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ASYMPTOTIC NORMALITY AND THE BOOTSTRAP
IN STRATIFIED SAMPLING

By P. J. BIcKEL! AND D. A. FREEDMAN?

University of California, Berkeley

This paper is about the asymptotic distribution of linear combinations of
stratum means in stratified sampling, with and without replacement. Both
the number of strata and their size is arbitrary. Lindeberg conditions are
shown to guarantee asymptotic normality and consistency of variance esti-
mators. The same conditions also guarantee the validity of the bootstrap
approximation for the distribution of the t-statistic. Via a bound on the
Mallows distance, situations will be identified in which the bootstrap approx-
imation works even though the normal approximation fails. Without proper
scaling, the naive bootstrap fails. *

1. Introduction. Consider the problem of estimating a linear combination
v = X%, ¢;u; of the means py, - - -, w, of p numerical populations Xj, - - -, X, with
corresponding distributions F;, - .., F,. For each i = 1, .- -, p there is a sample
X;; from population Z;; the sample elements are indexed by j =1, - - -, n;. Thus,
n; is the size of the sample from the ith population. Two situations will be
discussed:

(a) The populations Z; are assumed arbitrary and the sampling is with replace-
ment: X;; for j = 1, - - -, n; are identically distributed with common distribution
F;; all the X;; are independent.

(b) The populations are assumed finite; 2; has known size N;; sampling is
without replacement and independent in i; in this case, F; is uniform. Enumerate
Xias {x;y, -, xiN,.}-

For simplicity, the populations are supposed univariate.
The natural unbiased estimate of « is

(1) ’;’ = Zf=1 CiXi. .

Here, the dot is the averaging operator.

Let 72 or 7# denote the variance of ¥ under sampling schemes (a) and (b)
respectively. Let 72 or 72 be the customary unbiased variance estimates. Inference
about v can be based either on the normal approximation to the distribution of
(¥ — v)/7 or on bootstrap approximations. This paper will discuss the validity
of these approximations when the total sample size tends to « in any way
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whatsoever, e.g., many small samples or a few large samples or some combination
thereof. More precisely: suppose p, the c;, the populations, the N;, and n; all
depend on an index » such that n(v) = ni(v) + - -+ + np(v) — ®© as y — . This
index will be suppressed in the sequel.

Here are two examples.

(a) The X;; are unbiased measurements of the same quantity u, taken with p
different instruments. So the precision of X;;, viz.,

o} = f (x = p)? dF;(x)
depends on i. If 67 is known to be proportional to r;, then
=37 X./2 >
r.

is the natural estimate of u.

(b) In the classical stratified sampling model a population 2 of size N is
broken up into disjoint strata 23, ---, 2, of sizes Ny, ---, N, respectively;
>2_, Ni = N. From stratum i the sample X;; for j = 1, - .-, n; is taken without
replacement. Enumerate the ith stratum as {xi;, - - -, xiv,}. The population mean
is

1 :
Y= N ?:1 ZJN=11 Xij = 2?:1 Nixi‘/N
andy = ¥?  N;X;./N is the usual estimate of v.
We first take up the normal approximation in case (a). Suppose
(2) fx2dFi<oo and n;=2 for i=1, ---,p.

Then

Ta =Y  cio}/n; where o} = var X

and
72 =3P cisi/n;
where
st = (n = D7 23, (X = X
Let

o(x,e) =x for |x| =e
= (0 otherwise

d(x, ¢) = x — ¢(x, ¢).
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Suppose that for all ¢ > 0,
(3) ’Ti_z 25’:1 ni_lc?E{qSQ(X,-j - M, EN;T, I C,‘l_l)’ — 0.

By the Lindeberg-Feller theorem, (y — v)/7, converges in law to _# (0, 1), the
standard normal distribution.

According to the first main theorem of this paper, conditions (2) and (3) are
also sufficient to guarantee that 72 has the right limiting behavior. However,
before giving a precise statement, it may be helpful to reformulate condition (3).
Let Y;; = (Xi; — wu;)/0:. Define the “variance weight” of the ith stratum by

w? = Cgag/nﬁg = var {¢;X;./7.}.

