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INTERMEDIATE EFFICIENCY, THEORY AND EXAMPLES

By WiIiLBERT C. M. KALLENBERG

Vrije Universiteit

Comparison of tests can be made in a local way using the concept of
Pitman efficiency or in a non-local way using for instance Bahadur efficiency.
In the local case the level of significance is kept fixed, whereas the non-local
comparison typically deals with very small levels. These points of view may
be seen as the extreme points of view. Here a possibly more realistic inter-
mediate approach is introduced: as the number of observations tends to
infinity the level is sent to zero, but not so very fast, in that way filling the gap
between the Pitman and Bahadur approaches. The theory is exemplified by
results on likelihood ratio tests, locally most powerful tests, and simple linear
rank tests.

.

1. Introduction. Several methods have been proposed to relate (asymptotic) per-
formance of two different sequences of tests. In particular, the concepts of Pitman efficiency
for local comparison and Bahadur efficiency for non-local comparison have obtained an
especially important position in statistical literature. If one keeps the level of significance
bounded away from zero, the power function of any reasonable test at a fixed alternative
will tend to one as the number of observations N tends to infinity. So simple comparison
of the asymptotic power does not make sense. To overcome this problem, Cochran (1952,
page 323) proposes either (a) to “decrease the significance probability as NN increases,” or
(b) to “move the alternative hypothesis steadily closer to the null hypothesis,” i.e. to
consider sequences of alternatives tending to the null hypothesis.

There exists a large literature using methods for comparison based on (a) or (b). Both
principles, (a) and (b), seem to be attractive. As Hoeffding (1965, page 369) points out, it
seems reasonable to let the size an of a test tend to zero as N — «. On the other hand,
there seems no need to use statistical methods in the case of alternatives far away from the
null hypothesis. So the principle of considering points in the alternative hypothesis steadily
closer to the null hypothesis is reasonable too. In Bahadur’s asymptotic efficiency concept,
method (a) is actually used, while fixed alternatives are under consideration, thereby
ignoring principle (b). In Pitman’s asymptotic efficiency concept, method (b) is used, while
one deals with fixed levels, thus ignoring principle (a). From a practical and philosophical
point of view, a more appealing approach is to use both attractive principles (a) and (b):
considering both levels ay tending to zero and alternatives tending to the null hypothesis.
It is the purpose of this paper to provide such an approach.

Both the Pitman and Bahadur concepts can be interpreted in terms of sample sizes
N(a, B, 0), say, required to attain with a level-a test a prescribed power g at an alternative
0 (cf. e.g. Serfling, 1980). In the Pitman case, a and B are kept fixed and 8 is sent to the
hypothesis set ©; in the Bahadur case § and S are kept fixed and « is sent to zero. Then
the asymptotically required sample sizes of the tests under consideration are compared to
distinguish between the two sequences of tests. Bahadur efficiency has been introduced in
terms of level attained, but the above approach, which is only slightly different, seems to
be more basic and stable; cf. Raghavachari (1970), Chandra and Ghosh (1978), Kallenberg
(1981b).

Generally, the numbers N(a, 8, §) are not known exactly. Therefore some asymptotic
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approach is justified. However, there are serious objections against above methods. As
indicated above, both concepts apply one of the attractive principles (a) and (b) while
ignoring the other. Moreover, as a consequence of Bahadur’s approach in typical cases, the
level of significance ay required to attain a fixed power 8 at a fixed alternative # tends to
zero at an exponential rate as the number of observations N tends to infinity. One might
say that the concepts of Pitman and Bahadur are the extreme points of view. Between
these two extremes there remains a whole range of sequences of levels and it seems to be
interesting to study the performance of tests with levels in this intermediate range, in that
way filling the gap between the Pitman and Bahadur approaches. This is because, in a
practical situation one has to decide with a fixed number of observations which test to
apply. To make such a choice one can use the concept of Pitman or Bahadur efficiency.
This implies that the tests are embedded in sequences of tests with either fixed levels or
very small levels. In this paper the spectrum of possible levels in such an embedding is
widened by adding the whole intermediate range between the two well-known extremes.
This extension can also be useful in the following sense: suppose we have two sequences of
tests and the Pitman efficiency of one test with respect to the other equals e > 1; suppose
that the efficiency in the intermediate range also equals e. Then the better performance of
the test remains if smaller levels of significance are under consideration. The importance
of Pitman efficiency and m.m. Bahadur efficiency gathers strength by such a result.

