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TESTING FOR HOMOGENEITY OF NOISY SIGNALS
EVOKED BY REPEATED STIMULI"

By JoacHIM MoOcKS,2 PHAM DINH TUAN? AND THEO GASSER?
2Zentralinstitut fur Seelische Gesundheit and *IMAG

Two statistics are proposed for testing the homogeneity of signals, when
these are noisy and repeatedly recorded. The distribution of the statistics is
well approximated by the x2 and the normal distribution, respectively, as
shown by theoretical and simulation results. Power and insensitivity to other
types of variation are discussed. The approach is developed in the context of
analysing recordings of electric brain potentials being evoked by some stim-
ulation, as traditionally investigated in neurophysiology and psychophysiol-
ogy. In particular, applications to visual potentials evoked by light flashes of
a group of 41 children are given.

1. Introduction and outline. In this paper, we propose two test statistics
for detecting inhomogeneity of signals which are noisy and repeatedly recorded.
This approach was developed in the context of analysing electroencephalographic
(EEG) recordings. Nevertheless, the methods are rather general and may as well
apply to other fields.

The measurements of so-called event-related potentials (ERP) has become
common in neurophysiology and psychophysiology (cf. Callaway et al., 1978,
Thomson and Patterson, 1973). These are electric potentials of the brain evoked
as a response to external stimuli, e.g. flash lights or sounds. As long as human
beings are investigated, the data is usually recorded by electrodes placed (with
respect to some reference—see Section 6) at various topographical locations of
the scalp. (We will, however, consider only one derivation.) The ERP is low in
amplitude compared to the spontaneous, not event-related activity of the brain,
which is the main contribution to the noise. Therefore, the stimulation is repeated
and further signal extraction methods are applied. The recorded data can be
written as

xi(t)7 i=17"'yn1 t=19"'1T

where i is the index of stimulus repetition and ¢ is the index of post-stimulus
time, sampled at some interval At. Following EEG-jargon, we will refer to x; as
the ith sweep.

The most common and simplest signal extraction method, i.e. ERP-estimation
procedure, consists of averaging all the sweeps over stimulus repetitions

(1) x(t) = (1/n) Xk x:(?).

Received September 1982; revised August 1983.

! This work has been performed as part of the research program of the Sonderforschungsbereich
116 (project M2) and the Sonderforschungsbereich 123 (project B1), both at the University of
Heidelberg, and was made possible by financial support from the Deutsche Forschungsgemeinschaft.

AMS 1980 subject classifications. Primary 62G10, 92A27; secondary 62M10.

Key words and phrases. Tests, evoked potentials, signal analysis.

193

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&
The Annals of Statistics. RIK@J:Y

%5

o 2

®

WWw.jstor.org
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This provides an unbiased estimate of the brain response as long as the single
responses are identical (assuming also noise with zero mean). The underlying
model can be written as

(2) x:(t) = s(t) + e(t)

where s(t) denotes the fixed deterministic brain response, i.e. the signal, and e;(t)
represents the background noise not related to the stimulus. The noise &;(t),
(t=1, --., T) is viewed as a realization of a zero mean stationary ergodic
Gaussian process (see Glaser and Ruchkin, 1976, Gasser et al., 1982). A further
assumption is the independence of the noise across stimuli (its validity depends
on the choice of interstimulus intervals).

There is, however, general agreement in ERP research that the invariance of
the signal in (2) is an oversimplification and that responses may vary from one
stimulus to the other. This hypothesis is substantiated e.g. by the fact that
average evoked potentials change intraindividually, if the psychological state of
the subjects is systematically altered from one experiment to the other (cf.
Garcia-Austt et al.,, 1964, Callaway, 1975). The amplitudes are affected by
attention and alertness of the subjects (we are focusing here on cortical potentials,
whereas so-called brain-stem potentials may have different properties). Further-
more, potentials recorded directly at the cortex are known to vary from one
stimulus to the other (see for example John, 1973, for results with cats, where
subdural derivations lead to a better signal-to-noise ratio).

