), Y)))j=n+x € B}
— P{((X;, Y))L, € A}P{((X}, Y}))j=n+r € B} |
=< (2¢(k) + ¥(R))P{(X;, Y, € A}P{((X], Y)))jzn+r € B}

for all A € (B?)", B € ($%)", k = K, n € N, where % denotes the Borel-
o-algebra over R.
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The following exponential inequality together with the Borel-Cantelli Lemma
implies Lemma 2.8. The proof (which is omitted) follows the lines of Bennett’s
(1962) first improvement of the Bernstein inequality by making use of a blocking
technique due to Philipp (1977).

LEMMA 5.1. Let Z;, i € N, be a strictly stationary sequence of random variables
with E(Z,) =0, | Z:| < 1. Suppose that Z;, i € N, is Y-mixing with Y=k ¥ (k)° <
o for some 6 € (0, 1). Then for e>0,0 € (3,1) and n = K

(6.2)  P{In™ L, Zi| = ¢} < Crexpl—c*/(CoE(Z}) + 8enV/+2))

where C;, Cy are positive constants which only depend on { and 6.

PROOF OF PROPOSITION 3.2. We shall prove that

(5.3) (Pnn X Qun)*Th = Nucjr2xdrasty and

(5.4) |67 — o®| =p, %@, 0-

(5.3) and (5.4) combined with Slutzky’s Theorem imply the assertion. Ad (5.3):
(Prn X Qnn)*Ty '
= Px{(n 22 37, Lo (Y = Xi) — n)) + 2072 T Licaen12g(Yi — Xi)}
=: (Pn X @u)*(T, + Sy).

According to (2.5) we have (P, X @,) = N 4,%. Thus it remains to prove

(5.5) S, —p xq, 4c f f(x) dx.

The dominated convergence theorem implies E(S,) —nen 4¢ [ f2(x) dx and
application of Lemma 5.1 to the sequence

Zi = {1on20(Yi — X:) — E(S,/2)n""3/2,

I €N, yields (5.5).
Ad (5.4): Define
Mn = P{Yl - Xl + 2Cn_1/2 > 0}
and
o= E((Lowm(Y:s — X1 + 2cn7"%) = ps)?)
+ 2 Y {E(Lop (Y, — Xi + 2en"%) 10,0 (Yie — Xi + 2cn7?)) — uil.

Due to Lemma 2.3 there exists L > 0 such that ¢ o2 < L, n € IN. Hence for
e>0, ko = ko(e) and n = ny(e) we have by the dominated convergence theorem

lon — o®|
< |E((Lpm(Ys — X; + 2cn712) — up)?) — E((Low (Y1 — X1) — %))
+ 2 ZII:(_)__2 {E(l(o)m)(Yl - Xl + 2cn_1/2)1(0,m)(Yk - Xk + 2cn_l/2)) - ,u,,%}

-2 2:0=2 {E(L0,e) (Y1 — X1) 10,000 (Yi — X)) — Wl + e < 2e.
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Thus lim,en o2 = 02, whence Lemma 5.1 implies for n = n,
(Pn,n X Qn,n)“ 6’?1 - 0'2| = C} = (Pn,n X Qn,n)“&% - 0?1' = 8/2}
= Dlexp(—czDQnD‘*), Dl, D2, D3 > 0.

This proves (5.4) and thus, the proof of Proposition 3.2 is complete.

In the proof of Proposition 3.3 the limit distribution of log(g,/p,) is computed
where p, and ¢, are Lebesgue densities of P, X @, and P,, X Q,,, n € N,
respectively. To this end we establish the following result concerning covariance
matrices of N-dependent stationary Gaussian processes.

LEMMA 5.6. Let Z;, i € N, be a stationary N-dependent Gaussian process on
(Q, o7, P) such that E(Z,) = 0 and E(Z%)= 1. Assume that the covariance matrix

(5.7) R, = (pijh=ij=n = (p)izji 1=ij=n = (E(Z1Z|i-j)+1)1=ij=N

is positive definite and that 1 + 2 Y1-x<npr > 0. Finally, suppose that the roots of
the characteristic equation of Z;, i € N, lie inside the unit circle. Then for the
inverse R;" := (0ij)1<ij<n Of R, we have

36€(0,1)Ve>03ng=nole) Vn=ne
5.8 n -1 wn
(58) |2j=1‘7ij_n12i,j=1‘7ij|5€
for a, <i<n-— a,, where a,, ;== [{(1 + a)/(2 | log 6 |)}log n], « > 0,
(5.9) AM>0VneENV1I=sisn |XL ojl =M,

(5.10) lim,enn™ X7 o 0= (1 + 2 35 o) 7

PrOOF. In Whittle (1951), pages 21 and 22, it is shown that the process Z;,
I € N, can be represented as a moving average scheme, i.e.