In addition, another phenomenon has to be mentioned. It may happen that tests are
asymptotically optimal when comparison is made in a non-local way, but not asymptotically
optimal w.r.t. criteria based on the local performance of tests. Typical examples are
likelihood ratio tests. It may be interesting to investigate whether the non-local optimality
or the local non-optimality of such tests remains true, when one does not take one or
another extreme point of view; cf. Section 3. (Also the reversed situation, local optimality
and non-local non-optimality, may arise, e.g. with locally most powerful tests; cf. Section
4.)

By these considerations the following i-efficiency concept is introduced, which takes an
intermediate position between the two extremes. That is, the level ax tends to zero but not
too fast, the alternative y tends to the hypothesis but also not too fast and 6y and an
agree in such a way that the power function at 6y stays away from 0 and 1. To be more
specific: let % be a space of points x, # a o-field of subsets of 2 and for each point § in a
set © let P, be a probability measure on (%, 4). Let S = (X1, Xz, - - -) be a sequence of i.i.d.
random elements taking values in & according to Py, § € 0. The distribution of S will be
denoted by P, when 8§ € © obtains. Suppose the hypothesis Hy: § € ©, has to be tested
against H,:0 € ©, C © — ©,, where @) and ©; are given subsets of ©. A family {¢n;a; N
€ N, 0 < a < 1} is a family of (randomized) tests of H, if for each N € N and 0 < a <1 the
function ¢n.a(s) = énia (%1, X2, +++)) is a measurable function of xi, -« -, xy only, with
values in [0, 1], satisfying

(1.1) ) SupﬂuEGuan(l)N;a(S) =a.

Suppose we have two families of tests {¢n..} and {¢w.«}. Let {an} be a sequence of levels
with

(1.2) limy_,wany = 0 = limy_..N'log ax,

and let {fx} be a sequence of alternatives with

(1.3) limy . H 0y, @) =0, limy_,o NH* (0, ©) = o
and
(1.4) 0 < lim infy_wEgydn;ay < im supn_eEopydnay < 1.

Here H(6, ©y) = infgco,H (0, 6,) and H(6, 6,) denotes the Hellinger distance between the
probability measures Py and Py,.
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The Hellinger distance between two probability measures P and @ on the same o-field
is defined by

1/2 1/2
(1.5) HP, Q)= {f (p"? = ql/z)zdu} = {2 -2 fpl/qu/zdu} ,

where p = dP/du, g = dQ/dp and u is any o-finite measure dominating P + @. This metric
is independent of the choice of u and satisfies 0 = H(P, @) < 2"2 Contiguity of the
distributions of (Xi, -+, Xn) under Oy and 6, implies lim supy_... NH*(fn, 6o) < o (cf.
Oosterhoff and Van Zwet, 1979). So the sequence {#n} plays the same role as the sequence
of contiguous alternatives in the Pitman case. Note that for many families of tests (1.4)
and (1.2) imply (1.3). Define

(1.6) my(N) = inf{m; EgyYm+roy = Egydnia, forall £2=0,1,2, ...}
If the sequence of levels {an}, apart from (1.2), satisfies
(1.7) —logay =0(N?) asN—
and if
. my (N
(1.8) €4y = limy_, 0 -—&;-\-](-——)

exists and does not depend on the special sequences {fv}, {anx} under consideration, we
say that the asymptotic i-efficiency of ¢ w.r.t. Y equals e, . If (1.7) is replaced by