Model (2), therefore, assumes that the psychological state of the subject should
be roughly constant during the stimulation session. This might be true for one
subject, but grossly wrong for another, and may differ between groups, in
particular in control design studies, where the experimental group has some
psychiatric or behavioral disorder. Such background variables are difficult to
control or to quantify, and these problems are, therefore, crucial for ERP
measurement. Since there are no valid models for describing response variation,
it is no longer clear what we should estimate. Simply replacing the expression
“ERP” by “average ERP”, as is usually done, seems to us no escape from the
difficulties. If serious response variation due to psychological variation is present,
the interpretation of x in physiological terms will be difficult. (Of course, this
does not imply that looking for the average ERP is useless). On the other hand,
quantification of response variability provides additional, perhaps important,
information about the experiment. Callaway (1975) and John et al. (1978) give
careful discussion of the problems arising from response variation. Approaches
to the estimation problem are given in John et al. (1978) and Gasser et al. (1983).

In the present paper, we propose two statistics for testing for violations of
model (2) with respect to the presence of response variation. Roughly speaking,
the first test is sensitive to variations of the signal amplitude while the second
one is likely to detect every kind of variation for which there are on the average
“small” variations from one stimulation to the next, and “large” changes over
the entire experiment.

The assumptions in (2) concerning the noise are doubtful as well. While the
assumption of Gaussianity at least univariately seems to be fairly well fulfilled
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(Gasser et al., 1982), stationarity within the sweeps and across repetitions appears
shaky. The likely occurrence of inhomogeneity of the noise across the sweeps
sets a higher demand on a test, since it should be sensitive to variations in the
responses but not in noise. The tests proposed fulfill this requirement in some
sense as dicussed below.

The statistics are described in Section 2 and their approximate distributions
are derived in Section 3, with proofs being relegated to the appendix. In Section
4, some simulation results, supporting the validity of the approximate distribu-
tion, are given. They are followed by some power and robustness considerations.
Applications based on real data are given in Section 6 including some details
about data recording.

2. Models and test statistics. The data recorded consists of n independent
time series x;(t) assumed to obey to the model

(3) xi(t) =si(t) +&t), i=1,--,n

where s;(t) is the (deterministic) signal and ¢;(t) an additive Gaussian noise. To
simplify the analysis, we shall assume for the moment that the ¢; have the same
power II(¢) (i.e. variance—the term power is used because we look at the series
mostly along the time axis). We are interested in testing the hypothesis that s;(t)
= s(t) for all i (“standard model”). If nothing else is specified, there is a large
class of possible alernatives, and we could not expect a test to be powerful for all
of them. Thus, two alternative models are introduced for which the tests should
be sensitive:

H,: The amplitude variation model: s;(t) = a;s(t), the a; being unknown
constants.

Hpg: The slowly changing signal model: s;(t) is close to s;+1(t) and is quite
different from s;(¢t) for | j — i| large.

Alternative H, is not far-fetched when comparing the results about amplitude
variations of the average ERP reported in the introduction. Alternative Hp is
interesting in the light of the well known effect of subjects becoming habituated
to the stimuli in the course of the experiment.

To construct a test for alternative H,, we observe that

E cro(x;, s) = a; - P(s)
where '
cro(x;, 8) = (1/T) Y1 xi(t) - s(¢)

is the cross-product of x; and s and P(s) = cro(s, s) the power of s. This suggests
considering the sample variance of cro(x;, s), which tends to be large if the a; are
widely dispersed and small if they are equal. However, s is unknown, so one
might try to replace it by the estimate x given by (1). But then cro(x;, %) is a
biased estimate of a;GP(s), @ = Za;/n, the bias being Il(¢;)/n where Il(e;) is the
noise power of the ith sweep. This causes no harm if the noise power is invariant
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as assumed in the standard model. However, noise inhomogeneity may well be
present and we would like our test to be insensitive to this type of departure.
Therefore, we use the one-leave-out technique, that is, instead of %, we use

=n-17" Ty
E cro(x;, &) = a; - ;P(s), @& =(n—1)7" Yu a;.

The expectation of the cross-products is then approximately proportional to a;
(if a; is treated as a constant). Let ¢; = cro(x;, %;) and let v(c;) denote the sample
variance of the ¢;, i.e.

(4) o) =(n—17" 3 (6 — 0% ¢=(1/n) ki ¢

Then we would reject the standard model if v(c;) were much larger than its
expected value.

THEOREM 1. Assume the standard model and white noise. Then

e = (=) 2

When replacing the unknown quantities II(e) and P(s) in the above theorem by
the following unbiased estimates

6) M) =m-1D"3T Pl — % =(n—-17" 3 [Px) — nP())]
(6) P(s) = P(%) — (1/n) Ii(e),

we obtain an estimate of Ev(c;)

1 . n—2\\n—2 4 1 N
== + .
o= b0 (322 o 20
Intuitively, 0 should have about the same expected value as v(c;) under the
standard model. Under the alternative H, the expected value of v(c;) should be

larger than that of i (compare Section 5, Theorem 1’). Thus, we introduce the
statistic:

1 1 H(e)] .