(5.11) Z; = Yhlo areii

where ¢;, j = —N + 1, are uncorrelated variables on (2, &7 P) with E(¢;) = 0 and
E(e?) = E(e}) > 0. Hence R, can be interpreted as the covariance matrix of a
stationary moving average scheme. Below we will show that R, can be approx-
. imated by the covariance matrix of a suitable stationary autoregressive process.
Together with results about such matrices, this will prove the assertion.

First define the symmetric n X n-matrix W, := (w;j)1<ij=. by wij := 1 if j =
i + 1, w, = 1 and zero else. Using that W, is invertible, that (W,)™* = (W5)’,
1 <k < n, and that W2 = I,, = (§;})1<i <, we have R, = Yi._n p, Wk — V,,, where
the symmetric n X n-matrix V,, := (v;j)1<ij<nis given by v;;:=0, |[i —j| = n — N,
and V;j = pn+,'_j,j =n—N+1.

Let S be the spectral function of Z;, i € IN, i.e. S(e?) := s(y); hence S(z) =
YN _nprz® = A(2)A(z7Y). For the sake of a clear presentation, we allow matrices
as arguments in S and get R, = S(W,,) — V,,,i.e. R, ~ A(W,)A (W), cf. Whittle
(1951), (4.276). .

In order to approximate R, we now consider a stationary process Z,i €N,
with spectral density g(y) := s(y) ™' = (A(e?)A(e ™))™ =: Yo pre'™, where
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Pr = p-r, B € N. In Whittle (1951), pages 21, 22 it is proved that Z;, i € N, is an
autoregressive process of order N, i.e. Y7o axZ;_ = &, where ¢, j = N + 1, are
uncorrelated variables on (@, <7 P) with E(§) = 0 and E(E) = E(&1) > 0.
Further, a;, 0 < k < N are the coefficients of A. Stationarity of Z;, i € N, follows
from the equivalent assumption | m;| < 1,1 < k < N, for the roots of A(m) =
cf. Box and Jenkins (1970), Section 3.2.

According to Whittle (1951), page 35, there exists § € (0, 1) such that

(6.12) |kl = | E(Z1Zis1) | = 0%, k€1{0,1,2, -},

Define S, := (p;j)1=ij<n = (p|l—,|)1<, jn and the symmetric n X n-matrix V =
(Ulj)1<lj<n by Uu =0 and vlj - Pn+1—/,] > l Then S - 2k——n+l PkW =
AW)AW) T =V, = S5, o WE + W5,

Because of (5.12) the elements of Sien pe(WE + W,*) are in absolute value
not greater than 6"/(1 — ). Hence for (A (W,)A(W;")) ™ = S(W,.) := (sij)1=ij<n
we have

|S,‘j - ([~)|,'_j| + ;J,,_|,'_j|)| = 5"/(1 - 5), 1=< l#] =n, and
(5.13) .
| si — Po| = 67/(1 —6), 1=<1i=<n.

We approximate R’ by S(W,)". To this end let r;, s; and e; be the ith column
vector of R;', S(W,)™" and I,, respectively, 1 < i < n, and define | x| :=
(Xim, x})?, x € R", and || B|| := \/? where B is a real n X n-matrix and A, the
largest eigenvalue of B‘B. Using | Bx || < | B|| || x || we get

(5.14)  |x; = sill = [ Rt = [ RZ' | t:ll < IR (2N)Y2Kgmintin=0,
The approximation (cf. Fuller (1976), pages 133 ff.)
(5.15) [N —s@2n(j —1)/n)| = 4n™" TEL N 1 k| | pil

for the eigenvalues \;, 1 < j < n, of R, and the fact that s(2x(j — 1)/n) =
IR (e 0=0/m — ) TIA, (e 270 D/ _ my,) where my, 1 < k < N, are the roots

of A(m) =0, |my| <1,1 =<k < N, imply for n = n,

(5.16) N2 2 (minfl — [mp|:1= k=< N)*N>0, 1<j=<n.

Hence there exists L > 0 such that

(5.17) [RZ' = AT' < L <o,

which together with (5.14) yields

(5.18) [ = sl = (2N)?KL gmintin=9,

From (5.13) it is immediate that
Ve>03CeNInmeENVYVn=zmVYVC=sisn-C

[ Xi sii—n7 Yemy sl < e

(5.19)
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Furthermore, from the definition of «, in (5.8) we have
Ano=me)VnznVa<i=n-—a,
(2N) 1/2KL 5min(i.n—i)nl/2 < e.

Now (5.8), (5.9) and (5.10) follow from (5.12), (5.13), (5.18), (5.19) and (5.20)
by straightforward calculations.

(5.20)

PrOOF OF PROPOSITION 3.3. Proposition 3.2 together with Sheppard’s for-
mula, c¢f. Moran (1968), formula (7.86), implies (ii).