Clearly,
P owi=1.
Condition (3) can then be written
(4) P E{¢pX(w; Yy, evn)} = 0 forall ¢> 0.

THEOREM 1. If (2) and (4) hold in case (a), then 72/72 — 1 in probability.
The proof is deferred.
COROLLARY. (¥ — v)/7. tends to _# (0, 1) in law.

We consider next the bootstrap approximation in case (a); also see Babu and
Singh (1983). Fori =1, - - -, p, let F; be the empirical distribution of X;; for j =
1, .-, n;. Take samples of size n; with replacement from F;. That is, let { X} be
conditionally independent given 7 the o-field spanned by {X;}; let X} have
common distribution F;forj=1, ..., n;. Let

y* =20 Xt s =(n - DT XN (X5 - XE)?

i=1

782 =3P cis¥?/n, 7i= 3 ci(n — 1)s?/nk.

THEOREM 2. If (2) and (4) hold in case (a), then the conditional distribution
of (Y* — 4)/7. converges weakly to _#(0, 1) in probability, and 7 /7, converges to
1 in probability.

The proof is deferred. The theorem points to a problem in using the bootstrap
to make inferences: the scaling may go wrong. This is because X* has variance
(n; — 1)s?/n?, not s?/n;. To fix ideas, suppose there are many small strata: more
particularly, that n; < & for all i. Now

e <(k—1)/k-72 = (k — 1)/k-72.

The bootstrap distribution of y* — ¥ has asymptotic scale 7,, while ¥ — v has
the scale 7,.
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We take up next the normal approximation in case (b). Suppose
(5) 2<=n=N;,-1.
Then |

2 __ 2—0-_12(Nl_nl)

D
=2 ni N;—1
(] 13

and

2
poyr Sz
=17 N,

To state the regularity condition, let v? be the “variance weight” in case (b):
v} = c?6?(N; — n;)/nit3(N; — 1) = var{c;X;./7s}. Let p; be “the effective sample
size:” pi = n,-(N,- - 1)/(N, - n,-). Let %, = {yu, trty yiN,-} where Yij = (x,~,~ - ui.)/ai
and ¢? = N;! Zj";l (x;; — wi-)% So Y = (X;; — w)/o; are sampled from %;.

The condition is

(8) S, N S 6%y, evVoi) = 0.

This may be compared with condition (4).

If sup,<;<,E | Y;|® is uniformly bounded independent of the hidden index »,
the Lindeberg conditions (4) and (6) are implied respectively by the natural
conditions max;w;/vn; — 0 or max;v;/vVp; — 0. Thus if the standardized popu-
lations have reasonably light tails, asymptotic normality holds if for each stratum
the variance weight contribution is small or the stratum is heavily sampled.

THEOREM 3. If (5) and (6) hold in case (b), then

1) ¥y —=7v)m— #(0,1) inlaw
and

ii) 7b/7s — 1 in probability.
The proof is deferred.

COROLLARY. (¥ — v)/7s— #(0, 1) in law.

Finally, we consider the bootstrap in case (b). If N;/n; = k; an integer for each
i, the natural bootstrap procedure was suggested by Gross (1980): given {X;}, to
create populations Z; consisting of k; copies of each X;; for j =1, .-, n;, then
X% forj=1, ..., n; are generated as a sample without replacement from %,
the samples being independent for different i = 1, . . ., p. In general, if N; = k;n;
+ r; with 0 =< r; < n;, form populations Z;, and 2 ;;, where 2 ;, consists of k&;
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copies of each Xj;, forj =1, ..., n;; while 2}, consists of k; + 1 copies. Let

With probability «;, let (X}, - -, X},) be a sample without replacement of size
n; from Z;; with probabilitx 1 — a; let (X%, -+, X},) be a sample without
replacement of size n; from 2;,. The virtue of this scheme is that both & ;, and
Zi, have the same distribution ¥ and

n—1 N;—n;
V X ;k X," = — L2 : : .
ar( |{ J}) n,,2 S <NL—1>
\
The proof of the following theorem is similar to that of Theorem 2 and is omitted.
Define y* as before, and 732 by substituting X} for X;; in 72.