(1.9) —log ay = O(log N) as N— oo,

we speak of weak asymptotic i-efficiency of ¢ w.r.t. y, and use the notation eg,,. Otherwise,
that is if all sequences {an} satisfying (1.2) are under consideration, we speak of strong
asymptotic i-efficiency of ¢ w.r.t. y, notation e y. Note that e}y =e=e,, =e=>eg,=e.
So the whole intermediate range is built up with three increasing ranges. These several
types of intermediate efficiency correspond with the existence of several types of moderate
and Cramér type large deviation theorems. The family of tests {¢n..} is called (weakly)
(strongly) i-efficient if the (weak) (strong) asymptotic i-efficiency of ¢ w.r.t. { is greater or
equal than 1 for all families {{v..} such that the efficiency exists. The above concept is
related to Groeneboom’s (1980, Section 3.4) definition of deficiency for moving alternatives.
He studies very precisely the behavior of several tests for the multivariate linear hypothesis
from an “intermediate” point of view. Rubin and Sethuraman (1965) discuss efficiency of
tests from a Bayesian point of view.

For two test procedures, the ratio of the sample sizes needed to obtain equal expected
risks is defined to be the Bayes Risk Efficiency. The main shortcoming of the Bayes
principle is its dependence on the prior distribution. It turns out that the large sample
behaviors do not depend very heavily on the prior distribution. Johnson and Truax (1974,
1978) have studied the asymptotic behavior of Bayes procedures in one-parameter and
multiparameter exponential families.

In this paper it is shown that for testing simple hypotheses in multiparameter exponen-
tial families, likelihood ratio tests are strongly i-efficient (cf. Theorem 3.1). In Section 2 it
is shown how to compute (weak) (strong) i-efficiency. While central limit theorems play
an important role in the local case and Chernoff type large deviation theorems in the
nonlocal case, here one deals with moderate and Cramér type large deviation theorems.
Some results concerning the i-efficiency of likelihood ratio and locally most powerful tests
are presented in Sections 3 and 4. Section 5 is devoted to intermediate efficiency in the &-
sample case. In particular, the i-efficiency of simple linear rank statistics is investigated.

2. Computation of i-efficiency. Since i-efficiency as defined in Section 1 occupies
an intermediate position between Pitman and Bahadur efficiency, the approaches to
compute either of the two can be adapted to compute i-efficiency. Suppose that we have
two sequences of test statistics, {TA"} and {T'?}, respectively, large values of T' being
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significant, i = 1, 2. At first glance, the way of computing Pitman and Bahadur efficiency
seems to be different. In the Pitman case one usually derives asymptotic expansions for
the distribution of T both under the null hypothesis and under contiguous alternatives.
The expansion under the null hypothesis gives an expansion for the critical value, which
in combination with the expansion under contiguous alternatives results in an expression
for the power of the test. Comparing the expansions of the power of Tx" and T4 yields
the Pitman efficiency of TA” w.r.t. TA?. In the Bahadur case the situation is reversed: an
_expansion for the critical value of the test is obtained by considering the distributior, of T’y
under a fixed alternative (for efficiency purposes a weak convergence statement usually
suffices). Comparing the asymptotic expansions of the levels of significance of both tests
(using Chernoff type large deviation theorems) gives the Bahadur efficiency of TA” w.r.t.
T, cf. Theorem 7.2 in Bahadur (1971). Lemma 2.1 is more or less a modification of this
theorem to our case.

As a corollary of this lemma, we obtain an adapted version of the well-known Pitman
result. This shows that both approaches are not so different as it seems to be: after all, in
both cases, the levels and the powers of the two tests under consideration have to be
related. In the sequel it will be assumed that there always exist sequences of alternatives

{0y} satisfying (1.3).

LemMA 21. Let TR’ = TN’ (X1, ---, Xn), i=1,2, N € N, be test statistics rejecting
the hypothesis for large values of TH’. Suppose that there exist positive functions b (6),
i =1, 2, such that for all sequences {6x} with H(@n, ©,) — 0 and NH 20y, ©g) > © as N

—> ©

() limyowe, {1 —e< N/*TH/6%(Oy) <1+ ¢} = 1 for each ¢ >0,
(ii) limy_.{—(Nt%) "log sups,eco,Ps, (TN = N"*ty)} = 1if Nty — o and tn = o(N™%)
as N — oo,

()] 2
(iid) limn_m{—gm% =eexists,0 < e < w,

Then the i-efficiency of TS w.r.t. TA exists and is given by
(2.1) erw o = e.

