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ON THE SINUSOIDAL LIMIT OF STATIONARY TIME SERIES’

By BENJAMIN KEDEM

University of Maryland and Armament Development Authority, Israel

We show that the Sinusoidal Limit Theorem of Slutsky in the Gaussian
case is a consequence of the equality of certain higher order crossings.

1. Introduction. The purpose of this note is to elaborate on a limit law of
E. Slutsky and tie it to higher order crossings of Gaussian time series. In the
Gaussian case, as we shall see, the Sinusoidal Limit Theorem (SLT) of Slutsky
is a natural consequence of relations between conspicuous visual features depicted
by time series graphs: when the expected number of axis crossings of a Gaussian
stationary sequence with mean zero approaches the corresponding expected
number of peaks and troughs, the sequence approaches in a certain sense a
sinusoid whose period depends linearly on the expected number of axis crossings.
Experience shows that this may also hold for nonGaussian processes but the
proof of that is still an open problem. )

In his quest for an explanation to the periodic nature of time series, Slutsky
(1927) discovered the Sinusoidal Limit Theorem. This result, not as well known
as other probability limit theorems, is sometimes confused with the so-called
“Slutsky effect” while in fact the latter is only a special case of the SL'T. Originally
the Slutsky effect meant the periodicity “introduced” into the data by sequential
summation followed by sequential differencing in the sense that certain frequen-
cies in the data are enhanced as a result of this repeated filtering and become
dominant. This effect, albeit a special case of the SLT, may well serve as a
motivation to this limit theorem and historically this could very well be the case.
In any event, this discovery had a major impact on the understanding of “periodic
phenomena” as it pointed out that the source for the apparent cyclical behavior
of economic series may be due to linear operations and not to any strictly periodic
mechanism. Of course a simpler explanation which did not escape Slutsky is the
mere notion of stationarity; after all, a stationary process evolves and fluctuates
around a fixed level.

The original work of Slutsky in 1927 had been followed by Romanovsky (1932,
1933) who showed that the SLT holds even when the summation filter is
lengthened and also obtained a necessary and sufficient condition for the limit
to be a sum of several sinusoids. He later relaxed the condition that the original
series, to which the sequential filtering was applied, be completely random.
Moran (1949) provided a short proof of the original Slutsky effect assuming the
series is completely random and in 1950 he went on to show that repeated linear
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filtering applied to random series may result in a sum of several sinusoids whose
number and periods depend on the filter coefficients. This result, closely related
to Theorem D of Romanovsky (1932), extends significantly the original notion
of the Slutsky effect.

More recently, Kedem and Slud (1982) have dealt with axis-crossings of
processes derived by repeated differencing of stationary processes. It will be
shown that these axis-crossings, referred to as higher order crossings, give rise
to the SLT in the Gaussian case.

The organization of the paper is as follows: first we give a historical account
by supplying a modern proof of the Slutsky effect. In our opinion this effect
probably led Slutsky to the formulation of his SL'T and not vice versa as recorded
in his original paper. In Section 3 we introduce the higher order crossings and
formulate the SLT in Theorem 3 in terms of these  quantities. This is our main
result. In Section 4 we show how one can go about applying our main result.

2. The Slutsky effect leads to the. SLT. Let {Z,};>_.. be a zero mean
stationary process with spectral representation

z,= f e dg(),

where for convenience we assume the existence of a spectral density f and where
E|dg(N) |2 =f(N) d.

Let B be the backwards shift, (BZ), = Z,-,. As a polynomial in B is well
defined, we shall be interested in the operator

(1) (1-B)"(1+ B)",
applied to {Z,} for m,n =0, 1, 2, - - -, such that m/n = ¢ constant. Define
(2) Y = (1 — B)"(1 + B)"{Z/0,}

where ¢, > 0 is defined so that Var(Y{”) = 1. Strictly speaking {Y{”} depends
on ¢ but this is suppressed for the sake of simplified notation. Let the transfer
function of (1 — B)**(1 + B)" be denoted by H,()), again suppressing c. Then
H,(N) = (1 —e™™(1+e™)",
and it follows that the spectral density of {Y{"} is given by
| H.(N) [%f(N)

J7e | Ho(@) | *f(w) do’
We note that the squared gain | H,(}\) | % is symmetric and

(1) | H.(\) |2 =2"*"(1 — cos N)™(1 + cos A\)".
(ii) For 0 < \ < =, the squared gain is unimodal with a peak occurring at A,
say. We have

—-rT<\AN=<nm.

fn(>\) =

maxos<r | Ha(N) |2 = | Ha(Ao) |?
where \. = cos }((1 — ¢)/(1 + ¢)).
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(iii) For sufficiently small ¢ > 0

|Hn()\c - 8) |2
[ HoOh — ¢/2) 12

and the same holds if a plus replaces the minus sign.
(iv) | Ha(A) |* < | Hpsr(N) |2

Associated with £, is a spectral measure »,(-) defined on (—=, 7] by

0, n— oo,

Vn(A) = Ifn(k) d>\’ A E (—7l', 7['],

A being a Borel set.