A = v(¢)/D

and reject the hypothesis if A is too large The distributional properties of A will
be studied in Section 3.

Turning to the construction of a test for alternative Hp, let us consider the
successive differences x; — x;+1, i =1, - - -, n — 1. Under the standard model, the
power of the above difference can be used to estimate the noise power since the
signals cancel out. Estimators for the noise power based on the differences have
in fact been proposed (see Callaway, 1975). The P(x; — xi11) can still provide a
good estimate of the noise power even under alternative Hp, since the signal
changes slowly. More precisely

EP(x; — xi41) = 2I1(e) + P(s; — sis1)
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where the last term should be small by assumption. Therefore, the statistic

. 1

I(e) = 2= 2 P(xi — xier)
estimates I(¢) under alternative Hg with only a small positive bias. The standard
estimate II(e) given by (5) will have a high positive bias since EP(x; — x) =
II(e; — ¢) + P(s; — $) and since s; would be quite different from $. Thus, we
introduce the test statistic

(8) B = I1(e)/11(e)

and reject the standard model if B is too large. (As to distributional properties
compare Section 3).

Note that white noise was assumed in Theorem 1 for the derivation of statistic
A, in contrast to B. However, this assumption will be needed for the derivation
of the approximate distribution for both statistics. Since the noise in ERP data
is definitely not white, further considerations are needed, to be supplied in
Section 6.

3. Distributional properties of the test statistics. To obtain an approx-
imate distribution for statistic A, we first show

LEMMA 1. Under the standard model assuming white noise, v(c;) is distributed
like v(U; — P;/(n — 1)) where U; = (n — 2)(n — 1) cro(u;, x), P: = P(u; — 1), the
ui(t), t =1, ..., T being independent Gaussian white noise, independent of x(t),
with variance I1(e). Consequently, the P; are uncorrelated with U; and have variance
2T (n — 1)*n%I1(¢)? and covariance cov(P;, P;) = 2T 'n%I1(e)>

From the above results we see that the conditional distribution of the U; —
P;/(n — 1) given x is close to a Gaussian distribution if n is large since the U; are
Gaussian and independent of x, or if T is large, because of the central limit
theorem. Thus if we treat the above distribution as Gaussian, it can be seen from
Lemma 1 that v(c;) is distributed like

1 (n -2y _ 2 1,
[’7‘, <n = 1) H(e){P(x) pYm— H(S)H 1 Xn

where x2_, denotes a x? variate with n — 1 degrees of freedom independent of x.
Since I1(¢)/II(e) — 1 as n - T — , the above bracket [ ] is quite close to #, and
hence (n — 1)A is approximately distributed like x2_;.

The above argument is only a heuristic one. However, for T'— o and n fixed,
one can prove the result rigorously as follows: Without loss of generality, one
can assume a constant signal by using the argument given at the beginning of
Section 4. The U; — P;/(n — 1) are then the time average of i.i.d. random variables

n—2 L) = a@®F

— - () - ) -

t=1’ ey T.

Thus by the central limit theorem and Lemma 1, as T — « and n fixed,
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s/’.l_"[U, — P;/(n — 1) + Il(¢)/n], i = 1, - - -, n converges in distribution to jointly
normal variates G, - - -, G, with zero mean and
-2\’ 2
var(G,) = (n ) II(e) - EP(x) + —; I(e)?
n—1 n
cov(G; G)——2—H()2 [ # ]
i M) = nQ(n _ 1)2 €), J-

It can be verified that the G, are distributed like Z, — ¥ Z;/n, where the Z, are
1.1.d. normal variates with variance

2
var(G;) — cov(G,, G)) = n-2 II(e)| EP(x) + _2
n—1 n(n — 2)
On the other hand, the above right hand side is the limit in probability of 70 as
T — . Thus, we have proved

H(e)] .

THEOREM 2. Under the standard model and assuming white noise, (n — 1)A
converges in distribution to a x* variate with n — 1 degrees of freedom as T — o
and for n fixed.