If in (ii) ty = o(N"Y?) is replaced by ty = O(N~*(log N)'?) or ty = 0(1), respectively,
then the weak or strong i-efficiency, respectively, of Tn" w.r.t. T exists and is equal to
e.

ProOF. Let {an} be a sequence of levels with limy_,.an = 0 and —log ay = o (N'/?) as
N — o, and let {6y} be a sequence of alternatives with limy_..H(0n, ©0) = O,
limN_,.,,NHZ(ﬂN, @0) = o0 and

(22) - 0 < lim infy_w Egy¢Nlay =< 1im supy—.« Esy¢Ney < 1,
where ¢4, denotes the level-a test based on TA". Let N'/*¢A" be the critical value of
N ay, 1€
NV2tQ = inf{d; supgpeeo,Po(TY > d) < an}.
Then for all d < N*/% " '
(2.3) Supgee,Pa (TH > N%5") < an < supgeo,Pao (TN = d).

Condition (ii) holds for all sequences {¢tn} such that N**ty — o and N'%ty — 0 as N —
o, Therefore, (ii) implies that foralla € Rand i =1, 2

lim infy_,«log supgee, Po(TH = a) > —co.

Hence NY% ", — o, because ay — 0.
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Let 8y = (—2N""?log an) /%, then 8y = 0 (1), because —log an = o (N'/?). Application of
(ii) with ty = Sy N2 yields

1 =limy_, (2 log an) 'llog Supooeeopao(T}\}) = NI/Z(SNN_I/a)

and hence by (2.3) £t < 8xN~"/? for sufficiently large N, and thus ¢4 = o (N~V3). So, (ii)
can be applied with ¢y = t. By (i) and (2.2) we have

(2.4) t¥ = bP@y){1 +0(1)} as N— oo,
In combination with (ii) and (2.3), the result
(2.5) log ay = =N{b®@x)}*{1 + 0(1)} as N— oo,

is now obtained.
Let ¢, denote the level-a test based on T'? and let

m= m¢m’¢m(N).

Since there is no information about the behavior of m /2T /b®(8y), we cannot proceed
in exactly the same way as above for the sequence {¢ %, }. Let {y;} be any sequence of real
numbers satisfying e < lim;_,..y; < o and let {N,} be any sequence of natural numbers with
lim;_,,N; = o and such that v N; < y2No < - -« and y;N;EN, j=1, 2, - . . . It will be shown
that '

(2.6) limj, o Egy iy, = 1.

Since lim supy_.« Egpy¢2 1.0y < 1 it then follows that lim supy_..m/N = im supy_..(m —
1)/N =< e. For short we write n = y;N;.

To apply (i) to n /> T, /6® (fx), a new sequence of alternatives is introduced as follows:
0% = On and 0% = 6, if k # y; N, for all j. It is easily seen that H(§%, ©¢) — 0 and NH*6%,
©y) — ® as N — co. Writing n'/*§ for the critical value of ¢, we obtain, by the same
line of argument as above, n'/*%§) — «,t§) = o(n™"/°) and hence by (ii)

2.7 log an, = —n(t)*(1 + 0(1)} as j— co.

(Note that here we have used —log an, = o(N 1) = 0(n'?) as j — ».) Combination of (2.5),
(2.7) and (iii) yields

, t9 . ntf)?  [6V0x)\' N
hm}'—>°°{b(2)(01\,j)} = hmj—’m M{b(l)(aNj)}2 {6(2)(01\,])} —;

(2.8)
= e/limj.y; < 1.

Because 67 = v, we have
Eod 2o, = Poy (T > n't )
= P {n ’T2/6®(0%) > ¢t /6™ 0n))},

which tends to 1 as j — o in view of (i) and (2.8), thus establishing (2.6). This completes
the proof of lim supy_..m/N < e.

Similarly one shows lim infy_.m/N = e.