THEOREM 4. Let 7} be the variance of v* given the data. Then, if (5) and (6)
hold in case (b), the conditional distribution of (v* — ¥4)/7, converges weakly to
A4(0,1) and 7% /7, — 1 in probability.

The same inference problem arises as in the case of Theorem 2. The variance
of ¥* given the data is an inconsistent estimate of the variance of y. We have
side-stepped the issue by computing the scale externally to the bootstrap process.
Other patches could be made: one is to rescale the elements of 2;; another is to
adjust the constants ¢;. These fixes are all a bit ad hoc.

If v stays bounded as » — o, our results extend easily to pivots

8(7) — &(v)

&' (v)7s
where g is nonlinear continuously differentiable. The same issue as before arises
a fortiori for nonlinear functions. Neither the variance of g(v*) given the data
nor its natural approximation [g’(y)]>7# are consistent estimates of the asymp-
totic variance of g(v). A fix which works if Y2_ | ¢;u; | stays bounded is as before
to rescale the elements of 2 or the ¢; before applying the bootstrap. Alternatives
(the jackknife, linearization, BRR) are discussed in Krewski and Rao (1981). For
the case of one stratum, Theorem 4 was derived independently by Chao and Lo
(1983).

The bootstrap can work even when Theorem 4 fails but the circumstances are
artificial. Suppose we have only one stratum and N; — n; = & for all v i.e., all but
k members are sampled. Since ¥ JN:‘I (x1; — w1) = 0, the pivot (¥ — v)/7s is
distributed as the standardized mean of a sample of size k taken without
replacement from the population %4. No matter how large N, is, if k is small and

%1 nonnormal, we would not expect the normal approximation to apply to v. To
be specific let F, be the uniform distribution on %24 and suppose

7 F, converges to F in the Mallows d,-metric,

ie., F, — F weakly and [ x* dF, — [ x*> dF. Then (y — v)/7 is distributed in the
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limit as the standardized mean of & independent variables identically distributed
according to F. On the other hand, since we have sampled nearly the whole
population we expect the bootstrap to work.

THEOREM 5. If (7) holds, the conditional distribution of (y* — v)/7, converges
weakly in probability to the same limit as that of the unconditional distribution of
(¥ = v)/75. Moreover, 7,/1, and 7§/7, both tend to 1 in probability.

We can extend this result somewhat by replacing (7) with a compactness-in-
d; condition on {F,}
lim sup,—-lim sup,Ni* ¥ ¢*(v1y1;, m) = 0.
This condition is evidently weaker than (6) for p = 1. The conclusion now is that
the d,-distance between the conditional distribution of (y* — v)/7¥ and the

unconditional distribution of (¥ — v)/7, tends in probability to 0. A further
extension to an arbitrary number of strata which includes both Theorems 4 and

5 is also possible but not worthwhile.

2. Some lemmas. Recall the truncation operator ¢ from Section 1.

< Xt 16y, e/R)|;  equivalently,

1
‘ ¢(—. Z?=1 Yi, 8)
LEMMA 1. a) k
|62} yi, o) | < kZE | B (i, e/RY) ]
b) Let Yi, Yo, - - - be independent and identically distributed. Then
E{qsz(% LY e>} < R’ E{¢*(Y,, ¢/k)}.

ProoOF. Claim a). As is easily verified,

1 1
(st [ =oltsh )

Without loss of generality, suppose all y; = 0. Let y, be the largest y;. If y), <
¢/k, both sides of the inequality vanish. If v, = ¢/k, the left side is the average
of the y;, or zero; the right side is at least the maximum y,.

Claim b) follows by the Cauchy-Schwarz inequality. 0

LEMMA 2. Let (X4, -+, X?%) and (Xy, - -+, X,,) be distributed respectively as
samples with and without replacement from a finite population. Then

E{¢* (T Xi, o)} = E{¢*(Zi X/, Yee)}.

