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ADMISSIBLE ESTIMATORS FOR THE TOTAL OF A STRATIFIED
POPULATION THAT EMPLOY PRIOR INFORMATION!

By STEPHEN VARDEMAN AND GLEN MEEDEN

Towa State University

We consider the problem of the estimation of the total of a stratified
finite population. For two levels of prior knowledge about the stratification,
we provide Bayes and pseudo-Bayes estimators that make use of this prior
knowledge in sensible ways. We then note that admissibility results can be
established for these estimators using the techniques of Meeden and Ghosh
(1982, 1983) and indicate some possible natural extensions of the present
work.

1. Introduction. We suppose that a population contains units labeled 1, 2,
..., N and that y; is the value of a characteristic attached to unit i. The vector
y = (1, ¥2, - -+, yn) € RY is unknown and of particular interest is the function
ofy

_ |N
T = 2i=1 Yi.

We will further assume that the population is stratified into strata 1, 2, ..., J
and that attached to each unit i is a stratum membership j;. The stratification
may represent a division of the population into groups on the basis of the values
of the y; or on the basis of some other variable(s) possibly, but not necessarily,
related to the y;.

In what follows, we will make a variety of assumptions about one’s knowledge
concerning j = (Ji, j2, - - -, jn). The case where j is completely known and is thus
available for use in constructing estimators of 7 is the situation of usual stratified
sampling. In situations where the j; are known only for those units sampled, it is
common to use the term poststratification and the strata are sometimes called
domains of study (see for example, Chapters 2 and 5A of Cochran, 1977). We
will use a framework that covers these two cases and others as well. That is, for
s={i, Iy, -, iy and s* = {iy, &, ++ +, In, In+1, - -+, in+} SUbsets of {1, 2, .- ., N} of
size n and n* respectively (with s C s*) we will term the pair (s, s*) a sample of
sizes n and n*. A probability distribution over those pairs (s, s*) where s # ¢, A,
is called a sampling design, and a function of (s, s*, y, j) that depends on (y, j)
only through y, = (yi,, ¥i,, - -+, i) and js = (i, Jipy -+ 5 Jins Jiness =+ +» Jipe) Will be
termed an estimator of 7. As noted above, the cases where the design is such that
n* = N or n* = n are well documented in the sampling literature. The interme-
diate case, where with A probability 1, n < n* < N, is the case of so called double
sampling for stratification (see Chapter 12 of Cochran, 1977).
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Our coricern here is with estimators of 7 that incorporate prior information
about the stratification. In Sections 2 and 3 we introduce two such estimators
and give Bayesian and pseudo-Bayesian arguments for their use. In Section 4 we
outline how recent stepwise Bayes techniques of Meeden and Ghosh can be used
to establish admissibility results for the estimators under squared error loss.
Section 5 contains some comments about natural extensions of this work and
some closing remarks.

2. Estimation where prior information about stratum memberships
is vague. Consider first a situation where a priori one’s beliefs about the likely
stratum memberships of all units are exchangeable. Suppose further that =y, 72,

.., m; (with each m; = 0 and Y., m; = 1) are prior guesses at the relative sizes

of the strata and ui, ug, -, ps are guessed means for the strata. Then for
constants M, M., M,, ---, M, each belonging to [0, ®] an estimator of
incorporating these a priori values is

t = Yies i

Mr; + nf M; n;
J . . _ * j Jj J . J v/
+ 2]=1|:(n, nj) + (N n )< M + n* >:|[M + n; Hi + Mj + n; yj]

where n; and n} are respectively the number of units in s and s* belonging to
stratum j, and ¥, is the mean of those y/’s attached to units in s belonging to
stratum j. When n; = 0 we’ll understand y; to be 0 and when both M; and n; are
0, we’ll take the factor

. _ M L
K Mj‘f'ﬂjuj M"'nj

Yi

to be M.
To motivate this estimator, notice that u; is a Bayes-like predictor of any
unobserved y; known to belong to stratum j and that
A M~r j + n}"