Following the same line of proof the results concerning weak and strong i-efficiency are
obtained. 0O

REMARK 2.1. If in condition (i) of Lemma 2.1, (Nt %71 is replaced by {Nf @ (¢tn)} 7%,
where f?(x) = ¢?x? + 0(x?) as x — 0 for some ¢® >0, { = 1, 2, the lemma remains true if
in (2.1) e is replaced by ec”(c®)™". Note that in typical cases the function fin Bahadur’s
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(1971) Theorem 7.2 satisfies f(x) = cx* + o(x?) as x — 0, thus affirming the correspondence
between Lemma 2.1 and Theorem 7.2 of Bahadur (1971).

REMARK 2.2. Lemma 2.1 is related to Wieand’s (1976) Theorem. In his investigations
a and @ are sent separately to 0 and @y, respectively. Then he presents a theorem, which
states that under some conditions the order in which the two limiting processes are
executed does not matter. This result suggests that for intermediate ay and 0x correspond-
ing to it; a good approximation of my/N is obtained by this common limit. OQur investiga-
tions refer directly to intermediate levels and corresponding alternatives; in other words,
an and Oy are not sent separately, the one after the other, but simultaneously to 0 and
0, respectively. It seems to be more appropriate in approximating the finite case to apply
one limiting process than to apply two limiting processes in one or another order. If the
intermediate efficiency equals Wieand’s common limit, such a result may be seen as a
proof of the above mentioned suggestion. Technically, the difference lies in Conditions I
and II of Wieand (1976) and Condition (ii) of Lemma 2.1. .

As a corollary of Lemma 2.1 the following adapted version of the well-known Pitman
result is obtained.

COROLLARY 2.2. Suppose that ® = [0, ©), @ = {0} and 0, = (0, ®). LetU® = UY
Xi1,...,Xn),i=1,2, N € N, be test statistics rejecting the hypothesis for large values of
U¥. Suppose there exist functions p® on © with a righthand derivative p® (0) > 0 at 6
= 0 and functions ¢ on © satisfying limg;o6?(8) = 0?(0) > 0, i = 1, 2, such that

G) PINVEUR — p9(0)}/0”(0) = xn] = D(—xn) {1 + 0(1)} if
0<xy<o(NV® as N — oo,

(i) P [NVHUR — p®On)}/0®@n) = x] - ®(x) if 6y — 0 and N**y — ® as N — o,
where ® denotes the standard normal distribution function, and suppose that

(iii) H(9, 0) — 0« §— 0, and H(6, 0) = ab® + 0(6%) as § — 0 for some a > 0.
Then the i-efficiency of U w.r.t. U exists and is given by

_ [r70e?0)*
(29) ey, ye@ = {m

ProoF. Apply Lemma 2.1 with T# = 2"’ NVH{U — p?(0)}/0?(0) and 59(9) =
22{(u®(0) — p®(0)}/6(0), i = 1, 2, where it has to be noted that sequences {fy} with
H(0n,00) — 0 and NH?(0y, o) — » correspond with sequences {6y} with 8y — 0 and
N v 201\1—) 00, D

REMARK 2.3. If in (i) o(N"®) is replaced by O((log N)'?) or o(N'/?), respectively (in
which case it seems to be more appropriate to add a factor exp[c Px%N~2{1 + 0(1)}] with
some constants ¢” > 0, i = 1, 2, on the right-hand side of (i)), then the weak or strong i-
efficiency, respectively, of UY w.r.t. U exists and is given by the right-hand side of (2.9).

ExampLE 2.1. Let Xj, X, ... be iid. random variables with a normal N(§, 1)
distribution and suppose Hy: 8 = 0 is to be tested against H;: 0 > 0. Consider U (S) =
URXy, X,, --+) = N1 YX, X; (the Gauss test) and UR(S) = N Y, lix>0 (the sign
test). Application of Corollary 2.2 and Remark 2.3 yields e{;w yo = Y%, agreeing with the
Pitman efficiency of U w.r.t. U?. Next consider T = N2 Y¥, X; (the one-sided
Gauss test) and T§ = | TH | (the two-sided Gauss test). Application of Lemma 2.1 yields
efwro= 1, agreeing with the Bahadur efficiency of 7" w.r.t. T®

