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THE GEOMETRY OF MIXTURE LIKELIHOODS, PART II':
THE EXPONENTIAL FAMILY

BY BRUCE G. LINDSAY

The Pennsylvania State University

Geometric analysis of the mixture likelihood set for univariate exponential
family densities yields results which tie the number and location of support
points for the nonparametric maximum likelihood estimator of the mixing
distribution to sign changes in certain integrated polynomials. One corollary
is a very general uniqueness theorem for the estimator.

1. Introduction. This paper continues from Part I (Lindsay, 1983) with a geometric
approach to the problem of finding the nonparametric maximum likelihood estimator of
a mixing distribution. The basic premise is that {x1, .- -, .} is a random sample from the
mixture density

fa(x) = j fo(x) dQ@),

where f;(-) is a density function for each value of § and @ is an unknown probability
measure on the parameter space of 6. In this paper attention will be directed to properties
in the exponential family of densities.

As described in Part I the process of finding the maximum likelihood estimator Q of the
unknown mixing distribution @ can be conceptually decomposed into three steps. The first
step is to construct the curve I' in K-dimensional Euclidean space consisting of all vec-
tors of the form (f3(y1), - - -, fo(yx)), where @ varies over the parameter space @ and { y1,

.+, yx} are the distinct observations in the random sample {x1, - - -, x,}. From this set we
can form the mixture likelihood set; this is the set of all fitted density vectors (fo(y1),

-+, fo(yk)) allowable under the mixture model. Under compactness of I" this is the convex
hull of the set T', conv(I").

The second step is to find the point f in the mixture likelihood set conv(I') which
maximizes the log product function ¢(p) = = nxlog px, where n; is the number of times yx
appears in the sample. The last step is to identify from the fitted density vector f the
mixing distributions @ which satisfy f= : fo and so are maximum likelihood estimators. In
this part we concentrate upon a geometric understandmg of the last step.

Some propertles of the maximizing measures @ have been identified in Part I. The
points of support in £ of @ must be zeroes and maxima of the gradient function

fo(yr) .
foln 1}’

recall from Theorem 4.1 of Part I that it is necessary and sufficient for @ to be maximal
that this function have supremum zero (0) over . The geometric interpretation of this
statement is that the support points f; in I" of the maximal point f lie in a particular
support hyperplane of the mixture likelihood set. Addressing the statistical question as to
the number of support points in the maximizing mixture is then equivalent to the geometric
question of determining the number of contact points of the curve I' with a support
hyperplane of conv(I’).
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It will be demonstrated in this paper that in the exponential family case there are
polynomial-like functions involving the observations which describe the geometry of the
curve I', and, in particular, provide information as to the number and location of the
supports. One corollary will be that the estimator @ which satisfies fo= fis unique for
most exponential family cases; uniqueness issues are discussed further in Sections 5 and 6.

We first approach the larger geometric questions.

2. The main theorem. A family of densities {f,:6 € ©} will be said to belong to the
exponential class of densities if a typical member can be written in the form

fo(x) = exp(Ox — k(8))

with respect to a sigma-finite measure v. The natural parameter space & is the interval of
R on which

exp(x(9)) = J’ exp(fx) dv(x)

is finite. The function u(f) = «’(6) = E4[X] is strictly increasing and so defines a mean
value reparameterization of the family of densities. Hereafter we asume that the observed
values are ordered: y1 <y, < : - < yg.

In this section we present the main theorem of the paper. It presents certain key
relationships between the number and location of support points to @ and certain
integrated polynomials which describe the differential geometry of the curve I' =
{fs: 0 € Q}. We first define the polynomials

prx)=(x—y)x—y2) -+ (x—3), k=12, ..., K.

THEOREM 2.1. (a, B) C Q. Let w be a nonnegative vector. (a) An upper bound to the
number of sign change zeroes to the vector inner product (w, £f3) for 8 in (a, 8) is K — 1
plus the number of sign change zeroes on (a, B) of the mixture polynomial

M) = E4[px(X)],

provided M(6) is not identically zero.
(b) Moreover, if for some value of k both E,[ px(X)] and Es[pr-1(X)(X — yk)] are of
the same sign on (a, B), then an upper bound is k — 1.