Ad (i): By R, := (p;;)1<i j<n we denote the covariance matrix of X;, i € N, and
Y., i EN,ie. pij:=pji-j;, |1 —j| = N, and zero else and by R;' =: (0y;)1=i,=n its
inverse. With (x, y) € (R")? and m,, := (cn™"%, ..., cn™/?) € R" define

Pa((x, ¥)) := (27) "(det R,) 'exp(—27'xR;'x’ — 27'yR'y")
and
¢.((x, ¥)) := (2m) "(det R,) 'exp{—27'(x + m,)R;'(x + m,)’
=274y - my)R:'(y — m,)').

Here p, and g, are Lebesgue densities of P, X @, and P, , X Q,,, respectively,
and

lOg{Qn((xy Y))/pn((xy Y)” = cn_l/2 ZISisn(ZISjsnoij)yi
— en™V? P cicn(Brsjzn0i)xi — 207" Visijenoij.

ThUS, (Pn X Qn)*lOg(Qn/pn) = N(—cznﬂle,’js,,:ru,ﬁ,,)- We show limnElﬂan = 2C2L’ L:=
(14 2 Yi<k=npr) "

From Lemma 5.6, the independence of (X;);exy and (Y;)ieny and the Cauchy-
Schwarz inequality we obtain for n = ny(e)

D, = |6, — 2¢2L| = | 2¢2n7'L2 X0 E(Y:Y;) — 2¢°L |

ij=ap,
+ ¢2n"Y(n — 2a,)2Ne? + c2n"1M%*4a?
+ 222072 T E(Y;Y))A(en"e%(n — 2a,)2N) Y2

L]j=an

+ 2227 'L 35 E(Y,Y) V3T M2 4a) V2

+ 2(c*n"%e%(n — 20,)2N) V*(c*n"*M?4a2) /2.

n—ay,

Because of the stationary of (Y;)icx, we have lim,enn™" X —— E(Y;Y;) = L™
Thus, lim supnenD, < c¢%?2N + 2(2¢2L)Y*(c%?2N)? and, since ¢ > 0 was
arbitrary, lim,ey0, = 2¢2L.

Altogether we have N )*10g(gn/Pr) = NL2c1), i.€. Pon X Qnn, n € N, is
contiguous to P, X @,, n € N, cf. Remark 3.5.

A most powerful test of level « for testing Nz, against Nm_z,) X Nm,r,)
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has according to the Neyman-Pearson Lemma a critical region of the form C},,
= {log(g./pn) > a,} where lim,¢,.a, = (2¢2L)"*u,, — ¢?L. Since the limit distribu-
tion of log(g./p.) under the contiguous alternatives P,, X Q.., n € N, is
N1 1) we have limpe, (Pryp X @,0)(Cr.) = 1 — ®{u,— (2¢*L) '/}, which is (i).

PrOOF OF PROPOSITION 4.1. Ad (i): Serfling (1968) has shown that under
suitable mixing conditions being fulfilled here, the sequence

Wn((Ui):;], (Vi):’l=1)
=n"2Y0 (1= 2F(Uy) + nT2 3L (2F(V) — 1)
=n"2YL 1 -2X)+n2Y¥L, 2Y;— 1), nEN,
is asymptotically equivalent to S,((U))",, (V)).,), S, := n'*Z,.
With A, = cn™/% ¢ € (0, 1), n € N, define Ui, := F_} (X;), Vin := F1(Y)),
1 E NN,
Under the assumptions of Proposition 4.1, (Px(U;,),) X (Px(V;,)L,) =
P}, X Qnn, n €N, is contiguous to P, X @/, n € IN. This implies the asymptotic
equivalence of W,((U,,)—,, (Vi,)i=)), n €N, and S,((U;n) ey, (Vin),), n € N.

Hence lim,e,.(Prn X @1n)(Cro) = limner: (Prn X QFn)*7 ' W,) (e, ©)), if the
last limit exists. Therefore, (i) follows if we show

(521) (Pr’1n X Qr,z,n)*Wn = })*‘n_l/2 Z?=1 (1 - 2F(F:AIA,.(X1)))

+n 2 YL (2F(F3HY) — 1)} = Naes.),

Since (X;)e:: and (Y;);e,. are independent, it suffices to prove

(5.22) P«{n™? ¥, (1 = 2F(FZ} (X))} = Nis.2» and
(5.23) P«{n7'2 37 (2F(F3M(Y;) — 1)} = Niar2o).

We only treat (5.22) since (5.23) is completely analoguous and show
(5.24) E{n™2 ¥, (1 — 2F(FZ} (X))} = ¢/3 and

(6.25)  lim,e E{(n™2 T, (1 — 2F(FZ} (X)) — ¢/3)%) = 7%/2.