PROOF. By a theorem of Hoeffding (1963), if g is convex, then
Efg(Y X»} = E{g(¥ XI)}.
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Let
g(x, ¢) = x? for |x|=e¢
=2|x| —e® for Ye<|x|=<e
=0 otherwise.

Then g is convex and
(%, ¢) =< g(x, &) < ¢p*(x, Yhe).
So
E{¢*(E Xi, o)} = E{g(T Xi, o)} < E{g(X X!, o)} = E{¢*(Z X/, Ye)}. O

The next result involves the Mallows metric d,; see Mallows (1972) or Bickel
and Freedman (1981).

LEMMA 3. Let 2 and % be two finite populations of real numbers, of the
same size N. Let F and G be the uniform distributions on 2 and % . Suppose F
and G have the same means. Let X, ---, X, be a sample of size n, drawn at
random without replacement from %; let F(, be the law of X; + .-+ + X,.
Likewise for Yy, - - -, Y, and G,). Then

n(N — n)

2
N1 GF O

dao[Fny, Goy]* =

PrROOF. Enumerate 2 asx;<x<.---<xyand & asy; <y, < --- < yn.
Then

(1/N) i (2 — 32)* = do(F, G)*.

This follows from Bickel and Freedman (1981, Lemmas 8.2 and 8.3). Let Z =
{1, ---, N}. Let Z,, ---, Z, be a sample of size n, drawn at random without
replacement from Z. Set X; = x5, and Y; = ¥z,- Now

n(N — n)

N1 ElXi— Y

[Finy, Goyl* = E{[X%0 (X = YOI} =
_ n(N — n)

2
N1 G, G O

Here is an easy generalization of Lemma 3.

LEMMA 4. Fori=0,1let Z;= {xi, ---, Zwn,} be finite populations and F;
the associated uniform distributions on Z;. Let F,; be the distribution of ¥, /-, X;
when X, - - -, X, is a sample without replacement from ;. Let n < Ny < N,. If
J is a subset of {1, ---, Ny}, let F,; be the uniform distribution on {x,;: j € J}.
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Then,
n(No—n) 1
NO -1 Nl
N,
LEMMA 5. For v = 1 let &, be a finite population of size N,, F, the uniform
distribution on Z,, X, - - -, X»,, a sample without replacement from Z,, F, the

empjrical df of the sample. If for some F, do(F,, F) — 0 as v — » and n, — » then
d3(F,, F) — 0 in probability.

do(Fro, Fr1)® < Y a{da(Fo, F15)% | J| = No}.

ProoOF. If g is continuous and bounded

Efg(x) dF,(x) =fg(x) dFu(x)ﬁfg(x) dF (x),

Var ( f g(x) dﬁ’,,(x)) — 0.

So, .
8 f g(x) dF,(x) — f g(x) dF (x)

in probability. Moreover,

lim sup,E f o(x, M)? dF,(x) = f é(x, M)? dF (x)

by Lemma 8.3c) of Bickel and Freedman (1981). Since we can make
[ ¢(x, M)? dF (x) small for M large we conclude that (8) holds for g(x) = x? also
and the lemma follows. O

3. Proving the theorems in case (a).

PROOF OF THEOREM 1. Recall the variance weights w; from Section 1. As is
easily verified, 72/72 =1+ £ — {, where
(9a) | E=32 win =17 3 (Y5 -1)
(9b) =3P, wiln; — 1) (i YE = 1).

To prove the theorem, it is enough to show that £ and ¢ are both small. But
E=§ + &, where

(10a) & =32 (ni— 17 2% [¢%(wiYy, evn) — E{¢*(w; Yy, evny)l]
(10b) & =32 (n— D7 % [¢*(wiYy, evny) — E{o*(w; Yy, evn)il.
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Now
E(£) = var & = 32 (ni — 1)2 £% var{g*(w; Yy, eVn,)}

< 32, (ni = V2 nE{¢*(w: Yy, eVnu))

< 32 (n — 1)7n2E{@(w; Yy, e Vi)
=& 32 (n— 1)nfwlE{Y})

