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INVARIANCE PRINCIPLE FOR SYMMETRIC STATISTICS

By Avi MANDELBAUM AND MURAD S. TAQQU!

Cornell University

We derive invariance principles for processes associated with symmetric
statistics of arbitrary order. Using a Poisson sample size, such processes can
be viewed as functionals of a Poisson Point Process. Properly normalized,
these functionals converge in distribution to functionals of a Gaussian random
measure associated with the distribution of the observations. We thus obtain
a natural description of the limiting process in terms of multiple Wiener
integrals. The results are used to derive asymptotic expansions of processes
arising from arbitrary square integrable U-statistics.

.

1. Introduction. The asymptotic behavior of symmetric statistics of finite
order has been an active area of research ever since the pioneering work of Von
Mises [15] and Hoeffding [4]. We refer the reader to Serfling [14] for results
about limiting distributions and to Sen [13] for invariance principles. Rubin and
Vitale [12] showed that the limiting distribution is equivalent to that of a linear
combination of products of Hermite polynomials of independent N (0, 1) random
variables. Using ideas from the theory of Poisson point processes and Gaussian
random measures, Dynkin and Mandelbaum [3] obtained a description of the
asymptotic distribution for symmetric statistics in terms of multiple Wiener
integrals. In this paper we extend the results of [3] and get invariance principles
for the corresponding processes.

An alternate approach for obtaining functional limit theorems for U-statistics
is due to Denker, Grillenberger and Keller [2]. They first reduce their setup to
the case of observations from a uniform distribution on [0, 1]. Then they describe
the limiting process for Von Mises statistics as a C[0, 1] valued integral with
respect to the Brownian bridge component of a Kiefer process. The limiting
process for U-statistics is derived as a consequence.

In our paper, the observations take values in an arbitrary measurable space.
Our approach enables us to deal directly with the infinite order generalization of
the U-statistic. We show that the limiting process can be expressed as an infinite
sum of multiple Wiener integrals. The specific representation that we use has
several virtues. It clarifies the role of the time parameter, it exhibits the sym-
metric functions that defined the statistic and it also involves the distribution of
the observations. The distribution of the observations becomes a measure asso-
ciated with the underlying Gaussian random measure.

The paper treats the one-sample problem. Our technique applies to the
J-sample problem considered in [2] but we do not consider that case here.
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There are five sections and an appendix. The results are stated in Sections 2
and 3. The proofs are developed in Section 3 and make use of lemmas which are
established in Section 5. Section 4 contains applications, in particular to
U-statistics. The appendix provides a brief review on multiple Wiener integrals.

2. The main results. Let X;, X;, ---, be a sequence of independent and
identically distributed random variables with values in an arbitrary measurable
space (2, 4), and let v be their distribution: »(B) = P{X; € B}, BE 4.

For each T > 0, we define the Hilbert space &% of sequences h = (hy, hy(x,),
oo, hp(xq, -+, %), - - - ) where h; are symmetric measurable functions and

Tk
Ihl? = 2o o Eh} < .

We use the notation

Eh; = Eh{(Xy, -+, Xi) = fU/ L,h%(xh oy xe)v(dx) o ov(dx).

Clearly &% decreases as T increases. Set & % = Nr.o & %, then h € &% if and
only if | A ||% < « for all T'> 0.

To a symmetric function h,(x;, - - -, xz), we associate the symmetric statistic
Ug(hk) = 215s1<sz<. - <sp=n hk(st ) Xsk)-
The statistic ¢} is based on a sample X, - - ., X, of size n, taken from a population

with distribution v. Define o§(hy) = ho, and for k > n, set oi(hy) = 0.
Any symmetric statistic can be uniquely represented in terms of symmetric
statistics associated with functions h, satisfying the condition

(2-1) Ehk(xla cry Xe-1y Xk) = _£7hk(x1’ crry Xk-1y y)”(dy) = 0°

(see Section 4). A symmetric function h;, which satisfies (2.1) is called canonical.
Denote by &7 the closed subspace of &% consisting of sequences h =
(ho, h1, hs, - --) where hy, hy, - - - are canonical.