ExamPLE 2.2. Let X;, X3, - - - be iid. random variables with distribution function
F@(x)=F(x_0)) x,ﬂER,
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where F'is assumed to be symmetric about zero and to have density f. Consider the testing
problem Ho:6 = 0 against H,:6 > 0. We will apply Corollary 2.2 with U equal to the
signed-rank Wilcoxon statistic and U$ equal to the one-sample ¢-statistic. To be more
precise:

UR = UR (X, +-+, Xn) = (N(N + 1)} Vx>0 R,

where RY, ..., RY are the ranks of |X;|, ---, |Xn|, and U® = XyS¥ with S%
= (N - 17" Y (X; — Xn)2 It will be assumed that the density fis such that (iii) holds,
that [ exp (£x?) f(x) dx < o for some ¢ > 0 and that [ F3(x) dx < . Note that 2(N + 1)(N
—1)7'UY = Vy + 2(N — 1)"'Wy, where Vy is a U-statistic defined by

-1
Vi = (’;’ ) Sisicjzn h(X, X))

with
1 ifx;+x>0
0 otherwise

h(xy, x3) = {

and Wy is the sign-test statistic N ¥ x>0 1. Using Vandemaele’s (1980) Cramér type large
deviation result concerning U-statistics it is seen that (i) of Corollary 2.2 holds for U, cf.
also Vandemaele (1981, page 47-49). (The functions p® and ¢ are the same as in the
Pitman case.) Similarly as in Vandemaele and Veraverbeke (1983) it can be shown that
(i) also holds for U (cf. Callaert, 1981). By. Theorem 3 of HuSkova (1970), (ii) is
established for U, while (ii) is easily proved for the t-statistic. So the i-efficiency of the
Wilcoxon signed-rank test w.r.t. the one-sample #-test is the same as the Pitman efficiency
and equals 126%{[*, f%(x) dx}? where 0% = var,X;.

Let # denote the class of all continuous distribution functions symmetric around 0.
Consider the testing problem Hy:F € Fagainst Hy:Fy(x) = Fo(x — 8), 8 > 0, where F, €
Fhas a density fo with [ f3(x) dx < » and finite variance 2. We shall further assume
that H(Fy, #) = H(F,, Fo) > 0 < 6§ — 0 and H(F,, Fy) = a8? + 0(8?) as § — 0 for some
a > 0. Now we apply Lemma 2.1 with T§ = 2"’ N"2{U# — 4“(0)}/0”(0) and 5 (9) =
22(n9(0) — n(0)} /69(0), where UY, u® and ¢’ are as above, i = 1, 2. The proof of (i),
(iii), and (i) w.r.t. T¥ is easily obtained by the above mentioned results. (Note that 7'
is distribution free under Hp.) To prove (ii) w.r.t. 7% we use (2.7) and (2.8) of Jones
and Sethuraman (1978) with a replaced by N'/*{2(N — 1)} "ty. (Note that (1 + x)log
1+ x) + (1 - x)log(l — x) = x%{1 + 0(1)} as x — 0.) So again the i-efficiency equals
120%( [®. f3(x) dx)2.

3. Likelihood ratio tests in exponential families. It is well-known that in many
testing problems, likelihood ratio (LR) tests are asymptotically optimal when comparison
of tests is made in a non-local way; cf. Bahadur (1965), Brown (1971), Kallenberg (1981b).
On the other hand LR tests usually are not asymptotically optimal w.r.t. criteria based on
the local performance of tests. Therefore it may be interesting to investigate the i-efficiency
of LR tests to find out whether the non-local optimality or the local non-optimality of LR
tests remains true in the intermediate case.

In this section it will be assumed that X;(i = 1, 2, ...) is distributed according to an
exponential family

(3.1) dPy(x) = exp{0’x — Y(0)} du(x), €O C R* x & R*

where p is a o-finite non-degenerate measure, ® denotes the natural parameter space, i.e.
0 = {0 € R*; [ exp(8'x) dp(x) < »}, and

(3.2) Y(0) = logf exp(6'x) du(x), 6€ 0.
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Here §’x denotes the inner product of § and x. Without loss of generality assume that ©
has a non-empty interior and that p is not supported on a flat. Let @* = {§ € ©; Eq| Xi||
< oo}, where || - | denotes the Euclidean norm. Note that int ® C ©* C 0. For § € ©* define

(3.3) A(0) = EgX;.
The mapping A is 1 — 1 on ©* (cf. Lemma 2.2 in Berk, 1972). Defining
A =X0O%) = {A(0); € 6%},

the inverse mapping A ™! exists on A. Note that A(§) = grad ¢(6) if § € int ©. Moreover, for
0 € int O, the covariance matrix 2, of X; is the Hessian of .