THEOREM 1. (Slutsky Effect). The sequence {Y'\?, --., Y} defined by (2)
converges in probability to a sinusoid given by
3) Y.=UcosA\t+ Vsin\t, t=1,.--,N.

where U, V are uncorrelated random variables, provided f(\.) > 0.

PrOOF. The proof is fairly standard and we shall give a short account of it.
First note that v, is symmetric on (—, =], and, following the technique of Kedem
and Slud (1982), we obtain for ¢ > 0

1[0, Ae — &), va(Ac + &, 7] > 0, n— .
It follows that
([ =&, =X+ ] U — e, A +¢]) =1, n—>x,
and so we have the weak convergence
(4) vp = Y20, + Y2by, n — x,

where §, is the unit point mass at u. If dF{™ is the spectral distribution function
of {Y{} then (4) means that

|16, A==\

(n)
dFy"(N) — |0, otherwise’

— o,
The proof now follows from the spectral representation of {Z.} (see also
Grenander and Rosenblatt (1957), Section 3.3).0

It should be observed that (3) can be expressed as A cos(A.t + 6). Thus we see
that n summations, (1 + B)", followed by cn = m differencings, (1 — B)**, produce
for large n a sinusoid with period 27/X., A, = cos™'((1 — ¢)/(1 + c¢)), provided
f(X) > 0. Of course our proof was made easy due to the spectral representation
which was not available in the twenties. The method used by Slutsky made use
of difference equations.

Let us compute the correlation function of {Y{™}. Since the complex exponen-
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tial is bounded, we have from Theorem 1:
Corr(Y(™, Y1) = f e b (dN) — % (e=™ + ™) = cos(kA,)
as n — o, and here & is an integer. The basic observation which originated with
Slutsky and was shared by Romanovsky and Moran is that for the limit (3)
(5) E(Y:—2cos(A)Yi + Y, .)?/Var(Y,) = 2(1 — 2 cos®\. + cos 2)\.) = 0,

and it follows that the series Y, satisfies a difference equation whose solution is
a sinusoid with frequency A..

Observe that the first order correlation of Y{™ converges to cos()\.). This and
(5) suggest an immediate generalization. Any statlonary sequence {Y, Y, - -}
with correlation function p; for which

(6) E(Y, — 2p,Yy + Yt—2)2/Var(Yt) =201 - 2/0% +p2) =0

is, with probability one, a sinusoid whose period depends on p;, provided p; < 1.
Slutsky actually used a slightly different condition. Let

m = Corr(V?Y,, Yiy), V=1-B.
Then,
(7) (1 = 2D)(6 — 8p1 + 2p2) = 2(1 — 2p} + p2).

But if p; < 1 and 5, = —1, as required by Slutsky, then 1 — 2p% + p, = 0 and the
sequence {Y,} satisfies with probability 1 the homogeneous difference equation

(8) Y, - 2p1 Y1+ Y..=0
whose solution is a sinusoid and this also includes (Slutsky required | p; | < 1!)
the degenerate case p, = —1 of extreme oscillation. We have given the essentials

of the proof of Slutsky’s Sinusoidal Limit Theorem which states

THEOREM 2 (SLT). LetZ,, Z,, -, be a weakly stationary sequence fulfilling
the conditions
EZ.Z
“gzr == ok n)

where n is & parameter specifying the series as a whole, and h(n) and ¢(k, n) are
independent of t. If

EZ, =0, EZ? = o = h(n),

9) |py| < constant <1, as n — ®

and the correlation coefficient between V2Z, and Z,_,, ., say, is such that
(10) m—-—1, as n-—»,

then

IO (Z:, Zi1, -+ -, Z: + ;) converges in probability to a certain sinusoid.



SINUSOIDAL LIMIT 669

(IT) The period, L, of this sinusoid is determined from the equation p, =
cos(2w/L).

(IIT) The number of periods in the interval (t, t + s) can be made arbitrarily
large provided s, n are sufficiently large.

Owing to (6) and (7), Romanovsky (1932) suggested replacing (9), (10) by the
more direct condition that as n — oo,

(11) <1l and 1-=2p2+ p,— 0.