< 462 3P w? = 462

On the other hand, E{| & |} — 0 for each ¢ > 0, by (4). This disposes of £.
The term ¢ in (9b) can be decomposed according to whether n; > M or
n; < M. Since )

Sifni— 1D wk =M+ 1} <M
and E{n; Y.} = 1, the strata i with n; = M + 1 are negligible. For the i with
n=M, = + ¢ where

(11a) G = i = [ WiV, eVi) = B{@(wiYi, evno)]

(3

n

= [0*wiYe, evin) = E{¢*(wi Y., evin)))

(11b) o= 2

n;

The sums need be extended only over i with 2 < n; = M. Now whatever n; may
be, as for &,

(12) E{{?) < 4¢°
is small. Next,
n;

ni—l

< 4M? Y; E{¢*(w:Yi;, evVni/M)}

E{6*(w; Y., evny)}

E{|&:1} =23
(13)

because 2 < n; < M; see Lemma 1. So ¢, is small too, by condition (4).0

PROOF OF THEOREM 2. The Lindeberg condition is applied, given & It
is enough to check that for every ¢ > 0,
(14) 7at B2, nitcE{¢N(XE — Xi, enital | )| F 1> 0
in probability, where 72 = 32_ c¥(n; — 1)s?/n? is the conditional variance of
v* given Z For then, Theorem 1 can be applied to X}:.

Since n; = 2,

(15) WoTg < Tg < Tq.
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Thus 7, and hence 7, may be substituted in (14) for 7,. So (14) reduces to
Ta R, ein? B0 6 Xy — Xi, enita| |7 — 0

in probability. This in turn reduces to

(16) pynit By ¢lwil Xy — Xi)/ow, eVl — 0

in probability.

Now (X;; — X;.)/o; = Y;; — Y... Use Lemma la) with & = 2 to see that (16)
follows from (17) and (18):

(17) TP onit T M wi Yy, Yae Vn;) = 0 in probability
and .
(18) 2 ¢*w;Yi., Yevn;) — 0 in probability.

Clearly, (17) follows from (4). We bound the expected value of the left side of
(18). Take first those i with n; < M. In view of Lemma 1b), the sum over such i
is bounded above by

M? Y, E{¢*(w;Yy;, Yaen;/M)}

which tends to zero by condition (4). Take next those i with n; > M. The sum
over such i is bounded above by

Zi E{(ini.)Z} = Zi w?n{l < M Z,’ w? =M1

which is small for M large.
That 7¥/7, — 1 follows from Theorem 1.0

REMARKS. (i) The Lindeberg-Feller theorem can be supplemented by direct
bounds generalizing those of Berry-Esseen; see Petrov (1975, Theorem 3, page
111 or Theorem 8, page 118). These bounds may give estimates on the discrepancy
between the bootstrap distribution and the true distribution.

(ii) The difference between the distribution of (¥ — v)/r, and the bootstrap
distribution of (y* — ¥)/7, can be estimated using the Mallows metric as in
equation (2.2) of Bickel and Freedman (1981). The condition needed to push this
through is stronger than (4).

(iii) The results can be extended in an obvious way to vector X;;, and under
further conditions to nonlinear statistics such as Y2, [g:(X;.) —g:(w)]; this
covers ratio estimates.

4. Proving the theorems in case (b)

ProOOF OF THEOREM 3. The Lindeberg-Feller theorem does not apply to give
us i) directly here, since the X;; are dependent for fixed i; however, essentially
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the same ideas can be used. The proof we give is a bit complicated; an alternative
but we believe no simpler approach is given by Dvoretzky (1971). Our argument
is by cases, and the focus is on asymptotic normahty Without loss of generahty,
assume p; = = (0, ¢; = 1. In outline, the argument is as follows.

CASE 1. There is only one stratum, and n < % N; we drop the unnecessary
stratum subscript i. Then p? is of order n, and asymptotic normality follows from
Erdos-Renyi (1959). Also see Rosén (1967), Dvoretzky (1971).

