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MONOTONICITY IN SELECTION PROBLEMS:
A UNIFIED APPROACH

BY ROGER L. BERGER' AND FRANK PROSCHAN?
North Carolina State University and Florida State University

Let X = (Xi, ---, X.) have a density g(x, \) which is decreasing in
transposition, where A = ()1, - - - , A\»). Suppose one wishes to select a subset
of {1, - -, n} containing the subscripts associated with the largest values of

the \’s. Let S be a permutation invariant selection rule which is more likely
to select a subset associated with the largest values of the X/’s. Let A = {i(1),
ik} C{l,---,n}and B={j(1), ---,j(R)} C {1, ---, n} be such that
Ao = AN, § = 1, --+, k. The following five inequalities are proved for
nonrandomized selection rules. (| D| denotes the number of elements in D.
D¢ denotes the complement of D.) P\(|S N A| = (>)m) = P(|S N B| =
(>)m) for every m € R, P\(|S N A°| = (<)m) = P\(|S N B| = (<)m) for
every m € R, and Pi\(S = A) = P\(S = B). Inequalities for randomized
selection rules are also obtained. These generalized monotonicity properties
are derived using a unified approach. The results apply to selection rules
proposed under several formulations of the selection problem.

1. Introduction. In this paper we study some monotonicity properties of
ranking and selection rules. Let X = (X, - - - , X,.) be a random observation with
density g(x; \), where the unknown parameter vector A = (A, - -+, \,) EACR"
The general goal of a selection problem is to decide which coordinates of A are
the largest or which are larger than a value A\ (possibly unknown). This is
accomplished by selecting S C {1, - --, n}, a random set depending on X, and
asserting that the largest parameters are in {\;: i € S}. The subset S may be of
fixed or random size depending on the formulation of the selection problem under
consideration. See, for example, Bechhofer (1954), Gupta and Sobel (1958),
Lehmann (1961), Gupta (1965) and Tong (1969) for five formulations.

Gupta (1965) calls a selection rule monotone if \; = \; implies Py(i € S) =
P,(j € S). This monotonicity property is a desirable property for a selection rule,
given the goal of selecting a subset consisting of the large values of \;. Many
authors (for example, Santner, 1975), have shown that their heuristically pro-
posed selection rules are monotone. In this paper we generalize the above notion
of monotonicity and present some other notions of monotonicity. Then we show
in a unified way that for many selection problems a large class of selection rules
possess these monotonicity properties.

The monotonicity properties we consider are the following. Let A = {ay, - - -,
ax} and B = {by, - - -, by} denote two subsets of {1, ---, n} with [A| =|B| =k.
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Subset A is better than B if, for some arrangements a;), - - - , @i and byqy, - - ,
bjw of the elements of A and B, \,, = Ny, for every r = 1, - .., k. If A is better
than B, then each of the following inequalities would be desirable for a selection
rule:

(1.1) PA(][ANS|=m)=P(|BNS|=m) for every m € R%;

[in words, P\(at.least m elements of A are selected) = P\(at least m elements of
B are selected).]

(1.2) 1 P,(A=S8)=PB=2-S)
(1.3) PxA°NS|=m)=P(|B°NS|=<=m) forevery m€E R

Some special cases may be of particular interest. By setting m = k in (1.1) we
obtain P\(A C S) = Py(B C S). Furthermore, if & = 1, we obtain the classical
monotonicity property of Gupta (1965). By setting m = 0 in (1.3) we obtain
P\(ADS)=P\(BDS).

In Section 2 we present the notation we will use and the assumptions concern-
ing g(x; N\) and S we will make. The main results, which imply inequalities (1.1)-
(1.3) for nonrandomized selection rules, are proved in Section 3. The extension
of these results to include additional parameters and rules based on statistics in
addition to X is also discussed. Dual results for selection rules designed to select
the smallest rather than the largest values of the parameter are straightforward
to obtain and are not stated.

2. Notation and assumptions. Let & be the group of all permutations of
{1, ---, n}. Let # = (my, - - -, 7,) denote a member of #. Forx ER", letx° =
= (Xr,, * -+ , Xr,). Transpositions and decreasing in transposition (DT) functions
on R?" play a central role in our exposition. See Hollander, Proschan, and
Sethuraman (1977) (HPS(1977)) for the definition of these concepts. The DT
property is called arrangement increasing by Marshall and Olkin (1979) and
Property M by Eaton (1967). DT functions are examples of Eaton’s (1982)
decreasing reflection functions.