This again, as argued above, leads to the conclusion of Theorem 2. Our observa-
tion is that condition (11) can be further modified and tied in with higher order
crossings to produce the SLT. It should be remarked that in the SLT above it is
more appropriate to speak of the convergence of the normalized series Z,/¢ but
Slutsky did not explicitly make this assumption and we shall follow this manner.

3. Graphical considerations. Slutsky observed that almost all economic
phenomena as well as social, meteorological and others occur in a sequence of
rising and falling movements and that a human observer can readily detect long
as well as short term fluctuations in these time series, so that the idea of some
form of harmonic analysis is inescapable. Undoubtedly this has been the obser-
vation of many a scientist who watched the graph of a time series; its rising and
falling movements can be quickly detected by a casual eye examination. The
problem we address here is to what extent can such an eye examination determine
the deviation of a time series from a sinusoid. By adopting a somewhat parochial
view, it is possible to show that Slutsky’s Limit Law is essentially a graphical
law.

In this section let {Z,} be as above and also Gaussian. Let ¥ be the clipping
operator defined by

1, Y.=0

0 y<o (=0

%YtE{

Consider a sequence of binary processes {X ¥} defined by
X =¥1=-Br'Z,t=0 %1, ..., k=1,2, ---.
Define
Dy = 25 IIXE) # XP).

That is, Dy, counts the number of symbol changes in X{, ..., X But this is
also the number of axis-crossings by (1 — B)*'Z,, t =1, - .., N. D,y is referred
to as the (number of) higher order crossings of order k. A closer examination of
the Dy, reveals that D, y counts the number of axis-crossings by {Z,,t=1, - - -,
N}, and except for end effects, D, y is the number of peaks and troughs in this
series, D3 v is the number of inflection points in the series, etc. Thus the Dy y
pertain to visual features detected in time series graphs. Now these counts exhibit
a monotonicity property first proved under suitable conditions in Kedem and
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Slud (1982) where it was shown that
lim supy_.N"'D;n is almost surely increasing to 1 as &k — .

For a Guassian process we can prove most conveniently the related result

LEMMA 1. If{Z} t =0, x1, --- is a zero mean stationary Gaussian process
with correlation function {p.} such that p; < 1 then we have the inequality
(12) EDyn= EDy1n,

k=2,3, .-, uniformly in N > k.

ProoOF. To prove (12) we shall see that it is sufﬁcient to consider the case k
= 2. Let pv(k) be the correlation function of the differenced process {VZ}. By

stationarity

j 1 p P2 ‘

1—2pf+pp= | P L m (1—=p2) =0

ip2 ;o 1

and so
1-— 2P% + p2
- =——">0
P Pv(l) 201 — pl)

or
(13) pv(1) < py.

But this in conjunction with the Guassian assumption implies (Kedem, 1980)
1 1 . 1 1 .
ED,y=(N—=1)|- — —sin"'(p1) ) = (N — 1){ = — = sin"'(pv(1)) ) = ED;n.

2 9w 2 9w

Since differences of a Guassian process are again Gaussian and the requirement
that their first serial correlation be strictly less than unity is automatically
satisfied due to (13), we have in general

EDk,N = EDk—l,Ny k= 2y 3y e

uniformly in N > k.0

It should be noted that in general the inequality (12) is strict. For example for
white noise (12) is strict since

_ _ l _ 1., _i
EDpyyn = (N 1)[2 - sin (k " 1)] , k=0,

and this gives a good approximation to the behavior of ED,, y when k is large for
many stationary sequences for which the spectral density is positive at =. Now
when equality in (12) holds so does the SLT. It is convenient to normalize the
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ED,nby N — 1 as ED, /(N — 1) is independent of N. Unlike Slutsky, in order
to prevent any confusion, we shall now state our main result without indexing
the process {Z,}.

THEOREM 3. Let {Z,} be a zero mean Gaussian stationary process. Assume

ED, n
< v————
(@) 0 N-1
ED,ny _ ED,n
(b) N-1 N-1°
Then the vector (Z,, - - -, Z.+,) lies with probability one on a sinusoid with period
20N -1)
L=——n——,
ED, n

PROOF. Since the process {Z,} is Gaussian, we have from Kedem (1980)

7I’ED1,N>

p1=COS<N'—1

and

_ 7I’ED2,N
pv(1) = COS<——N — 1)

where pv(k) is the correlation function of {VZ,}. As before

E[Z, = 2p1 211 + Z o)
Var(Z,)

=2 = 4p3 + 2p; = 4(1 = p1)(p1 = pv(1))

= 4{1 — co mED cos Dy — COS 7EDsn =0
B AN-1 N-1 N-1)|""

by (a), (b). This implies

and therefore (Z,, - - -, Z,.,) for fixed s follows with probability one a difference
equation of the form Z;, — 2p,Z,_, + Z,_, = 0 whose solution is the sinusoid

_ 7I'ED1,N
(14) Z,—Acos(N_1t+0>. 0
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By invoking the lemma we have:

COROLLARY 1. Assume (a) holds and consider the statement
ED\n _ EDyn
N-1 N-1
then (b) holds if and only if (b”) holds.