,,.
/ M+ n*

is a Bayes-like estimator of the probability that a unit with i & s* belongs to
stratum j. ¢ is then obtained from the expression = = ¥ y; replacing each y;
having i € s* — s with g, and each y; having i & s* with the 7; weighted average
of the 4s. The constants M, My, M,, ---, M, of course control the relative
weightings of the prior and sample values rangmg from domination of sample
information in “0” cases to domination of the prior values in “®” cases. The
possibility that these constants are all 0 includes in our discussion the classical
estimators common in stratified sampling, poststratification and double sampling
for stratification. (In this regard, compare t with all M’s equal to 0 to the
expressions on pages 91, 134 and 328 of Cochran (1977) respectively.)

As for other cases of ¢t that have appeared in the literature, the special case
where J = 1 has been discussed in detail in Vardeman and Meeden (1983a), while
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the general J case of ¢ in the instance that n* = N has been treated by Binder
(1982). The original motivation for the present work was provided by the paper
of Hidiroglou and Srinath (1981). Their Y; is the special case of t appropriate
where A is suchthat n=n*and J =2, M =, M; =0, 7, =1, 7o = 0 and
stratum 1 consists of exactly those units i with y; < «, for v a large positive
constant. : :

For cases of t where M and each M; and =; are positive, it is possible to give
proper Bayesian derivations for t. One such, appropriate when in fact M and
each M; are in (0, «), is to note that ¢ is a version of the conditional mean of 7
given the observable (y,, j») under a joint distribution for (y, j) specified as
follows. Suppose first that given hyperparameters a1, as, - - -, ay with each o; =
0 and Y «; = 1, the entries of j are iid according to « = (a1, - - -, ay) and that «
has a Dirichlet distribution with parameters M=, M=, --., Mr;. (In the
terminology of Ferguson (1973), the entries of j form a sample from a Dirichlet
process with parameter measure on {1, 2, ---, J} defined by the M=’s.) Then
suppose that the conditional distribution of y given j is made up of J independent
factors, those y; with j; = j constituting a sample from a Dirichlet process with
parameter measure M;3;, where §; is a probability distribution on R with yu; =
| x dBj(x), for'each j =1, 2, ---, J. (We should remark that in the spirit of
Ericson (1969), products of two stage normal priors could, for example, be used
at this point as well.)

Proper Bayesian derivations of ¢ in cases where M and/or some of the M,’s
are © come about by replacing the corresponding Dirichlet process components
above with the (limiting as the corresponding M goes to «) distribution of
independence. And although cases of ¢t where M or some of the M,’s are 0 don’t
have Bayesian justifications, one might argue at appropriate points in the above
derivation (as in Vardeman and Meeden, 1983a, or earlier Basu, 1971, and
Godambe, 1966) that when prior information is nill it is appropriate to use as a
pseudo-posterior the empiric distribution of what one observes, and obtain a
pseudo-Baysian argument for use of ¢.

Regardless of whether or not one finds the distributional assumptions for
(y, j) that we used to produce t appealing, we would argue that ¢t makes use of
the kind of prior information about (y, j) that can be available, in a sensible
fashion. Even an only partially Bayesian sampler armed with guesses at the
relative sizes of his strata and strata means, and a notion of how he wants to
weight the various guesses against the sample information, ought to find ¢
intuitively appealing. In addition, we will argue in Section 4 that ¢ possesses some
attractive admissibility properties.

3. Estimation where prior information about stratum memberships
is less vague. In this section we present a generalization of the estimator ¢
that will be useful in problems where one’s prior information about j is sharper
than that assumed in the previous section, in that it is not exchangeable. As
motivation for such a discussion, consider a situation where the strata are in fact

&«

defined in terms of the y; themselves, with perhaps, “low”, “medium” and “high”
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strata having been defined in terms of the unknown values of the y;. Suppose
further that (perhaps on the basis of a census of y’s at a previous period) the
sampler can segment the N units into several groups indicating “likely stratum
membership”. In the present example, a three group segmentation into “likely
low”, “likely medium”, and “likely high” seems natural, but a two group segmen-
tation into, say, “likely low to medium” and “likely medium to high” groups
would also be possible, as would segmentations into more than three groups. In
any case, though the sampler might well have the information needed to employ
t, it is an inappropriate estimator in that it ignores the prior information implicit
in his ability to segment the population. We proceed to define a generalization
of t which would be appropriate in circumstances similar to these.