In this paper we investigate the limiting distribution, as n — o, of the
stochastic process

1
(2.2) Ya(h) = ¥io i o), 0=t=T,

where h = (hy, hy, hs, ---) € 7. We also present a corresponding result for
h € &%. The limiting distribution is expressed in terms of Wiener integrals with
respect to Gaussian random measures. For the convenience of the reader we give
a brief description of these notions in the appendix.

Our main result is:

THEOREM 1. Let h = (ho, hy, ---) € &7,0< T =< . As n — o, the process
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Y% (h) converges weakly in D[0, T] to
1
(2.3) Wih) = ¥i-o 2l L.(hy), 0<t=<T.

Here
hi = he(xy, -+, x6)Lo,g(u1) -+ Lo,(ue),

and I,(-) are multiple Wiener integrals with respect to the Gaussian random
measure W(-) on the product space

(2, B, v) X ([0, T), Borel, Lebesgue).
Symbolically,

Ik(hfe) = f cee f hp(xy, - -, xk)llo,r](lh) cee 1[0,t](uk)

(2.4)
W(dxi, duy) - -+ W(dxs, duy).

The main steps of the proof of Theorem 1 are given in Section 3 while auxiliary
lemmas are proved in Section 5.

The space D[0, T'], T =< « is the space of right continuous functions on [0, T']
([0, ©) when T = o) with left limits at each t = T' (¢t < © when T = «). The
space D[0, T], T < «, is endowed with Skorohod’s JJ; topology (see [1]). The
topology in D[0, ] = D[0, =) is the one described for example in Whitt [16].
Weak convergence in D[0, ©) means convergence in D[0, T'] for all fixed 0 < T
< oo at which the limiting process is continuous with probability one. This
restriction does not play a role in Theorem 1 because

LEMMA 1. For h € &7, the process W (h) described in (2.3) has a continuous
version.

Lemma 1 is proved at the end of Section 5. It follows from its proof that
Theorem 1 applies also to convergence in C[0, T], T < o, if Y;(h) is suitably
redefined using linear interpolation.

We now formulate the analogue of Theorem 1 without restricting h, to be
canonical. Let B;, By, - - - be a sequence of iid real valued random variables with
mean 0 and variance 1, independent of X;, X, - - -

THEOREM 1*. Leth € &%,0< T < «. As n — w, the process

1
(2-5) 27:=0 W lesl<~--<sks[nt] le e Bskhk(Xsl’ tt Ty Xsk)

converges weakly in D[0, T'] to the process W'(h) described in (2.3).
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Theorem 1* follows from Theorem 1. Indeed, the functions
Bi(xy, bys + - o5 2k, br) = hu(xa, « -+, X0)by -+ by

are canonical whgn viewed as functions of the pairs (X, B,), - - -, (Xx, Bx) and
the process W(h) has the same distribution as Wi(h) (see Section A.5 of the
appendix).

3. Poissonization. To establish weak convergence in D[0, T'] for the proc-
ess Y5 (h) defined in (2.2) we apply two ideas found in Dynkin and Mandelbaum
[3]. One idea is Poissonization of the sample size. The second involves showing
that Y, (h) converges for special sequences h = h? of the form

B1)  hf=1Lhm, o, m) = dx) - bla), k=12, -
where ¢ is a fixed function. The general case follows from this particular one.
To prove Theorem 1 we introduce two identically distributed Poissonized
versions of the process Y%(h). The first (defined in Theorem 2) has the same
limiting distribution as Y?%(h). The second (defined in Theorem 3) is used to
identify the limiting distribution as that of W¥(h).
Let N)(t), 0 =t < T be a Poisson process (EN,(t) = At) which is independent
of Xl, Xz, o

THEOREM 2. Let h € &r1. As A — o, the process
1
A(h) = ¥is G o (), 0<t=T,
converges weakly in D[0, T'] to W'(h) described in (2.3).