The complete proof of this theorem has been relegated to the appendix.
The idea of the proof is as follows. We wish to bound the number of zeroes of

(2.1) D’(0; @) = Z wrEs(yr — X)exp(fyx — «(8))

over all possible sets of nonnegative coefficients wy. First divide through by E,(y; —
X)exp(fy: — x(Q)) to obtain

K E0(yk - X) _
(2.2) Ek-z‘wkmexp[a(yk y1)] + ws.

In an interval where the divisor is never zero (0), (2.2) has the same zero behavior as (2.1).
Differentiating (2.2) with respect to 6 yields the function

Eo[(yr — X) (31 — X)]
» {Es(n —X)}2

We have eliminated the coefficient w;, and the function (2.1) can have at most one
more zero in an open region where y; — E4(X) # 0 than (2.3) has. This procedure is
repeatable, the steps successively eliminating w’s and introducing higher order polyno-
mials. The chief difficulty in the proof is counting zeroes around the poles introduced by
the divisors.

exp[0(yr — y1)].

(2.3) Sh=2 wi(ye — 1)
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Before proceeding to the geometric interpretation of Theorem 2.1 in Section 4, we
present in the next section some technical properties of the integrated polynomials
Ey[ pr(X)], hereafter called mixture polynomials.

3. Mixture polynomials. The mixture polynomials are true polynomials in the mean
value parameter p for six natural exponential families: the normal, Poisson, gamma,
binomial, negative binomial, and hyperbolic secant (Morris, Theorem 3, 1982). However,
they quite generally behave like polynomials in p. In this section we aggregate some useful
properties of this type. Several other results can be found as lemmas in the appendix.

LEMMA 3.1. Let fy be an exponential class density with respect to measure v. Let
Pr(x) = (x —y1) +++ (x — y&). If pr. is not the zero function almost everywhere with respect
to v, then Eq(pr (X)) satisfies the following on any open interval of :

(a) It has no more than k zeroes counting multiplicities.

(b) If the measure v is discrete with support points % then the mixture polynomial can
have no more zeroes, counting multiplicities, than the nimber of sign changes in the
sequence py(x) as one proceeds in order through the set %.

Proor. See Karlin (1968), pages 230-240, for terminology and theorems used below.

Part(a). The function p, can have no more than % relevant sign changes under any
measure v. Since exp(fx) is a strictly totally positive kernel and since one can interchange
integration and differentiation of all orders in the function

exp(k(6))M(8) = f Dpr(x)exp(fx) dv(x),

this function falls in the domain of Karlin’s Theorem 3.2, page 239.
Part (b). For a discrete measure » the number of relevant sign changes of p; is as given
above. [0

Of particular interest in the ensuing discussion is the mixture quadratic M(4) =
E¢[(X — y1)(X — y2)], which can be reexpressed in the mean value parameter as

3.1) M) = (y1 — ) (y2 — p) + Var, (X).

This function is strictly convex as a function of p (unless identically zero). From (3.1) all
zeroes must occur for g in the range [ y1, y2 ]. Since M(y1) and M( y:) are both nonnegative,
there are two zeroes or no zeroes in this range.

The following lemma describes further quadratic-like behavior which will be used in
Theorem 4.1.

LEMMA 3.2. Suppose y1 <y: < ys <ys. Then
(a) For p. € [y1, ys],

M) = E[X — )X — 312 E[(X — )X — y)] = M ().

(b) If M1(1) has two real roots a: < as, then M,(1) has two real roots b, and bs which
satisfy

y15b15a15a25b25y4

(c) If My(u) has no real roots, then neither does My (u).

Proor. The function
EfJX —y)X—y3) — X —y1)X —y)] = p(y1 + Y4 — Y2 — ¥3) + Y293 — M1y

is linear in p and equals (ys — y1)(y2 — y1) and (ys — ¥3)(ys — y2) at p = y1 and p = y,
respectively; hence it is positive for u in the interval [ yi, y4]. This gives (a). Parts (b) and
(c) follow from the convexity in p of the mixture quadratic and the nonnegativity of M (1)
at p = y; and ys,where Mz(p) = Var, X.
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FiG. 1. Two observations (y., y2) from a normal density with mean 6 and variance 1. T'y: curve for
y = —.5, y2 = .5; I's: curve for y1 = —1, y» = +1; I's: curve for y, = —1.5, y» = +1.5.