Suppose that in addition to y; and j;, there is attached to each unit i a variable
k; taking an integer value from 1 to K and suppose that k = (k,, ko, ---, ky) is
completely known. (In the example above, the values k; would specify the group
memberships established by the sampler in his segmentation of the population
using his prior information and beliefs as opposed to the actual stratification of
the population.) We'll further let Ny, n}; and n,; be respectively the number of
units in the population, s*, and s with k; = k and j; = j and indicate sums of
these with the usual dot notation. Then for each k take w1, 7r2, - - -, Ty (With
each 7, = 0 and Y., m, = 1) as prior guesses at the relative sizes of N1, Nis,
-++, N.s and again let u;, uo, - - -, us be guessed means for the strata. Then for
constants M;, M,, ---, Mg, My, M,, ---, M, each belonging to [0, ], our
generalization of ¢ is

Mkﬂ'kj + n,’i‘j
Mk + nt.

t =Y %+ Tia [(n’.'} - nj) + Xk (N — ni‘:)( =

M, 4 n.; _
Mj+ n.; Wi Mj+ n.; Vil
where as before, y; is the mean of those y; with i € s and j; = j, we take y; = 0
when n; = 0, and
A ]W, 4 n.; _

is understood as u; when both M; and n ; are 0 and
‘ N Mkﬂ'kj + nZ‘,-
Th = —~—————
b Mk + nZ‘.

is understood as ;; when both M, and n}. are 0.

¢ can be obtained from the expression 7 = ¥ y; by replacing each y; with i €
s* — s and j; = j by 4; and each y; with i & s* and k; = k with the 7, weighted
average of the u’s. The M; and M, of course govern how strongly the prior
stratum means and guessed stratum membership probabilities for the various
indices k are weighted against the sample information.

Bayesian and pseudo-Bayesian justifications for ¢ can be made by modifying
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slightly the derivations outlined in Section 2 for ¢. The modifications necessary
involve only specification of the marginal distribution of j (and not the conditional
distribution of y given j). Basically, the exchangeable structures assumed in the
derivation of ¢t must be replaced by a product of K exchangeable structures, one
for each set of indices i with k; =1, 2, - - -, K. For example, in the case that each
M,, M, ---, My is in (0, ), we would assume that for each k=1, 2, -- -, K the
Ji corresponding to those i with k; = k are a sample from a Dirichlet process and
that those samples from K Dirichlet processes are independent. )

It seems to the authors that instances of ¢ with positive M’s and/or M’s
should be useful to all but the most adamantly nonBayesian samplers, and that
even such individuals should consider

Yies i + Z}'I=1 [(nf’ n;) + Ek-1 (Ng. — nk ) nkj] Yis

(the “all M’s and M'’s equal to 0” version of ¢ provided each n; > 0 and esach
n¥ > 0) to be an attractive way to make use of an ablllty to segment the
populatlon in the estimation of 7.

" The classical properties of ¢ and £, such as bias and mean squared error, of
course depend on A, the sampling design,.and appear to us to require case by
case consideration as the values of the M’s and M’s and the sampling design
change. One type of weak optimality property that can be established for ¢ and
t in some generality is that of admissibility. In the next section we note what the
recent techniques of Meeden and Ghosh (1982, 1983) yleld in the way of
admissibility results for't and .

4. Admissibility results for t and £. If e(s, s*, y,, j+) is an estimator of 7
and one employs the samplmg design A, then the mean squared error suffered in
the estimation of 7 is

R(ev A, (yy j)) = 2(3,3*) (e(sy 3*9 YS9 js*) - T)2A((S, S*))'

Various notions of admissibility are possible here, depending upon which argu-
ments of R one wishes to fix and how widely the others are allowed to vary. Two
definitions that we will use are the following.