Turning to statistic B, we can write it in the form:

L e =T D
THEOREM 3. Under the standard model
1 2 1 1
D= 1 — =) 3 cro(e;, e41) + = Ple;) + = Ple,)
n—1 n 2 2

- % Yy Ple) — 1 >y crole, e,):l

n |ji—j>1

and has zero mean, and (assuming white noise) variance (n — 2)(n — 1) 72T 1 (¢)2.

By the above theorem, D is the sum of a large number of random variables
where each is independent of most of the other. For example cro(e;, e.;) is
independent of cro(e,, e;) if j & {i, i + 1} and k & {i, i + 1}. Therefore, the central
limit theorem is expected to hold, implying that (n — 1)vT/(n — 2) - D/ﬁ(c) 1s
approximately distributed as a standard normal variate.

THEOREM 4. Under the standard model (n — 1)vT/(n—2) - (B — 1)

converges in distribution to a standard normal variance as nT — o,

4. Simulation study of the distribution of the test statistics under the
standard model. The above x? and normal approximations for the distribution
of statistics A and B are obtained under the assumption that n, T or both are
large. In practice, the values of n and T are limited by experimental constraints
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and it is worthwhile to get an idea of how good the approximation is for moderate
values of n and T, especially for those which appear typically in ERP data. This
is the purpose of our simulation study. Notice that the distribution of the
cro(x;, x,) is that of the elements of a noncentral Wishart matrix with the
noncentrality parameter depending only on P(s) (cf. Arnold, 1981). Therefore,
the joint distribution of v(c;) and & depends only on P(s) and II(¢) and since the
statistic A is scale free, its distribution depends only on the signal-to-noise ratio
P(s)/I(e). Thus, in our simulation study, we take as s a constant signal. Normal
pseudo random numbers were generated from uniform ones by the polar method,;
the latter themselves were generated by a two-seed congruential scheme following
Marsaglia (1972) and McLaren and Marsaglia (1975). Each row of Table 1 was
obtained independently from the results of 1000 runs, in each of which n noise
sweeps of length T were generated and statistics A and B were computed. For
statistic A, the signal power was chosen to give two signal-to-noise ratios .05 and
1. To compute the summarizing statistics, we used the SAS-package, together
with the Kolmogorov-Smirnov Test from the IMSL-subroutine package.

The fit to the approximate distribution is good, even in cases of low T and n.
Note that just one of the Kolmogorov-Smirnov test-probabilities has a low value
of 0.025 which, after inspection of the other p-values, might be attributed to
chance.

5. Power considerations and the effect of noise inhomogeneity. To
get an idea about the power of the test, we look at the expected value of v(c;), 0,
II(e), and II(e) under the general model (3). In addition, we will allow the noise
to be inhomogeneous in the sense that its power may vary from one sweep to the
other.

For convenience, the over bar will be used to denote the average over
the sweeps. Also, for any quantity y indexed by the sweep number i, v(y;)
denotes the sample variance of y,, ---, y,, similar to (4). Finally, V; denotes
Y P(si—3)/(n—1) =n - [P(s) — P(3)]/(n — 1), a measure of signal variation.
Starting with test A, we have:

THEOREM 1’. Assume white noise, then

_ 1n—2——|n-2 . 1 —
Ev(c;) = v(cro(s;, $,)) + Tno1 I1(¢) [n 1 P(s) + —t H(e)}
1 n?-4 1 n-2
+ 7, W H(C)V T m U(H(e,')) + r
1 2 [
Ev = T <n > II(e) -Z P(3) + H(e) + n(n 1)2 H(e)]

Ly -4 n=2 lg= 2(n 2)
?Hn(n EETE 7 n(n — 1)3}11(8) * < )P( e Vs]vs

(e

) ) U(H(el)) + re
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where §; is the average of the s;, j # i and ry, ry are terms of order T™' and T~*
given in the appendix.