The processes Y,(h) and Z.(h) have the same limiting finite-dimensional
distribution as n — . This follows from the Cramer-Wold device (see [1]) and

LEMMA 2. Let h € &r. For each t € [0, T,

lim,_-E[Y(h) — Z,(h)]? = 0.

Lemma 2, as well as Lemmas 3, 4, 5 below are proved in Section 5.

Let now Uy, U,, - - - be iid random variables uniformly distributed on [0, T,
T < . We suppose that U, Us, - - - are independent of the sequence X;, X, -
and of the random variable N,(T).

THEOREM 3. Let h € &7. As A\ — o, the process

1
Ci(h) = o 1 oPP(h), 0=t=T,
converges weakly in D[0, T] to W:(h) described in (2.3), where
Gz(hﬁ) = lesl<-~<sksn h(Xsly ) Xsk)l[o,t]( Usl) e 1[0,:]( Usk)-
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In fact,

LEMMA 3. For h € &7 and M\ fixed, the processes Ci(h) and Zi(h), are
identically distributed as random elements of D[0, T].

Combining Lemma 3 with the remark preceding Lemma 2, we see that the
three processes Y% (h), Z5(h), Ci(h) have the same limiting finite-dimensional
distributions. The easiest to investigate is the process C4(h). We use the facts
that for a fixed ¢, the random variable C(h) can be written as

(3.2) ((h) = ¥ # oe(hy)

where u = AT, h, = T*?h}, N, is Poisson with mean g, and that the limiting
distribution of random variables of the form (3.2) as u — % (A — ) was derived
in [3]. We get

LEMMA 4. The finite-dimensional distributions of C%(h) converge to those of
Wt(h).
To complete the proofs of Theorem 1, 2 and 3 we must verify tightness.

Let ® stand for the set of measurable functions ¢(x), x € 2 which take a
finite number of values and satisfy E¢ = [, ¢(x)v(dx) = 0. For ¢ € &, the
functions h{ are canonical, and h* € &, since

Tk
k!

In proving their Theorem 2, Dynkin and Mandelbaum [3] showed that for
T > 0, elements h € &7 of the form

[R5 = Bimo 57 (B¢ =™ <0, 0< T <o,

(3.3) h=3Yr, ath*, oy, .-, a, constants

are dense in &7. We also note that the processes Y%:(h), Zi(h), Ci(h) are all
square integrable martingales when h € &7. Indeed, Y% is a martingale

with respect to the filtration o(X;, X, - -+, X)), t > 0; Z§ with respect to
o(Xi, -+ -, Xnye); Ck with respect to ¢(X;, i € S(t)) where
(3.4) S(t) ={i: i< Ny\t), U; =< t}.

We use these facts to prove

LEMMA 5. Let T < «. The processes Y (h), Zi(h), Ci(h) are tight in D[0, T]
for h € &7 if they are tight for h of the form h®, ¢ € &.

When h = h?, all the above three processes can be represented in a form from
which tightness is easy to prove and the limiting distribution is easily read off.
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We start with Y% (h?) which has the form

o(X; ))
vn

Since ¢ € ® takes finite number of values, Y%(h?) is positive for n large enough.
By Taylor’s expansion for log(l + x), log Y5 (h?) has the same weak limit in
DJ[0, T] as

(3.5) Yi(h?) = [[I (1 +

(3.6) le"” B(X) - 5= 31 4(X)).