DEFINITION 4.1. If A is a design, o7 is a subset of RN X {1, 2, -+, J}" and
there exists no estimator e* with

R(e*, A%, (y, 1)) = R(e, A, (y, 7))

for all (y, j) € o with strict inequality for some (y, j) € o4 we will say that e is
admissible for design A and parameter set o7

By further allowing A to vary over some class of designs, we get the notion of
global or uniform admissibility of Josh1 (1966) and Godambe (1966) That is, we

will make:

DEFINITION 4.2. If ¥ is a class of designs containing A, o7 is a subset of
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RY % {1,2, ---, J}" and there exists no estimator-design pair (e*, A*) with A* €
¥ and

R(e*, A%, (y,))) = R(e, A, (v,1))

for all (y, j) € o with strict inequality for some (y, j) € o7, we will say that the
pair (e, A) is uniformly admissible relative to £ when the parameter set is o7

Foreach j=1,2, ..., J let 4, be a subset of R and take &= (4, ---, %,).
In the present context a natural type of o7 for use in admissibility considerations
is

Lg={y,)Ii€(L,2 -, J}" and y; € B, for all i},

although for the case of ¢ one might possibly wish to consider some subset of
/5 where the value of k; might preclude the possibility that j; = j for one or
more j’s. Choices of finite %,’s are especially tractable and, as noted by Meeden
and Ghosh (1982, 1983), can lead to admissibility theorems for nonfinite choices
of o7 as corollaries. For example, if for each (y, j) € o7 there is a choice of finite
B, Bs, -+, Bysuch that (y, j) € &g and an estimator e is admissible (or an
estimator-design pair (e, A) is uniformly admissible) with parameter set &z,
then e (or (e, A)) is admissible (uniformly admissible) when the parameter set is
. In what follows we will thus be concerned primarily with parameter sets of
the form /3 for finite %,’s, but will also point out where some nonfinite o/
admissibility theorems follow as corollaries.

Consider first the problem of establishing the admissibility of ¢ or ¢ for a fixed
design A and parameter set o/ with finite 4,, %, --., %,. If one is to prove
the admissibility of ¢ or £, it stands to reason that the prior means ui, us, - - -, py
should in some sense be consonant with the parameter set. We will say that u =
(u1, po, -+ -, us) and 2 are compatible provided foreach j=1, 2, ..., J thereis a
distribution on the set %, with mean ;. Then with this terminology it is possible
to use the characterization of admissible estimators in finite problems that
appears as Theorem 1 of Meeden and Ghosh (1981) and prove:

THEOREM 4.1. For any design A, if each 5@%, By, -+, Byis finite and p and
% are compatible, then the estimators t and t are admissible for the design A and
parameter set V.

According to the characterization of Meeden and Ghosh, to prove this theorem,
it suffices to specify a partition of o/ and a sequence of (mutually orthogonal)
priors on the elements of this partition and show that the estimator in question
is stepwise Bayes with resepct to the sequence. This can be done for both ¢ and
its generalization ¢. Unfortunately, many different cases must be considered and
the notational burden, which is severe for ¢, is even worse for ¢. The unpublished
Vardeman and Meeden (1982), which is available from the authors, presents a
complete proof of the admissibility of ¢ in the case where n = n* and 4, - - -,
A are disjoint. In fact, these restrictions are not necessary and that proof carries
over to the present case. The proof for ¢ then comes about as a fairly obvious but
notationally unpleasant modification of the proof for t. Here, to illustrate the
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type of argument that is required, without developing all the notation and
different cases n~eeded to prove the theorem in general, we will prove only the
admissibility of ¢t where all M,’s and M;’s are 0.