The terms r;, r, in the above result can be viewed as interaction terms since
they vanish as soon as either the signal or the noise is homogeneous. As to Ev(c;),
the second term is the expected value of v(c;) under the standard model, the first
and the third term describe the effect of signal inhomogeneity and the fourth
that of noise inhomogeneity. Similarly, in the expression for ED, the first term is
the expected value of  under the standard model, the second and the third term
describe the effect of signal and noise inhomogeneity respectively. The above
result shows that: (i) under the standard model, ED is almost equal to Ev(c;), (ii)
for inhomogeneous signals, the main increase in Ev(c;) comes from the term
v(cro(s;, §;)) which is of higher order of magnitude than the increase of ED,
because of the factor 1/T, and (iii) the effect of noise inhomogeneity is quite
small, of the order 1/(n?T) and 1/(nT)? respectively (assuming signal homogene-
ity) as far as Ev(c;) and E0 are concerned. This insensitivity to noise inhomoge-
neity is actually due to the one-leave-out technique. Neglecting terms of order
(nT)™! and the interactlon terms, Ev(c;) roughly amounts to v(cro(s;, ;) +
II(e)P(3)/T and Eb = (H(e) + V,)P(3)/T. Under H, (treating a; = @), the ratio of
the above quantities is approximately [T - V, + II(c)]/ [V, + II(e)], and thus the
power of test A is determined by the ratio of V; = v(a;) - P(s) to the average
noise power. However, the next term accounting for the increase of Ev(c;), i.e.
(n®> — 4)n"'(n — 1)*T'I(e) Vs, is also present in Eb. Thus, the above analysis
only applies if II(¢) - V,/(nT) is negligible with resepct to v(cro(s;, 5;)). This
implies in particular, that the power of test A deteriorates when the average
signal approaches zero. Further note that

[v(cro(s;, §:))] = v(cro(s;, §)) = (n — 1) T, (cro(s; — §, §))*> < V- P(5)

by the Schwarz-inequality, equality holding for H4. This yields the mild condition
that P(3)/II(¢) should be much greater than (nT)™ for test A to be powerful
under H,. For more general alternatives, however, test A might fail even when
V,P(3) is large: an example is “morphological” variation, where s; = s + d; with
d =0 and cro(s, d;) =0

Turning to test B, we have under the general model (3):

Eli(e) = I(e) + V,

Efi(e) = H(e) _(;——ﬁ [(er) + T(en)]

+3 YERE 2 ! P(s; — Siv1)-

These expressions show that the effect of noise inhomogeneity is small, i.e.
[(I1(ey) + II(en))/2 — I(e)]/(n — 1) for Eﬁ(c) ETi(e). To get an idea about the
power, observe that

Vi=[n-(n-11"3Y Psi —s)

i<j
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Indeed the right hand side equals
12n(n — D7 % ¥ P(si—§+ § —5) = 3 P(si — §)/(n — 1).

Therefore, assuming homogeneous noise, Eﬁ(s) — ETi(e) is given by the differ-

ence of half the average power of all s; — s;(i < j) with half the average power of

the s; — si4y. It is clear when the signal is slowly changing that this quantity

would be large and the power of the test is determined by its ratio to the noise

power. As an example, consider s; =sfori=1, ..., mands;=s’ fori=m + 1,
-+, n. Then

ENi(e) ~ Efi(e) = ~ L - [’"(”n_ m) _ %]P(s ~ ).

Unlike test A, test B could still detect signal variability, even if the signals
average zero. However, test B relies on alternative Hp to be powerful and may
not detect other types of signal variation. This differential performance of the
tests is desirable since the joint application to real data might give hints about
modes of response variation (Mocks et al., 1983). Intuitively, the tests are
expected to be sensitive to the signal-to-noise ratio, like any visual judgment on
signal variation would be. To look at this, since there is no unique definition of
the signal-to-noise ratio within the general model, a scale parameter f is intro-
duced for the signals by replacing s; by f - s;. It is easily seen that the ratios used
before for the power considerations increase with f2.

6. Application to brain potentials evoked by light flashes. In this
application, we used the data of a group of n = 41 normal children (age range 7-
15 years), who volunteered as a control group for a study on neurophysiological
aspects of mental retardation. The recordings took place in an electrically
shielded room, with the subjects comfortably seated in a reclining chair with eyes
closed. A photic stimulator placed 2m away from the subjects at the height of
their head, produced n = 64 flashes with random interstimulus intervals (Min =
1063 msec; Max = 2938 msec). For about 2 min brain activity was first recorded
on analog tape (at 8 locations on the scalp relative to linked earlobes; the results
here refer to one derivation at the back of the head, occipital region O,) and then
digitized off-line at a rate of 408.5 Hz (= step of 2.448 msec). Sweeps with 512
points, 256 pre- and 256 poststimulus, entered further analysis. However, 128
points (=313 msec) poststimulus (signal domain) is the span where the main
features of the responses are expected to occur. To give an impression of what
the signals look like, Figure 1 shows three examples of averaged evoked potentials,
slightly smoothed. The tests were applied to response data and real noise data
using EEG data stretches from prestimulus activity of the same subjects.