From Donsker’s Theorem and the weak law of large numbers it follows that the
limit of (3.6) is
I(¢*) — % tE¢*®

where

Lw9=f¢mmAwWMJw

is a Brownian motion with mean 0 and variance E[I,(¢')]> = E¢® Hence, for
¢ € &, Yi(h?) converges weakly in D[0, T'] to the exponential martingale

ty—, 2
et(d)) = li(#)—(1/2)tE¢"

Theorem 1 is now established. Theorem 3 follows from Theorem 2 using Lemma
3. To prove Theorem 2, we first show that Z.(h?) and Y:(h?) have the same
weak limit. The process Z,(t) = Z%(h) is a random time change of Y,(t) =

Y% (h), namely
s = v, (240

Since, as n — o, N,,(t)/n converges to t and ¢‘(¢) is continuous in ¢, we can apply
the results of Section 17 in [1] to conclude that Z%(h?®) and Y:(h®) have the
same weak limit in D[0, T']. Theorem 2 now follows from Lemma 5 and the fact
that Y4 (h?) converges weakly to ¢'(¢).

This concludes the proofs of Theorems 1, 2 and 3.

4. Applications. Let X;, X,, ... be defined as in Section 2. To every
symmetric function h(xi, - - -, x,») there corresponds a “U-statistic”
1
(4.1) , Ukt(h) = — om(h)
n
(n)

based on the sample Xj, .- -, X,. The U-statistic is an unbiased estimator of the
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parameter

Eh=f f R(xy, -+ -, %) o(dxy) - v(dxy).
@ @

We assume throughout that Eh? < oo,
Applying Theorem 1, we shall obtain the weak limit in D[0, «) of stochastic

processes related to U — Eh. 7
For this purpose, we use Hoeffding’s orthogonal decomposition of the U

statistics, that is

(4.2) Un(h) = Smo Ur(h) = Eh + z:zlf on(hi)
7
i

where the hl are canonical. These h; can be obtained from h through the relation
(X, -, X)) = ("]) (I=Qp) -+ (1= QMQR: - Qrh(Xi, -+, Xn)

where Q7" is the conditional expectation with respect to X, - - -, Xi—1, Xis1, -+ -,
X, The representation (4.2) was first established in [5] (see also [12], [13] and
the appendix in [3]).

Now suppose that h has rank k = 1, that is

h1= LU =hk_1=0, hk#O.
Then
nk/2 :
(4.3) nMk(U — Eh) = 37, traM(hy).
<[nt]>
i

Sincé the h;,i=1, ..., mare canohical, thé terms in the right-hand side of (4.3)
are uncorrelated, so that for ¢ > 0,
ky2k
E[n*t UL — ER)P = Sy 1y <[n.t]>Eh? ~ KIt*ER}
()
i

as n — . Therefore only the first term in the expansion of (4.3) contributes in
the limit. The limit is identical to that of k! (1/n*?) ¢{")(h;). Using Theorem 1

we conclude:

COROLLARY 1. If h has rank k, then, as n — o,
n*2H U (h) — Eh]
converges weakly to I,(hi) in D[0, ).

Moreover, if h has rank k, then U!!(h) has the following asymptotic
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expansion
[nt] 1 t 1 t
Ur“(h) ~ Eh + T I.(h) + TSV AC Y Ii+1(hk+r)
+ + L L.(h%)
nm/Ztm m mJe
Note that both the rank %k and the functions hi, hiyi, --- depend on the

distribution ».

When k = 1, Vnt(U(h)—Eh) converges to I,(h}) which is Brownian motion
with variance EhZ.

When k = 2, nt2(U'r*/(h)—Eh) converges to I,(h5) which can be expressed as

i N (BRE) —t)

where B (t), By(t), -.-- are independent standard Brownian motions and
i A <oo.

The case k = 1, called the “non-degenerate” case, was proved in Miller and
Sen [8]. The case k = 2 follows from a special representation of a multiple Wiener
integral of order 2 (see Proposition 6.18 in Neveu [11], for example). It was first
proved in Neuhaus [10].

Our representation of the limiting process I, (k%) is very natural. It involves
explicitly the time parameter ¢, the function h;, and it involves the distribution
v through the Gaussian random measure W. The representation of the limiting
process simplifies further when the kernel h is a polynomial in the variables
because then the multiple Wiener integrals become Hermite polynomials of
Gaussian random variables. As an illustration, we can easily establish the
following limit theorem stated for D (0, 1) in Mori and Székely [9].