PROOF OF THEOREM 4.1 WHEN ALL M’S ARE 0. Without loss of generality,
we will suppose that the units are indexed in such a way that the first N;. units
have k; = 1, the next N,. units have k; = 2, etc. and take T, = Y:_, N,. for k =
1,2, .-+, K. Then with %; = {b, bj2, - - -, bj,} (p; is the number of different
values in %;), we proceed to define a partition of & For k=1, 2, ---, K, let #,
be the number of different values amongst {jr, ,+1, jr,_+2, - -, j7,} and take Z =
(71, 22, -+, Zk). Similarly, for j =1, 2, - . -, J, let m; be the number of different
elements of %, represented amongst {y;| j; = j} and take m = (m,, my, ---, my).
Then for each pair (#*, m*) with Z#’s between 1 and K and m}’s respectively
between 1 and p;, we will let o7« ,» stand for the (possibly void) subset of o7
containing all (y, j) with (£, m) = (#*, m*). Clearly, the nonvoid %%, partition
Ap.

Next, we must define a distribution on each nonvoid <% ,,. We will do this by
giving first a distribution for j and then a conditional distribution for y given j.
Let ¢ be a distribution for (j7,_,+1, J7,_,+2," - +» jr,) defined in the case /, = 1 by
®,((J, J, -+, J)) = m and otherwise by

de((Jr s -+ 5 Jr)) < 140 T(NR).

(Notice that only # of the N,; are positive and we’ll understand I'(0) to be 1.)
Our distribution for j is then ¢“defined by ¢“= [IK.; ¢.. Next, if y; is the vector
of length N ; whose entries are those y; with corresponding j; = j, we must define
a conditional distribution p; for y;. In the event m; = 1, we suppose 0, - - -, 0,
specify a probability distribution on %; such that 32, 6,,b;, = u; and take p;((b;,,
bju, - -+, b)) = 0;,. Otherwise we suppose

pi(y;) < [I7, I'(the number of entries of y; equal to b;,).

(Notice here that only m; of the terms in this product are other than I'(0).) Our
conditional distribution for y given j is p™’ defined by p™(y) = [IL: p;(y;), and
so we take as our distribution on % ., A\, defined for (y, j) € % by

)\/,m(y’ j) = ¢/(j)Pm’j(Y)'

Next we need to specify an ordering of the nonvoid o, and their correspond-
ing A\, m. For this it suffices to place the <%, in lexicographical order according
to their “K + o digit lables” (£, m). Then with A, standing for the set of (s, s*,
Y., J) possible under A and A, but not under A and any A« standing before
Azm in the ordering, it is possible to verify that { is the Azm conditional mean of
T given (s, s*, ¥s, j+). As such, for the observable (s, s*, y,, js+), ¢ is a A.m Bayes
estimate of 7 and thus by Theorem 1 of Meeden and Ghosh (1981), ¢ is admissible
for A with parameter set &/z.

Notice now that even in the case that one or more of %, - - -, 4, are nonfinite,
if  and 4 are compatible, each (y, j) belonging to o/ also belongs to some
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g0 where B, BY, - -, BY are finite and u and A° are compatible. Hence, as
suggested earlier, Theorem 4.1 provides its own generalization and we have:

COROLLARY 4.1. For any design A, if each %, #s, - -+, B, is a subset of R
(finite or infinite), then the estimators t and t are admissible for the design A and

parameter set 7 ,.

Of course, beyond questions of admissibility of ¢ and ¢ for fixed A are questions
of uniform admissibility for pairs (¢, A) and (£, A). Meeden and Ghosh (1983)
have shown how uniform admissibility problems in finite population sampling
can be treated in terms of making an admissible choice between finitely many
different possible experiments, and how notions of stepwise Bayesness arise
naturally in making such a choice. We proceed to. outline how their line of
reasoning can be applied here.

First, when contemplating estimator design pairs (¢, A), notice that a reason-
able class of designs to use in uniform admissibility considerations is %, .+, the
collection where the size of s is fixed at n and the size of s* is fixed at n*. (At
least on an intuitive basis, designs of fixed sizes (5, 10) ought to be at a
disadvantage if one allows comparison to designs of fixed sizes say (50, 100).)
The fact is that, because of their symmetric nature, the priors that one would
use to prove the ¢ part of Theorem 4.1 produce the same Bayes averages of the
mean squared error of ¢ for each degenerate (nonrandom) design A € %, .
Following the reasoning of Meeden and Ghosh (1983), this observation then
leads to:

THEOREM 4.2. If %, B, ---, B, are finite, u and B are compatible and A
is any element of %, .+, then the estimator-design pair (t, A) is uniformly admissible
relative to %, ,» when the parameter set is /.