We have already pointed out that the assumption of white noise is not fulfilled
for ERP data. In order to achieve an approximately flat noise spectrum, one may
apply prewhltemng, i.e. zero-phase digital filtering of the sweeps with gain
f(v) /2 where f(v) is some estimate of the noise spectrum at frequency ». In our
application, f(v) was computed as the average of the periodograms of the residual



HOMOGENEITY OF NOISY SIGNALS 203
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FIG. 1. Average flash-evoked potentials (slightly smoothed) of three children. Electrode in the occipital
region (O,).

sweeps x; — . We should mention here that estimates of the noise spectrum from
nonstimulus EEG data are not valid for this purpose due to the impact of the
stimulus on the background activity. More specifically, the following procedure
was applied: “Long” sweeps with 64 pre- and 192 poststimulus points (to give a
total length of 256 points, the signal domain placed in the middle) were tapered
(cosine) using 32 points on each side of the signal domain, the remaining part
was set zero. The gain of the prewhitening filter was estimated and filtering was
performed by Fast Fourier Transform using these “long” sweeps (i.e. Fourier
transform forward, multiplication with gain function, Fourier transform back-
ward). Further analysis was restricted to 128 poststimulus points. Since the
relevant signal power is concentrated in some band, it is desirable to restrict the
analysis to this band, in order to improve the signal-to-noise ratio. The results
of the previous sections are then still applicable, provided T is replaced by T*,
the number of elementary frequencies falling in the band considered. This is seen
rather straightforwardly by looking at the cross-products in the frequency domain
using the finite Fourier transform. One can verify that crossproducts evaluated
in some band can be viewed as crossproducts of two (real) sequences of length
T* to which all previous assumptions apply. In our application we restricted the
analysis from above by 25 Hz dropping zero frequency as well. This led to T* =
16 elementary frequencies falling in this band.

Table 2 summarizes some elementary statistics, in the first part the results
for response data, in the second those for the real noise application are shown.
The statistics had been transformed to have under the standard model mean 100
and standard deviation 10. The SNR was completed after prewhitening by
P(s)/ T1(e), see equation (5), (6) in Section 2. The striking message of the noise-
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TABLE 2
Application to flash evoked potentials of N = 41 subjects. Elementary statistics of test A, test B, and
signal-to-noise ratio (SNR) after prewhitening. (Skewness and kurtosis according to k-statistics).

Response Data Noise Data

A B SNR A B SNR
Mean 106.41 109.45 504 101.65 100.07 4.107°
Std Dev 14.55 13.96 .456 9.55 10.61 .004
Median 105.45 105.87 .333 100.30 98.55 5.10™
Min 78.89 79.56 .050 79.15 81.72 —.009
Max 145.82 140.74 2.246 122.33 127.12 .006
Skewness 7461 2789 1.820 2299 7550 -.5025
Kurtosis .8153 —.2659 4.192 —.0206 —.0951 —.8107

data results is that the distributional approximations are again rather good under
realistic conditions, even for signal-to-noise ratio zero. We should note here that
in this application serious deviations in the empirical distribution of A were
found when using simply 128 pts poststimulus for all computations, instead of
the “long” sweep procedure described above. These may be attributed to leakage
effects. The response data results demonstrate that response variation is in fact
present in our data. Using the 5% significance level, we get 7 rejections of the
standard model in case of test A and 15 for test B, and there are 3 subjects where
the tests were jointly significant. Further data-analytic results can be found in
Mocks et al. (1983).

APPENDIX
Proofs of Results

We begin by proving Theorem 1’ and Theorem 1, which is a special case of
the former. We first show

LEMMA A. Let I1(¢) be given by (5). Under the general model and white noise
assumption

var P(%) = % [# e + % ) P(§)]
"2 M) + —2

var () = % % [mz + Yim1 H(e,)P(s; — S_)]

n—1

coviP(@), 110} = 7. 2 [% o(lI(e) + —2— S, {11(e) — D@ feros, s‘)].

PROOF. In this proof, we shall often use the fact that moments of third order
between zero mean Gaussian variables vanish. Thus P(x) = P(5) + 2 cro(s, s) +
P(¢) with the two latter terms being uncorrelated. Since P(¢)/I1(s) is a x? variate
with T degrees of freedom, the first result of the lemma follows. To show the
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second result, we observe that I1(c) = [¥ P(x;) — nP(x)]/(n — 1). Hence

var fI(c) =

n _1 1) [T, {var P(x;) — 2n cov(P(x;), P(%))} + n? var P(%)].