COROLLARY 2. Let X, X, --- be a sequence of i.i.d. random variables with
mean 0 and variance 1. Let py(x, - - -, xx) = %, - - - %x. The process n™**¢\"}(py)

converges in D(0, ) to
th/? B(t)
_— >
o H, ( 7 )’ t>0

where B(t) is the standard Brownian motion and where H; is the Hermite
polynomial of order k with leading coefficient 1.

Corollary 2 is an immediate consequence of Theorem 1 because p;, is canonical
and I.(p) = (t*%/k!) H,(t72I,(p})) (see Section A.1 of the appendix).

5. Proofs of lemmas. The proof of Lemma 1 is given at the end of this
section. To complete the proofs of Theorems 1, 2 and 3, we now prove Lemmas
2-5.

PrROOF OF LEMMA 2. The proof is similar to the one for ¢t = 1 given in [3]
(Section 2.4) and so we only outline the main steps.
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It is easy to check (see also (2.3) in [3]) that

(5.1) EZL(h)? = | h|?,
hence it is sufficient to show:
(5.2) EY.Y(h)? - |h|?, as n— o,
(5.3) EY.Y(hZi(h) — | h|?, as n — .
But

tk
(5.4) EY.L(h)? = Ti-o abk 2l Ehz,

tk .
(5.5) EYL(h)ZL(h) = Yi-0 bhk 7l Ehz,
where

!
[nt]! (nt)*

Tk = (ne]=R)! |
blx = PINA(t) = [nt] — k} + abuP{NA(t) = [nt] + 1}.

Both a’,: and b}, . are bounded by 1 and ar  — 1 as n — ». By the central limit
theorem, P{N,(t) < [nt] — k} -> % asn — »,for k=0, 1, ---. Hence (5.2) and
(5.3) follow from (5.4), (5.5) and the dominated convergence theorem.

PrROOF OF LEMMA 3. The processes Ci(h) and Z5(h) both have sample paths
in D[0, T, hence it suffices to prove that their finite-dimensional distributions
coincide. We first prove it for h = h?, ¢ € &.

As in (3.5), for ¢ € ®, we have

t t ¢(Xz)
log Z§(h?*) = TN log<1 + T)

X)1oa(U:
log Ci(h?) = LMD log(l + (—b—%_[ii(——))
Letting a(X;) = log(1 + ¢(X;)/v\), we see that
(5.6a) log Zi(h?*) = IO (X)),
(5.6b) log C4(h?) = Zf:‘lm 1p.g(Up) a(X5),

which shows that the processes in (5.6a) and (5.6b) are both constructions of the
same compound Poisson process. Taking logarithms and using the Cramer-Wold
device we prove similarly that the process (Z5(h*), - - -, Zi(h®")) has the same
distribution as (Ci(h®), - - -, Ci(h®n)).

Since both C&(h) and Z(h) depend linearly on h, we conclude that Lemma 2
holds for h of the form (3.3), which are dense in &7. Hence to end the proof of
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Lemma 3, it suffices to show that for A fixed,0 <= ¢, < ... <t,, < T, we have

(5.7) (C(g), -+, Ci(g)) = (C(h), ---, Cin(h))
and
(5.8) (Z%(g), -+, Zi(8)) = (Z3(h), ---, Zi(h))

as g — h in 7. (= denotes convergence in distribution). The convergence in
(5.7) is a consequence of the representation (3.2) and Theorem 2 in [3]. The
convergence in (5.8) is implied by the relations:

| EeiPYict®) — FeXa¥®) | < || Ty |ax {EIZ3e = WFY’
< |61 Zh T ewl {E[ZT(e — WP}
= 18] T laulllg = Rl

The first inequality follows from |e‘Z4% — ¢2Bx | < ¥ | A, — B, |. The second
inequality holds since Z4(h) is a square integrable martingale when h € &r. The
last equality is a restatement of (5.1).