Of course, just as Theorem 4.1 immediately gave Corollary 4.1, it is easy to
see that the restriction to finite %,’s may be dropped and the uniform admissi-
bility conclusion will still hold.

The situation of ¢ (for K > 1) is only slightly more complicated than that of ¢.
Because t makes use of at least potentially asymmetric prior information about
j, it doesn’t seem to the authors that the class of designs %, .- is natural for use
in uniform admissibility considerations for ¢. Instead, for n = (n,., n,., - - -, ng.)
and n* = (n¥, n¥, ---, nk) we let %an be the collection of designs producing
the fixed vectors of segment sample sizes n and n*. Then the priors one would
use to prove the ¢ part of Theorem 4.1 produce the same Bayes mean squared
errors for each degenerate design in %, .~ and again using the Meeden-Ghosh
argument one has:

THEOREM 4.3. If %, B, ---, By are finite, u arEd # are compatible and A
is any element of %, n+, then the estimator-design pair (t, A) is uniformly admissible
relative to %, n» when the parameter set is .
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And once again, the finiteness requirement on the %,’s can be dropped and
the uniform admissibility conclusion will still hold.

5. Some possible extensions and closing remarks. There are a number
of directions in which the present work can easily be extended. For one thing,
the ideas of Section 4 of Vardeman and Meeden (1982) and Section 3 of Vardeman
and Meeden (1983a) can be used to replace the g; in ¢ or ¢ with ratio or difference
type estimators of stratum means and still have admissibility, and in some cases
uniform admissibility results, follow fairly easily from the Meeden-Ghosh tech-
niques. Indeed, the ideas of Vardeman and Meeden (1983b) could even be
employed to replace the g; with estimators of stratum means that employ
trimming or Winsorization.

Also, though this entire article has been phrased in terms of estimation of 7,
the present techniques could clearly be used in the admissible estimation of other
functions of (y, j) such as population variances or differences in stratum means.

Next, we should point out that as ¢t and ¢ can be thought of as arising as the
mean of 7 based on either legitimate posterior distributions (in cases where all
M’s are positive) or pseudo posteriors (in the case that some M’s are 0) it is
possible to think of producing Bayesian or. pseudo-Bayesian credible sets from
these distributions in addition to or in preference to the point estimates discussed
here. (For example, in the case of ¢ where all M’s are 0, the pseudo-posterior
suggested by our proof of Theorem 4.1 would be described as follows. After
observing (y,, js+), the unobserved entries of j could conceptually be filled in using
K independent Polya urn schemes, where urn k initially contains n}; “balls” of
type j. Then the unobserved entries of y could conceptually be provided by
drawing from J independent Polya urn schemes, urn j being used to generate the
y; with j; = j and the initial composition of the urn being determined by the
frequency distribution of those y; with i € s and j; = j.) Binder (1982) has applied
such reasoning to give Bayesian derivations of the usual confidence interval for
the mean of a finite population and for the usual confidence interval for the
mean of a stratified population.

Finally, it could be argued that admissibility proofs are of limited interest
since for a typical decision problem there is always available a large class of
admissible decision rules. Until the recent work using the stepwise Bayes tech-
nique, most admissibility proofs in finite population sampling were quite difficult
and worked only in a limited number of cases (see Godambe and Joshi, 1965,
Joshi, 1965, Joshi, 1966, and Godambe, 1969). In this paper, we used the stepwise
Bayes technique to prove the admissibility of a wide variety of estimators, some
well known and some new. Of more interest, however, is the fact that the
technique itself seems helpful in suggesting new estimators that incorporate prior
information in a pseudo-Bayesian way.
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