We need only to compute cov(P(x;), P(%)) since
var P(x) = (2/T)[I(e;)* + 2I1(e;) - P(s;)]

by a similar argument as above. Write P(x;) in the form P(s;) + 2 cro(e;, s;) +
P(s;) and observe that cro(e;, s;), P(¢) and cro(g, 5), P(e;) are uncorrelated,
respectively, we get

coviP(x;), P(x)} = 4 cov{cro(e, s:), cro(s, §)} + cov{P(e;), P()}.
The first covariance of the above right hand side is
(1/n) covicro(e;, s;), cro(e;, 5)} = (1/T)(1/n)I(e;)cro(s;, §)
and the second covariance is
(1/n*)cov[P(e;), 3k crole;, ex)] = (1/n?)var P(e;) = (1/T)(2/n®)11(e;)>
Therefore
covi{P(x;), P(x)} = (1/T)(2/n)[(1/n) I(e)* + 2 IL(e;)cro(s;, §)).

Summing up, the variance of I1(¢) is seen to be

%‘ (n _2 1) [(n — 2) T(e) + (@) + 2 i I(e){P(s;) — 2 cro(s;, ) + P(3)}]
and the second result of the theorem follows.
Finally

coviP(%), ll(e)} = (n — 1) [TL; cov{P(%), P(x;)} — n var P(¥)]

and we obtain the last result of the lemma after some algebraic arrangement.

PROOF OF THEOREM 1’. It is easily seen that
Ev(c;) = v(Ec;) + (n — 1)7'[Z~, var(c;) — n var(é)].
To compute var(c;), we observe that
¢; = cro(s;, §) + cro(e;, $;) + cro(s;, s;) + cro(e;, &)

and that the last three terms of the above right-hand sides are uncorrelated.
Therefore their variances sum to the variance of c;. Clearly, the variances
of cro(e;, 5;) and of cro(é;, s,) are II(e;)P(s;) and II(¢;)P(s;) respectively. As for
cro(e;, ¢;), we have

E[3: ei(t)&(t))? = 3¢ Eled(t)e(t)]? = TH(e)I1(&;)
which shows that var[cro(e;, £)] = II(e;)I1(¢;)/T. Thus
var ¢; = (1/T)[I(e;)P(5;) + I1(&)P(s;) + (e,)I1(&)].
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Writing §; = § — (s; — §)/(n — 1), II(&;) = (n — 1)*[nIl(e) — I(e:)], we get

Sier var ¢ = 7 St H(e,)[P{s' - s- s‘)} - o PGt - 5)}

2

n _— 1 n — 1., _
+ 7, o1 () P(3) + Tho1 () V, + T Yy (e)I(s)

1)?

%‘[ (2(n +1)12) I(e) P(3) — (_?-—ll_)i ¥ cro(s,, $I(e)

2TV, + 2= T - —
n-—1 n—1 n-—

1 v(H(e,))]-

Note that the last two terms of the above expression come from the relation
S ME)E) = (0 — 17{(nIE) — )]
= (n - D)7nTIE) — b(II(e).

Turning to var ¢, we observe that ¢ = P(x) — fl(e) /n. Hence, from Lemma A

2 cov{P(x), fI(e)} + var{f[(e)}

var ¢ = var P(x) — 5
n n

12 1 — 1 _
= ‘j; ; [n 1 II(e) — Ry v(Il(e;)) + 2I(e) P(3)
4
nn — 1)
L2
n(n — 1)?
Summing up, we obtain the first result of the theorem, with:

1 1 —_—
r = Tn—1 "l—l ) - H(C)]

-2\*2 3 4 3
. [(Z — 1) - cro(s;, §) + m P(s; — s)].

Consider now Ev. We have
- 1(n-2Y 2 1
Ev = T (n — 1> [H(e){P(x) + — e H(e)[]
1(n-2\ . _ 2 o
=T (n — 1) [EII(e)]E[P(x) + oy — H(e)]

+ % (n — 2) [cov{fl(e), P(x)} +

Yo, {II(e;) — I(e)}cro(s;, §)

2 (e P(si — §)].