(b’) all k=2

Thus the interpretation of the SLT in the Gaussian case is that of
equality of the expected number of axis crossings to the expected number
of peaks and troughs or to the expected number of changes in concavity,
etc. in a time series of length NN.

From Theorem 3 it also follows that

COROLLARY 2. If for some k, 0 < EDy n/(N — 1) and
EDyn _ EDps1 N
N-1 N-1

then the SLT holds for the (k — 1)th difference {V*'Z,} and we have with
probability one

(b”)

ED
(15) VEiZ, = Akcos<7]rv _k’f’ t+ 0k> .

From (15) we see that if as k — o, ED, /(N — 1) approaches 1, V*Z, approaches
a degenerate state of extreme oscillation. This limiting state is guaranteed under
some conditions by the Higher Order Crossings Theorem proved in Kedem and

Slud (1982). Specifically, this theorem in summarized form says that, under the
Gaussian assumption

THEOREM 4. (HOCT). Under the Gaussian assumption, suppose f(w) > 0.
Then

... 010101 ... with probability Y

(k)
X = 101010 .-+ with probability vi» *

and
lim;_.limy_oN"'Dyn = 1 with probability 1.
Observe that the type of convergence spelled by the HOCT is weak convergence

and pertains to the sequence {X{®} as a whole while the SLT speaks about
convergence of finitely long sequences.

COROLLARY 3. Under the Gaussian assumption, if f(x) > 0 then the inequality
(12) is strict.
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20 40 60 8 100 20 Fi1G. 2. Normalized densities of 2nd or-
F1G.1. Logarithm of the Canadian Lynx  der autoregressive processes (logarithmic
series. (Source: Priestley, 1981). scale) as functions of higher order crossings.

PROOF. Suppose the conclusion is incorrect. Then by Corollary 2, for some
k, V*7'Z, is a sinusoid whose continued iterations of V will not increase the Dj, .
But this contradicts the Higher Order Crossings Theorem. 00

A consequence of this corollary is that if f()\) is continuous and positive then
for sufficiently large N the D, v display strict monotinicity so that the SLT can
hold only in a degenerate sense of extreme oscillation. This has actually been
observed in numerous time series. The generalization of Theorem 3 to non-
Gaussian sequences is still an open problem as indicated in the introduction.
However, for a bounded stationary sequence a similar result can be obtained in
terms of the crossings of a random curve. Unfortunately the conditions for the
SLT to hold in that case are not as compact as in Theorem 3.

4. The Canadian lynx. The practical utility of the SLT as given in
Theorem 3 is the indication of rapid oscillation in a time series when
Dy n/(N — 1) and Do n/(N — 1) are fairly close. In this case a dominant frequency
is present in the data and it can be quickly estimated by D, x. This amounts to a
form of spectral analysis based on higher order crossings, an account of which
has been advanced in Kedem (1983). A concrete example is furnished by the
celebrated Canadian lynx series of annual trappings of Canadian lynx from 1821
to 1934 (N = 114). The graph of the logarithm to base 10 of the series is given
in Figure 1.

First it should be observed that the general form or graphical appearance of
the series is not affected by the logarithmic transformation at least as far as D,
and D, are concerned. Now, taking the mean as the axis, we count 23 crossings
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and 26 peaks and troughs and it is seen that (D,,;,4/113) = 0.203 and (D1,4/113)
= (.230 are fairly close so that the series (original!) under appropriate conditions
oscillates roughly as a sinusoid with estimated period

7!'D1 - 226 _
27 13- 23 = 9.83 years

(all other analyses give similar results; see Priestley, 1981, Chapters 5, 6).

5. Anillustration. The normalized spectral density of a normal stationary
second order autoregressive process is completely determined by ED; y and ED; 5
and this fact provides a mean for illustrating Theorem 3. Figure 2 depicts the
graph of the logarithm of this spectral density for various cases of (ED, n, ED, y).
It is seen that the closer these two quantities are the sharper is the peak in the
spectrum. In the figure, D1 and D2 stand for ED, 1000, ED,1000 Tespectively.
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