4. Geometric interpretation. Our geometric interpretation of Theorem 2.1 starts
with Figure 1, which represents the atomic likelihood curve T for a normal density with
mean 6 and variance 1 for three sets of values of (yi, y2): (.5, .5), (—1, 1) and(—1.5, 1.5).
Theorem 2.1 embodies a simple but important characterization of the obvious and dramatic
change in shape for the two dimensional (K = 2) atomic likelihood curve. Of critical
importance in this exposition are the points indicated by the letter Z in the figure. They
indicate a zero in the curvature of the curve; that is, points where the curve is neither
bending left or right as one traces the curve through increasing values of §. Between these
points the curve bends monotonely left or right. If a simple closed curve f; has no zeroes
in curvature, then the boundary of conv(I") will be I' itself, as in I'; and I'; of Figure 1. If
there are zeroes in curvature, then a concavity or indentation can occur in the region
bounded by T, as in I'; of Figure 1.

We now formally introduce the notion of curvature. In the exponential family the
velocity vector £ is never identically zero. At each point f; on the curve there is a principal
normal vector ng which is orthogonal to f3 and has signed length which is called the
curvature of the curve. For K = 2 this curvature is

(4.1) det(fs, £5)/(fs, £a) 2

The sign of the curvature clearly indicates the relative orientation of (fj, f/'): negative
values correspond to right turns in the curve, positive values to left turns.

If we define

8 (y1) Folyz)  Fo(y) £6(y2)
fo(y1) fo(y2)  fo(y) fo(y2)
then the numerator of the curvature (4.1) is equal to f; ( y1)fs (y2) M (8), so M (0) is equivalent
in sign to the curvature. Moreover, for {f;} in the exponential class we have the equivalent
formulation in the mean value parameter M (u) = E,[(X — ¥1)(X — y2)]. Thus the mixture
quadratic contains the sign information of the curvature, and so provides an index to the
convexity of the curve I'. For values of K greater than 2 we have

Ef[(X —y)(X —y2) -+ (X —yx)] =det[f;, £7, -+« , £5Tfo(3) -+« filyx).

M) =
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Thus zeroes in the highest order mixture polynomial correspond to linear dependence in
the vectors {fj, £, ---, £f§'}; at these points the curve can be embedded locally in a
lower-dimensional space. For K = 3, these zeroes correspond to zeroes in torsion. Intui-
tively, sign changes again correspond to increasing complexity of the surface structure of
conv(I').

From this geometric analysis one can describe the m.l.e. @ for K = 2 in the exponential
family. If M(u) has no zeroes, I' is the boundary of conv(I'), the mixture m.lLe. f must
therefore lie in I', and so Q = §(ii), where fi = x. If M (1) has two zeroes, then it may be the
case that there is a two point solution @, with higher likelihood. This will certainly be true
if M (fi) is negative, as then f; lies in the interior of conv(I'), while the solution f lies in the
boundary. More generally, there can be no support points of @ in regions where M(p) is
negative (between its two zeroes).

ExampLE 4.1. Let f; be the normal density with mean  and variance ¢°. Here
M) = Eo[(X — ) (X — 32)] = 67 — (31 +3) 6 + 332 + 0%,
which has zeroes at

(4.1) (2 =555 V=7 — 4%

provided the discriminant term in the radical is nonnegative. Thus there is a concavity in
the curve if y» — y1 > 20. Putting mass 1 at § = ¥ must be the best one support-point
estimator. One need only check to see if there is a superior two-point mixing distribution.
If there is no concavity, then all two-point mixtures give likelihoods in the interior of
conv(I"), so the one-point estimator must be best. If there is a region of concavity then y
is at its center by (4.1) and so f; must be in the interior of conv(I’). If n; = ng, then x =y,
so that there must exist a superior two point estimator. In this latter case it is also
geometrically clear that f has one of its support points in each of the intervals (y:, z:) and

(22, y2).

ExampLE 4.2 Let {f;} be the Poisson family of densities. In the mean value parame-
terization the mixture quadratic is

M(p) =p®— (1 +y: — D+ 01,

which has roots

(21,22) =7 —% £ %BV(y2 —y1)2 — 2(y1 + y2) + 1

provided the discriminant is nonnegative. To illustrate, suppose y; = 1. Then f; is the
mixture maximum likelihood estimator f whenever yo < 4. If y = 1 and y. = 5, then the
number of support points to f will depend on 7; and n..