2 ~
nn = 2) var H(e)].
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The first term of the right-hand side is equal to

1(n-2\V— ) 1
—< - 1) M) + Vsl[P(s) L

— 2
II(e) + ————*——n(n ~ ) Vs]

T \n
_Lln- H(e)[ T P@ + L H(e)]
Tn-
1 n®—4 2(n — 2)

+ T [———-—-——-n(n 1)y ) + ( )P( 5) + —(n 1) VS]Vs
and the second term, by Lemma A, is equal to
2 n—2 —2 n -2\ -2
e [m II(e) + <n — 1) — v(Il(e)) + W () V,

- -2\’ 20n — 2
LS G - “(*’”{(Z - f) 2 orofs, s) = 21— Plsi = S)H

We then deduce the last result of the theorem, with

P = —— S () — TG

n—2\ 2 . 20n-2) B}
. l:(n — 1) ; CI‘O(S,’, S) - n(n—_l‘)—3 P(s,» - S):| .

PROOF OF LEMMA 1. Since x; = x — (x; — £)/(n — 1), we have

¢; = cro(x,, x) — 1 cro(x;, x; — x)

“P T2 ol — % F) — —— P(x — ) + P(D).
n—1 n—1

Note that, under the standard model, the x; — £ = ¢; — ¢ are distributed jointly
independently to x. Therefore, and since P(x) does not depend on i, the distri-
bution of v(c;) is the same as the distribution of

n—

v{n =2 cro(u; — u, x) — 1 P(u; — d)}
1 n—1

where u;(t), t =1, --., T are independent Gaussian white noise, with variance
II(¢). Putting U; = (n — 2)(n — 1) *cro(w;, %), P; = P(u; — 1), we get the first
result of the lemma. Since w;(t) — u(¢t) has variance [(n — 1)/n]ll(e), P; is
distributed as (n — 1)/n times a x? variate with T degrees of freedom and hence
has variance T '(n — 1)°>n"2I1(¢)%. On the other hand EU;P; = 0 since moments
of third order between zero mean Gaussian variables vanish. Finally, cov(P;, P;)
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equals
T2 e covl{u(t) — a(t)?, {u;(t) — wt)’] = — = II(e)2

since the u;(t) — u(t) and w;(t) — @(t) are jointly normal with zero mean and
covariance II(¢)/n.

PRrROOF OF THEOREM 3. We have

1) = 2 B Ple) =~ 3 eroles, o)
and
H(C) ( Z [P(Cl) + P(CHI) -2 CI‘O(C,, €z+1)]
Thus the difference 1(e) — II(e) is
1 (1 1 1,
l— [E Per) + 5 Plen) = = Bl Pled)

2 2
+ <1 - _) z—l CI'O(C,, ez+1) - z—- 21>z+1 CI'O(C,, 8])]
n n

Using the fact that the ¢; are independent zero mean Gaussian white noise, it can
be checked that the terms in the above bracket are uncorrelated. Moreover

var P(e;) = (2/T)(e)?
var cro(e;, &) = (1/T?) 3, var[e(t)e;(t)] = (1/T)I(e)>.

Therefore
1 1
var D T o1y
2 2
'Hl_l) +2n—22+<1_g)(n_1)+_‘_1§(n—1)(n—2):|n(£)2
2 n n n n 2
-1ln-2 2
=T =1y 1@

PROOF OF THEOREM 4. We first. prove that (n — 1)vT/(n —2) - D is
asymptotically normal with mean 0 and variance II(¢)% Since nT — o, if n does
not go to infinity, then T must go to infinity. In this case, from the central limit
theorem, VTP(¢)), VT cro(e;, ¢;) converge jointly in distribution to independent
normal variates with variances 2I1(¢)?, Il(e)* respectively. The asymptotic nor-
mality of D follows. Thus, we need only consider the case n — . Now, from the
proof of Theorem 3

(n—1)D =1 — 2/n) 3% crole;, €41) + 1

where the variance of the residual term r can be bounded by C/T, C being a
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constant. Thus

- DVT Vin - 2)(n -1 T
(nfn_—)2 p=*= ,:(n : \/ 7= 2 cro(e, ei) + o(1)

where 0(1) — 0 in probability as nT — . By the central limit theorem, the first
term of the above right-hand side converges in distribution as nT — o to a
normal variate with zero mean and the first assertion is proved.

Now, it is easily seen that I1(e) converges in probability to II(¢) as nT — oo,
By Theorem 3 the same holds for I1(e), and hence (n — 1)VT/(n — 2) - D/1i(e)
converges in distribution to a standard normal variate. This closes the present
proof.
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