We assume that the observation vector X = (X;, ..., X,) has a density
&(x; \) with respect to a measure ¢(x), where ¢ satisfies [4 do(x) = [4 do(x ° )
for each # € & and Borel set A C R". We assume that g is DT. HPS(1977) list
several discrete and continuous DT densities. Eaton (1967), Hsu (1977), and
Gupta and Miescke (1982) have investigated selection problems involving a DT
density. They compared the operating characteristics or risk functions of different
selection rules, whereas, inequalities (1.1)-(1.3) compare different operating
characteristics of a single selection rule at a time.

Let & be the set of all subsets of {1, ---, n}. A selection rule is a function
8(s; x): & X R" — [0, 1] satisfying i) Y -0(s; x) = 1 for every x € R" and ii)
0(s; -) is measurable for every s € . When X = x is observed, an element of
& is chosen according to the probability distribution on & defined by 4(-; x).
This selected subset, which depends on X and 4, is what we have called S. The
individual selection probabilities, Y;(x), ---, ¥n(X), are defined by ¢;(x) =
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Yse . 6(s; X) where & = {s € &: i € s}. Y;(x) is the probability i € S when X =
x is observed. If P\(¢,(X) € {0,1}) = 1 foreveryi € {1, ---,n} and A € A, then
6(-; x) is a point mass with probability one and é is called a nonrandomized
selection rule.

We consider selection rules 4 (s; x) which satisfy (2.1) and (2.3) for every i and
jEfl,---,n},xER" and v € #:

(2.1) x = x; implies ¢;(x) = yi(x),
(2.2) ¥r(X) = Yi(x ° ).

Rules satisfying (2.1) have been called “natural” in some of the selection literature
(for example, Eaton, 1967). Gupta and Miescke (1982) have shown that for
problems involving exponential families, selection rules satisfying (2.1) form an
essentially complete class among all rules satisfying (2.2) for many loss functions.
The permutation invariance assumption (2.2) is standard and reasonable in light
of the permutation invariance of the density g and measure o.

Lemmas 2.1 and 2.2 will be used to prove the monotonicity results in Sec-
tion 3.

LEMMA 2.1. If A is better than B with k = | A| = | B|, then there exist vectors
A* and N** such that a) {N\: i € A} = {Af_pi1, -+, AE}L D) (N1 € B} = (N,
--+, A¥*1 and ¢) \** is a transposition of \*.

ProOOF. We will define A* and A** and then show they have the required
characteristics. Let A\' be the elements of {\;: i € A° N B¢} in an arbitrary but
fixed order. Let \* be the elements of {)\;: i € A° N B¢} arranged in nondecreasing
order. Let \* be defined like A\? but using A N B°. Let A\* be defined like \' but
using A N B. The two vectors are \* = (A}, A%, A3, A\*) and A\** = (A}, A%, A%, \Y).

Clearly, a) and b) are true by the definition of A\* and \**. Let r = | A° N B]|.
Note that r = | A N B¢|. To show that A** is a transposition of A\*, it suffices to
show that A\ ., = N_p—i, i =1, ..., r; for, if this is true then A\** can be
obtained from A\* by the sequence of r simple transpositions which switch A}_..;
and )\:—k—r-f-i’ l = 13 e, T

To verify that \}_svi = Npriiy =1, --- ,r,fixi. Lett=|ANBN{j: \ =
A _p—r+i}|. At least t + r — i + 1 elements of B are greater than or equal to
A} _i—r+: because the coordinates of A*> are in nondecreasing order. Since A is
better than B, corresponding to each of these there must be an element in A
which is greater than or equal to A}_,_.,;. The definition of ¢ implies | A N B N
{j: Ny = N_r—r+i}| = r — i + 1. Since the elements of A\* are in nondecreasing
order, Ni_p+j = N _p—rsi, =1, - -+, r. In particular N}_p.; = Af_s—,+;, as was to be
shown. [0

Let I°(-) denote the indicator function of the set D. Let v’ be the transpose
of the row vector v. And let ¥(x) = (Y1(X), - - - , ¥n(X)).