REMARK. Lemma 3 is also a consequence of the fact that the following two
processes with values in the configuration space of a Poisson point process are
identically distributed. One process is (X;, 1 < i < N,(t)). The second process is
(X;, i € S(t)), where S(t) is defined in (3.4).

PROOF OF LEMMA 4. Let ay, - - -, a, be arbitrary constants. By linearity,
(5.9) Sy a;Ci(h) = o0 N 2N (S ) ajh)

where ¥, a;h} is a symmetric canonical function whose arguments are the
random variables (X;, U;) with values in the product space

Lebesgue)

S =(Z, %, v) X ([O, T, Borel, T

By Theorem 2 of [3], the right-hand side of (5.9) converges to the random variable

Tk/2 = t: Tk/2 ts
L= Y% B L(Y ™ ajhy) = X o Xi-o B I.(hy)

where

T *T(hy) = T*? f f he(x, -« 20) 10,6 (w1) - -+ Lo0(ue)
Wr(dxy, duy) - - - Wr(dxk, dug)

is a multiple Wiener integral of order k with respect to the Gaussian random
measure Wr(-) on the product space 4. Note that for B € % and C Borel in
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[0, T,
EWH(B x C) = %,EWQ(B x C)

where W(.) is the Gaussian random measure defined in Theorem 1. The change
of variables formula for multiple Wiener integrals given in Section A.3 of the
appendix allows us to conclude that L has the same distribution as

1
YR o Yo 2l I.(hY) = T2 a; Wii(h),
where I.(h%) is described by (2.4).

PROOF OF LEMMA 5. Fix 0 < T'< o and h € ;. Let X(h), 0 < t < T stand
for any of the three processes Y4(h), Zi(h) or Ci(h). Then for ¢ > 0, 6 > 0,
g§E€E At

P{sups—¢j<s| X(h) — X°(h)| > 3¢}
< P{sup|s—cj<s| X'(h — &)| > ¢} + P{sup|s—q<s| X'(8)—X"(8)| > ¢}
+ P{sups—ij<s| X°(h — 8)| > ¢}
< 2P{supo=c<r| X(h — &)| > &} + P{sup|s—s<s| X'(g)—X"(8)| > ¢}

2
< ? E[XT(h - g)]2 + P{sup|s_t|<.s| X'(g)—-X(| > ¢}

where the last inequality is an application of Kolmogorov’s inequality to the
square integrable martingale X‘(h — g). Now E[X"(h — g))*is equal to | h — g | %
when X' is either Z§ or C§ (by (2.3) of [3]) and tends to it, as n — %, when X" is
Y (by Lemma 1). It is therefore sufficient to establish tightness of X‘(h) for
functions h of the form (3.3) which are dense in &7. For such an h

Pfsup|s—¢<s| X{(h)=X°(h)| > ¢}

e |
mlall’

=Xin P{sums_uql X' (h*)—=X°(h*)| >
which proves. Lemma 5.

PrOOF OF LEMMA 1. Let T = 1 be integer and let Yi(h), 0 <t <T, be
Yi(h), 0 < t < T, redefined through linear interpolation. The process’ Y:(h) has
continuous paths and its finite-dimensional distributions converge as n — ® to
those of W'(h). The sequence {Y%(h?), n = 1} is tight in C[0, T']. Furthermore,
Lemma 5 applies to Y(h). The only change in the proof involves replacing the
direct application of Kolmogorov’s inequality by

Pisupo<i<r| Ya(h — g)| > ¢} = Pisupiepon,...,ri| Yalh — 8)| > ¢}

1 N
<3 E|Vih-g)*
€
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Therefore Y%, (h) coriverges weakly to W*(h) in C[0, T'] as n — o. The conclusion
of the lemma follows.
APPENDIX: MULTIPLE WIENER INTEGRALS

A.l. Let (2, 9, v) be an arbitrary measure space. The Wiener integrals are
defined as the Gaussian family {I,(¢), ¢ € L*( Z, %, v)} with moments

EL(¢) =0, EL(®)\(¥) = v(¢¥) = ‘L(b(x)tl/(x)V(dx)-

The subfamily { W(B) = I,(1z), B € %, v(B) < »} is called the Gaussian random
measure on (2, %, v). The random variable I;(¢) is called the Wiener integral
of the function ¢ with respect to the Gaussian random measure W(-), and we
write symbolically

I.(¢) = J;/ ¢(x) W(dx).