ExampPLE 4.3. For the gannna family of densities with fixed shape parameter o the
mixture quadratic has two zeroes when the ratio of the two data points satisfies

yo/y1 =1+ (2/a) + 2(1 + a)?/a,

the critical number for the exponential density (« = 1) being 3 +2V2.
The following extension of Theorem 2.1 enriches the applications of the mixture
quadratic to values of K greater than two.

THEOREM 4.1. (a) There can be no more than one point of support to Q in each
interval where E,[(X — y)(X — yx)] is strictly positive. If the mixture quadratic
E,[(X — y1)(X — yx)] is strictly positive on [ y1, yk] then the mixture m.l.e. must be mass
one at | = X.
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(b) If yr < yr+1 are adjacent data points, the mixture m.Le. can have no support points
between the real zeroes of the mixture quadratric E,[(X — y:)(X — yr+1)].

ProOF. Letw=1f *, where the * operator denotes elementwise inversion, as in Part I.
We can reduce the K-dimensional problem back to two dimensions by considering the
trace A of the curve gy = (g1(0), g2(0)) defined by

£0) =Y wifo(y:), &(0) =X rs1 wifs(3).

This curve will be shown similar in shape to the curves of Figure 1.

Since w defines a support hyperplane of conv(I') with (w, f;) = n,1 = (1, 1)‘ defines a
support hyperplane H of conv(A) with (1, gs) < n. The #-support points of f satisfy gy €
H. The curvature of gy has the same sign as

det(gs, g7) = X1 Tirsr waw L5 (y)fo(3i)— Folydf5 (3)]

(4.2) .

=Y YK her wiwifs (¥)fo (3) Eo[(X — y:) (X — 3)]-
Also
4.3) det(gs, 89) = Yio1 X re wawifo(y)fo (33 — 31> 0,

so that the vectors (gs, g5) always form a right-hand coordinate system and hence, as 8
increases, the point gy always traces to the left as viewed from the origin.

It is now clear geometrically because hyperplane H sits above the trace A that in any
interval of negative curvature there can be no points gy in H; also, in any interval of
positive curvature there is at most one such point. Part (a) of the theorem then follows
from Lemma 3.2 applied to (4.2). Part (b) follows from Lemma 3.2 as all terms in (4.2) are
negative between the roots of E,[(X — y2)(X — yx+1)]. 0

5. Uniqueness. The uniqueness of the maximal mixing distribution Q in the expo-
nential family depends upon whether the observed values { y1, ¥z, -« -, ¥k} saturate the
support of the generating measure v. If they do, then the likelihood curve I lies entirely in
the hyperplane of R¥ where the coordinates sum to 1. The mixture likelihood set has a
nonempty interior within this hyperplane and if the multinomial maximum likelihood
estimator p = (ni1/n, nz/n, -, ng/n) falls within this interior, the mixing distribution
specification Q cannot be unique. This case was discussed for the binomial in Lindsay
(1981) and will be treated further elsewhere. In the unsaturated case, the machinery has
already been produced to verify that the mixture estimator Q is unique.

THEOREM 5.1. Let fy be an exponential class density with respect to measure v. The
maximum likelihood estimator @ of the mixing distribution is unique provided the
function px(x) is not zero almost-everywhere (v) and provided there are no support
Dpoints of f which come from the boundary of .

Proor. Within the interior of the parameter space £ we have at most 2K — 1 zeroes
to the function D’(8; Q) by Lemma 3.1 and Theorem 2.1. Hence there are at most K
maximal zeroes to D (6; @); which proves the theorem by the arguments of Section 8, Part
LO

Consideration of the limit points of {f;} adds a new set of technical difficulties to the
problem. To minimize these, we restrict attention to the regular case of the exponential
family (Barndorff-Nielsen, 1980, page 114); that is, when £ is open. Most familiar densities
fit this description. In this case f3(y) — 0 as 6 approaches either boundary of 2 unless y is
itself a boundary point of the support % of measure v. Thus if no Z-boundary points are
sampled, f; — 0 as 0 approaches its boundaries, and these limit points (0) cannot be
support points of f

Although this essentially disposes of continuous regular exponential families, in the
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discrete case the boundaries of 4 may be sampled with positive probability, as in the
Poisson (x = 0) or the binomial (x = 0 or x = parameter n). Proving uniqueness in such
cases is beyond the scope of the methods developed in this paper, and so will be postponed
until a more detailed treatment of the discrete exponential family mixture can be given.