From (5.24), (5.25) and Corollary 1, page 1102, in Withers (1975), assertion
(5.22) is immediate. Wither’s condition (f): ¥!_, i®¢ (i) = Cj",1<j<n,r<3/2,
is fulfilled here since w.l.o.g. one can assume y/(k) | and thus (2.4) implies ¢ (k)
= 0(k™?).

(5.24) follows from E(F(FZ} (X)) = Y — A,/6.

Ad (5.25):

E{(n™? 3L, (1 = 2F(FZ}, (X)) — ¢/3)%
=1—4(% — ¢/(6n'?) + 4E(F(U,,,)?) — ¢?/(9n)
+ 2 YT E(( = 2F(Uya))(1 = 2F(Uisn,n))) — ¢2/(9n))}
— 207! R HE((L — 2F(Uya))(1 = 2F (Uisy,n))) — ¢%/(9n)}
=:A,+ B, + C,.
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First from (2.4) and a bound analoguous to that in formula (20.43) in Billing-
sley (1968), page 173,

(5.26) lim,e;,C, = 0.

Further,

(5.27) lim,enA, = ¥3 and

(5.28) lim,enB, =8 ¥, , (E(X,X:) — %).

(5.27) follows from E(F(U,,)?) =¥ — A,/6.

Ad (5.28): By (2.4) we have Y-, ¥ (k) < /2 for k, large enough and thus by
the inequality | E(X:X:) — E(X))E(X,) | <y (k— 1)E(X1 )E(X.) (cf. Billingsley,
1968, Lemma 1, Chapter 20)

| By — 8 Y=o (E (X1 Xi) — 4) |
< |2 3% {1 — 4(% — ¢/(6n') + 4E(F(Uy,n)F(Uy))
—¢®/(9n) — 4E(X, X)) +1}| + 3e
=8|35 {E(F(Upn)F(Un)) VE(Xle)il + 0(n™”) + 3e.

Since lim, e, F(FZ}) = ido,1y we have lim,ex E (F(Uy,,)F(Uy,,)) = E(X; X;) which
proves (5.28).
Ad (ii): We show

(Pr,l,n X Qr,t,n)*Tn = N(2c/3,-F2) Wlth
(5.29)
% = 1 + 8 szQ(P{Yl > Xl, Yk > Xk} - IA)'

Since P,, X Q.., n € N, is contiguous to P, X @,, n € N, we have
62 — 7%/4 under P}, X Q). ., n € N. Hence, together with (5.29)

(5.30) limpen (Phn X Qhn)(Cna) = 1 = ®(uy — 2¢(37)7).

Ad (5.29): This follows in analogy to the proof of (5.22) from
(5.31) E{n™2 Y1) 1om(Vin — Uin) = n)} = 2¢/3 and
(6.32)  limuenE(fn™%2 L1 low (Vin = Uin) — n) = 2¢/3}%) = 72

Ad (5.32): By the stationarity and independence of (X;)icxy and (Y;)ien we
have

E({(n™22 37, Liow (Vin — Uin) — n) = 2¢/3}?)
=1- 4(32/(911) + 8n7! Zk 1 (n — k){P{VLn > Ul,rn Vk+1,n > Uk+1,n}
= (% + ¢/(3n'?)%.
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For 2 < k = n we have
| P{Vip > Uiy Vin > Urn} — P{Y: > X5, Ve > Xi} |
< | P{Vin > Uipy Vign > Ugnt = P{Vin > Ui, Vi > Ul |
+ | P{Vip, > Uy, Vi > Uk} — PIY, > X4, Y > Xi}
=: A, + B,
and by definition (note that F\ = F — A, F(1 — F) < Fand X; = F(U,)):
B, = P{Y, > F, (U)), Y > Fs (U} = P{Y, > F(U,), Y, > F(Uy)}
= P{F(U,) 2 Y, > F, (Uh), Y, > F, (Uyp)}
+ P{Y, > F(U,), F(Uy) 2 Y, > F, (Up)}
< 2P{F(U,) = Y, > F, (U))} = ¢/(2n*?).
Furthermore, by definition F_, — A,/2 < F,_ < F, and hence,
Ani = P{FY(Xy) = F3} (Y1) > FZL (X)), F3H(Ye) > F25 (X))
+ P{F:(Y)) > F (X)), F(Xp)= Fi(Y) > FZL (X))
< 2P{F (X)) = F3{(Y1) > FZ\ (X))}
<=2P{X; =Y, > X, — A2} < c¢/n'2
In analogy to the proof of (5.25) we have
[E(n™"22 X1 Low (Vin = Uin) = n) = 2¢/3}%)
— (148 Y=2(P{Y, > X,, V> Xi} — )| = O(n™?) + Be.
This implies (5.32) and hence (5.30). Thus, the proof of Proposition 4.1 is
complete.
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