CAsg 2. There is only one stratum, and n > % N. Apply Case 1 to the “co-
sample” consisting of the objects not in the sample.

CASE 3. The number of strata is bounded; no variance weight tends to zero.
Case 1 or Case 2 applies to each stratum individually.

CASE 4. There are many strata, each of small variance weight; in each
stratum, n; < %2 N;. Then v/7, is the sum of p independent u.a.n. summands:
var {X;./7,} = v? being uniformly small by assumption. We must verify the
Lindeberg condition on X;./7;, and do so by an indirect argument. Let X/; be
sampled with replacement from 2. And let

—Zf_ — X7, Xi.
n;

Since n; < %N, the variance weights v? and w? are of the same order, as are the
total variances 72 and 72. In particular, condition (6) implies (4). Thus, the
Lindeberg condition holds for the individual summands in ¥ '/7,, viz., X/ /n;7.,
and asymptotic normality of 7’ follows. By the converse to Lindeberg’s theorem,
his condition holds for the stratum averages (1/n;) ¥, Xi;/7.. Hence, by Lemma
2, the condition holds for the stratum averages taken without replacement, viz.,
(1/n;) ¥ 7%, Xij/7. Now a second application of the direct Lindeberg theorem
gives asymptotic normality of 7.

CASE 5. There are many strata, each of small variance weight; on each
stratum, n; > % N;. Apply Case 4 to the co-samples.

CASE 6. There are many strata, each of small variance weight. Consider two
groups of strata: in the first, n; < % N;; in the second, n; > % N,. Case 4 applies
to the first group, Case 5 to the second. (One of the two groups may be negligible.)

The general case. We combine cases 3 and 6. Let

Jr(v) = {i:vi = 1| Vi(r) = ¥ {v}: i € Ji(v)}

K
where dependence on the hidden index is made explicit. Given any subsequence
of {v} we can extract a subsequence {r,} such that for all &, as r — =, V,(»,) tends
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to a finite limit V. If V,, = 0 for all &, there must be k. — o such that V, (v,) —
0. Hence, as r — oo,

(19) Y{Xi./1p: i € J,(v,)} = 0 in probability.

But, max{v;: i & Jy, (v,)} < 1/k, — 0. So we can apply case 6 to get that
(20) i Xi./re: 0 & Ji,(v,)} is asymptotically N(0, 1).
Combining (19) and (20), we get

(21) ¥ X;./7» is asymptotically N(0, 1), as r — o,

On the other hand, suppose V, > 0 for some k. Since J.(v,) has at most k2
members, we can apply case 3 to see that for all k, as r — o,

YA X /7o L € Ji(v,)} is asymptotically N(0, V,).
By a standard argument, there are k. — o such that
(22) YiXi /rp: L € Ji (v,)} is asymptotically N(O, sup.Vy).
Applying case 6 as above,
(23) IiXi/7p: L € Ji (v,)} 1is asymptotically N(0, 1 — supx Vi).

Combining (22) and (23) we obtain (21) in this case also. Part (i) of the theorem
follows by a standard compactness argument. The proof of (ii) follows the pattern
of that of Theorem 1 and is omitted. [

PrOOF OF THEOREM 5. We simplify the argument by supposing n; divides
N, so we can use the naive bootstrap. (The general argument uses Lemma 4.)
Moreover, without loss of generality let u; = 0, ¢; = 1. Since p = 1 we want to
compare the distribution of the standardized mean of a sample of size n, from
the population %4 and the distribution of the standardized mean of a sample of
size n,; from the population composed of N,/n, copies of the standardized sample:
(X, — 1)/01, 1 =j < n,, where f, is the sample mean and ¢, is sample standard
deviation. So by Lemma 3,

. cx o

d%{y(l;—l>, 3(7 - 7) lXu, 1<js< n} < d}{F,, F,, B(61x + i)}
b b

By Lemma 5, d3(F., F,), i1, and 6, — 1 all tend in probability to 0 as v — . A

truncation argument of the type we have already used shows that 7,/7, and

7%/75 both tend in probability to 1. The theorem follows. O
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