6. Further problems. It is clear that for reasons of economy of interpretation and
computation, it is often desirable to obtain an estimated mixing distribution @,, with fixed
support size m. This raises several issues related to the earlier sections.

First, is there an identifiability problem? That is, is there possibly another mixture @
with support size less than or equal to m such that fo = fo? The answer is no for mixtures
of sufficiently low support size.

LEMMA 6.1. Let f; be an exponential class density, with observation set {yi, ¥,
-, ¥x}. Then every element f of conv(I") which has a representation f = fg, where @ has
no more than K/2 points of support, has a unique such representation.

Proor. Iff=fy =f, , where @ and @; are of support size < K/2, then f= £, +1-nq,
for 7 € [0, 1]. The measure 7Q; + (1 — 7) @, has no more than K points of support, say 6,
62, - -+, 6, so by the linear independence of {fy, - - - , f5 }, there is a unique set of weights
7 such that 3m;f; = f. Hence @1 = Q.

A second point in regard to m-point mixtures is that since the support points of any
local maximum @,, are all double zeroes of D (8; @) (Part I, Theorem 7.1) the results of
Theorem 2.1 also apply to bounding support sizes of @..

APPENDIX 1
PRrOOF OF THEOREM 2.1. Given the ordered values (yi, -+, yk) let
pm(x) = (x—yl) e (x—ym)’ m=12...,K

For a measurable function g define the integral operator
LlgX)] = I,(g) = J &(x) exp(fx) dv (x).

Notice that Es[ g(X)] = I1(g)/I5(1).
Define the following functions:
G (0) = YKo wrIy[ pm—1(X) (X — ¥2)] exp(6r),
Grs1(0) = Y hms1 wE o[ pm(X) (X — y2)] exp(Oyz).

where w# = wi(yr — ym) = 0.

It will be argued that G, has at most one more sign change zero in (a, 8) than G+ for
any nonnegative numbers w, - .-, wx. Inductive application of this argument starting
with the function

G1(0) = —exp(2¢(8)) (w, £5) = Y1 wilo(X — yz) exp(Oyr)

yields the desired result for part (a) of Theorem 2.1.
The following lemma accumulates some elementary facts about mixture polynomials.
The proof is straightforward.

LEMMA A.
d
(1) = Lol pm] = L[X pn};

@) & (Ll pn] exp(~8)) = LI(X — y)pn] exp(~8);
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(8) If Z is a zero of order k = 2 for Iy pn] it is a zero of order k — 1 for I pn(X — y)]
for all y, and the first nonzero derivative of Iy p.(X — y)] is
k—1

d
Wlo[pm(x = ]le-z = L[X*pn]

(4) If Z is a zero of order k = 2 for Iy[ pm-1] it is a zero of order k — 1 for Gn. and
k— 2 for Ghy1.

Next we define the functions

£(0) = wnIy[ pm] exp(Oym)
h(0) = YK 1 Wels[ Pr—1(X — y2)] exp(@ys),
noting that g + A = Gi.

LEMMA B. The functions g and h above satisfy the following
(1) At a zero Z of g or of h one has

gZ)<h(Z) if L[pn-1]1<0
82Z)>h(Z) if L[pn-1]1>0
0=g2)=h2) if Ilpn-1]1=0

(2) Simultaneous zeroes of g and h occur only when Iy[ pn-1] has a zero of order k
= 2 in which case g + h has a zero of order k — 1. The functions g and h have the same
sign in a neighborhood of such a point.

ProoF. The ordering relationships

Llpmn-1X=yn)] <o+ <L[pn-1X —yx)] if L[pn-1]1<0
I.1)
Lpn1X = ym)]> oo > L[ pm-1(X —yk)] if L{pm-1]1>0

plus the positivity of the w,’s imply part (1).