LEMMA 2.2. Assume the density of g(x; A) is DT and the selection rule 6
satisfies (2.1) and (2.2). Fix m € R!. Then the function K(v, \) defined on R™ X
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A by K(v,\) = E\I™®(W(X)v’) is DT. The result is also true if [m, «) is replaced
by (m, o).

ProoOF. That H(v, x) = ¥(x)v’ is DT is easily verified using (2.1) and (2.2).
That H*(v, x) = I"™®(y(x)v’) is DT follows from 5., page 724 of HPS(1977).
The Composition Theorem 3.3 of HPS (1977) yields that K(v, \) is DT. The
proof for (m, o) is similar. ]

3. Monotonicity properties. In this section we prove the monotonicity
properties (1.1)-(1.3) for nonrandomized selection rules. Properties (1.1) and
(1.3) are immediate consequences of the following general theorem regarding
(possibly randomized) selection rules.

THEOREM 3.1. Assume the density g(x; N) is DT and the selection rule &
satisfies (2.1) and (2.2). Forany D C {1, --- , n} let vp = (I°(1), - - - , I?(n)). Let
AcCi{l, ---,n},BC{l, ---, n}, and m € R". If A is better than B then
Py (X)vi > m) = PA\Y(X)vs > m). The result is also true if > is replaced by =.

PrOOF. Let n* (v**) denote the permutation such that A o #*(\ o #*¥) =
A*(A\**) where A*(A\**) is defined in Lemma 2.1. Then v, o #* = vg o 7¢** =
©, ---,0,1, --., 1), a vector of n — k zeros followed by k ones. Since \** is a
transposition of A* (Lemma 2.1) and K(v, \) is DT (Lemma 2.2), we obtain

PAW(X)V4 = m) = K(va, \) = K(va o 7% N o 7*) = K(vp © 7**, \ o %)
= K(vg o o**, A o 7**) = K(vg, N) = PA(¥(X)vs = m).
The > result follows from the (m, «) part of Lemma 2.2. 0
The function ¥(x)vp is the conditional expected value of | S N D| given X =
x. The conclusion of Theorem 3.1 can be restated as E\(|S N A| | X) is
stochastically larger then E,(S N B| | X) if A is better than B. This implies other

inequalities such as Ex(SN A |) = E\(| SN B]). If é is a nonrandomized selection
rule these and related results are more simply stated as follows.

THEOREM 3.2. Under the assumptions of Theorem 3.1, if 6 is a nonrandomized
subset selection rule then all the following are true:

3.1) P{(ISNA|>m)=Py(SNB|>m)
(3.2) P(ISNA|=m)=P(|SNB|=m)
3.3) PA(|SNA°| =m)=Py(|SNB| <m)
(3.4) PSS N Al <m) = Py(|SNB|<m)
3.5) P\(S = A) = P\(S = B).

PrOOF. If § is nonrandomized, ¥(X)vp = | S N D|. Thus (3.1) and (3.2) are
just the inequalities from Theorem 3.1. If A is better than B, it is easily verified
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that B¢ is better than A¢. Thus (3.3) and (3.4) follow from (3.1) and (3.2)
respectively.

To prove (3.5), consider the function H**(v, x) = I"™%y(x)(1 — v)’) where
1 is a vector of n ones. Arguing as in Lemma 2.2, H** can be shown to be DT.
By Theorem 3.3 and the Composition Theorem of HPS(1977) the E\H**(v,
X)H*(v, X) is also DT (H* is from the proof of Lemma 2.2). But for a
nonrandomized selection rule with m = | D | in H*, E,H**(vp, X)H*(vp, X) =
P,\(S = D). So arguing as in the proof of Theorem 3.1, (3.5) is obtained. O

In many problems the model depends not only on A but also on another
parameter v and the selection rule depends not only on X but also on another
statistic Y. If the probability model and assumptions are extended as in Eaton
(1967, Section 3), the results of this paper, in particular (3.1)-(3.5), continue to
hold. For example, in the comparison of n treatments with a standard, Gupta
and Sobel’s (1958) proposed selection rule will satisfy (3.1)-(3.5) if the same
number of observations are taken on each treatment. For this application, one
would set » = (Ao, ¢?), the control mean and common variance, and Y =
(Xo, S?), the estimate of ».
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