A.2. Let &} be the space of symmetric functions h,(xy, - - -3 x) subject to
the condition

v(h3) = f h3(x1, - -, 2)v(dx)) - - v(dxy) < .

The multiple Wiener integral of order & is a linear mapping I(-) from the space
&} into the space of random variables which are functionals of the Gaussian
family I;(¢). This mapping is defined uniquely by the two following conditions.

(a) For functions of the form h? = ¢(x1) - - - ¢(xx),
Ii(¢)
L(h?) = 2y)W/2E] <_1___)
r(hy) = (v(¢%)**Hy (6D
where H, is the Hermite polynomial of degree k with leading coefficient 1.
(b) EI.(h.)? = k'v(h}).
We write symbolically

L(h) = J;r Lvhk(xl, coey x) Widxy) - - W(dxe).

When it is necessary to make explicit the dependence of I, on the measure »
we write I%(h;) instead of I,(h;). Note that h{ satisfies (b), and by polarization,
(b) is equivalent to

EL.(h) I.(g) = E'v(higr)

for h, and g, in &#. Furthermore the random variables I.(h;) and I,(h,) are
orthogonal for k # # because EH,(X)H,(Y) = 0 for any random variables X and
Y which are jointly normal with mean 0.
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A.3. Since », through I,(¢), determines I%(h;) = I.(h:), we obtain immedi-
ately the following formula for change of variables which was used in the proof
of Lemma 4. If

j—: = (r(x))®

then
Li(he(xa, -+, x2))
has the same distribution as
Ii(he(xy, - -+, 26)r(x) - - r(oe)).

A.4. Randomization involves expanding the measure space on which the
Gaussian random measure is defined without modifying the distributions of the
corresponding multiple Wiener integrals.

More precisely, let (2, %, v) and I}, be as before. Introduce a second measure
space (%, %, u) and let I:** be the multiple Wiener integral associated with the
product space (Z X %, BX %, v X u). Then I**(h,) and I(h:) have the same
distribution if '

Ry, wy -5 Xy wp) = Ma(y, -+ -, ) () -+ a(ug)

where v(h%) < o and u(a?) = 1. Indeed, h, is approximated by linear combination
of the form h{ and the random variables I;**(¢a) and I%(¢) are both normal
with mean 0 and variance v X u(¢2a?) = v(¢?).

A5. A functional is a random variable which is measurable with respect to

the g-algebra generated by the Wiener integrals {I,(¢), ¢ € L% Z, %, v)}. Every
functional X satisfying EX? < « has a unique representation of the form

1
X = Yi-o 7l I (he)

where h, € &% and Y5 (1/k!)v(h}) < . Indeed, the expression for the moment
generating function of the Hermite polynomials yields

1
e —-W2(e? — T, ﬁ Ik(h:)
where hY = ¢1(x;) --- ¢(xx). This is a representation for the functional

X? = eh(®-0/2w¢" The representation for an arbitrary functional X satisfying
EX? < o, follows from the fact that the span of the family {X*, ¢ € LY Z, %,
v)} is dense (in the L% sense) in the space of square integrable functionals.

A.6. There are several approaches for constructing multiple Wiener integrals.
Ours is closest to Neveu [11] and it follows that of [3]. In It6 [6], it is assumed
that » is nonatomic. It6’s approach can be used when » is atomic by introducing
randomization (see for example [7], page 35).
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It is also possible to limit the definition of multiple Wiener integrals to &,—
the subspace of &} which contains only canonical functions—by imposing the
condition »(¢) = 0 in (a) of A.2. Then, to integrate non-canonical functions one
can randomize, as we have done in the proof of Theorem 1*.
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