From part (1), the simultaneous zeroes of g and / are zeroes of Iy[ p»-1] and also zeroes
of its derivative Iy[ Xpn—1], hence a zero of order two or more for Iy[ pn—1]. The rest of part
(2) follows from Lemma A(3) and A(4). O

The next step is to relate the zeroes of g + A to those of
(L2) d@) = g@)h'(0) — g'(0O)h(0) = wngm+1(0)Is[ pm-1] exp(fym)

Label the open intervals where gh > 0 as even intervals; label the open intervals where gh
< 0 as odd intervals. Label those points where g and 4 have simultaneous odd zeroes as
degenerate odd intervals.

LEmMA C. The above described intervals have the following properties:

(1) With the exclusion of points which are not zeroes of g + h, the region (a, B) is
covered by alternating even and odd intervals.

(2) In every odd interval, g + h has no more than one more sign change zero than d.

(3) In every even interval, g + h has no zeroes.

Proor. The sign change zeroes of g and % create a partition of (a, 8) such that
between points of sign change, g and £ are of constant sign. Lemma B(2) ensures that the
odd intervals (possibly degenerate) separate even intervals. Any points not in the even or
odd intervals are sign changes of g, but not A, or vice-versa. Hence g + & is non-zero there.

In a degenerate odd interval, g + A has an odd order zero, but d has a zero which is
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even order (see (I.2), Lemma B(2) and Lemma A(4).) Hence part (2) of the lemma is
satisfied for the degenerate case.
Next, the open odd interval. With the exception of zeroes of g the following factorization

holds
g+h=g[l+h/g]l=glr]

The function in brackets (r) has the same sign changes as g + & between zeroes of g.
There are no common zeroes to g and £ in a nondegenerate odd interval; there may,
however, be even order zeroes of one or the other. These even order zeroes are not zeroes
of g + h, but they are odd order zeroes of d. For example, at a second order zero Z of g,

d(Z)=g2)h'(Z) - g'(Z)h(Z)=0
d'(Z) =g@2)h"(Z) — g"(2)h(Z) = —g"(Z)h(Z) # 0

It follows that if we show that r and hence g + & has no more than one more sign
change zero than d on each of the open subintervals between zeroes of g and 4, then there
is a maximum excess of one zero for g + h over d in the entire odd interval. The function
r is analytic on the open subinterval and so it has at most one more sign change that its
derivative.

r'=d/g’,

as was to be shown. )
Part (3) of the lemma follows because g and A have the same sign on an even inter-
val. [0

We now finish the proof of the theorem. In an open odd interval, Iy[ p»—1] can have no
zeroes, as at such a zero point g and A have the same sign. In a degenerate odd interval,
Iy[ pm—1] has an even zero. Hence the odd zeroes of d in an odd interval are also odd zeroes
of G%+1 (Equation 1.1). Hence Lemma C(2) indicates that G, can have no more than one
more sign change than G, in each odd interval.

Next, we establish that G};+1 has at least one more sign change zero than G,, on every
even interval except those with « or 8 as endpoints, where it has at least the same number.
Since G, has no sign change on even intervals, we need only count the zeroes of G,+1.

We consider several cases. If both endpoints of the even interval are sign change zeroes
of just one of g and A, then Lemma B(1) indicates Is[ p»-1] has an even number of sign
changes. But d = gh’ — g’h must have an odd number, hence so must G.+;. If the
endpoints are sign changes, one from g alone and one from 4 alone, then Iy p..—1] has an
odd number of sign changes, but d must have an even number, so G,+; has an odd
number.

The argument must be executed with greater care if one or both endpoints are
simultaneous sign change zeroes of g and A. The idea of the argument is that at such a
zero, Iy[ p..—1] has an even order zero, so locally g > A or & > g. The function G/,+1 has the
same sign at (and near) such a zero as g’. One may conclude that treating the zero as if it
were a zero of only one of the functions g and A, namely the one nearest the X-axis, yields
a sign-counting argument as in the previous paragraph.

If we now proceed across the interval (a, 8), the alternation of even and odd intervals
and the relative numbers of zeroes of G, and G+ in each give a maximum of one more
zero for G, than G 1. This gives part (a). Part (b) follows from the inductive argument
plus the fact that the ordering relationship (I.1) ensures that G, has no zeroes on an
interval where the given mixture polynomials have the same sign.
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