The Hellinger distance is now given by
(3.4) H?(8,, o) = 2 — 2 exp{Y(%(bo + 61)) — Y% (o) — Yo (61)}, 6o, 6, € O.

Since with N observations X;, - - -, Xn the sample mean Xy = N™' ¥\, X; is sufficient,
LR tests and most powerful (MP) tests only depend on Xuy.*The distribution of Xy is
denoted by PY.

For the testing problem H,:0 € ©, against H;:0 € ©; = ® — 0, we define

_ Joo if supgeg,{06x —Y(fo)} =
(3.5) L(x) = {supaee{ﬂ'x _e,l,(o)} — supg,ce, (86x — ¥(6)} otherwise.

With this notation, the size-a LR test of H, based on N observations is given by

1 >

PN (Xn) = {8N;a if L(xXn) = dwie
0 <

where dy;, = inf{d; supgce,Ps(L(Xn) > d) < a} and 8y = sup{d € [0, 1];
supg,ce,Eo,9 Nw(Xn) < a}. Then we have for all § < dy;.

supg,ce, Ps, (L(Xn) > dn.a) < @ < supg,ce,Ps, (L(Xn) = d).
If supg,ce,Ps,(L (Xn) = t) is a left-continuous function of ¢, then
supg,ce,EopN-a(Xn) = a.

Now we have the following.

THEOREM 3.1. If ®y C A C int © for some compact subset A, the LR test is strongly
i-efficient.

Note that the case of a simple hypothesis is covered by this theorem.
The LR test can be expressed in terms of Kullback-Leibler information numbers defined

by

(3.6) K (61, 60) = Ey {log dPy, /dPs,(X1)}

=Y (o) — Y(61) + (6, — 6o)’\(61), 0, € O%, 6, € O.

If Xy € A, A"} (Zy) is the maximum likelihood estimate of 8, since supsced'®n — ¥(8) =
A N(&n) En — $(A"(%y)), and thus

1 >
(PII\‘II}a(x_N) = {8N;a if K(A™Y(xy), ©) = dn;a,
0 <

where K (6, ©g) = inf{ K (0, 6o); 6 € ©o}.
Before proving Theorem 3.1, we present the following technical lemma.
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LEMMA 3.2.

(a) Let B C int ® be compact. Then | A(8) — A©)|/I10 — &I, 16 — £]7°K (8, 9,
K8, £)/[(8 — &'{A(0) — A (£)}] and H*(6, £)/K (8, £) are uniformly bounded away from 0
and » for 6, £ € B, § # &

(b) Let ® C A C int © for some compact subset A. Let {On} be a sequence with
Ky, ©g) — 0 and NK(0n, ©y) — . For all positive constants ¢ and y we have for all

sufficiently large N
[x = AON)|| = cN2= | KA (x), @) — K(On, O0)| < yK (O, ©).
Proor. For a proof of (a) cf. Kallenberg (1981b, Lemma 3.1a). (b) Let xy € A satisfy
|| xx — A(8n)]| < cN~'/2. Without loss of generality ©; may be assumed to be a closed and
hence compact subset of int ®. Define 6oy by K (0n, ©¢) = K (fn, fon) and 6% by K (A Hxw),

®o) = K(A\ '(xn), 6%). In view of (a) there exist positive constants ¢; and c¢; such that for
all sufficiently large N

K\ '(xn), ©) — K(0n, ©p)
= KA Y(xn), 6on) — K(On, Gon)
3.7) = KA ' (xn), On) + (On — Oon) {xv — A(On)}
=< K(0x, ©0) {c: N K (8, ©0)~! + c2 K (On, @p) 2N~V2},
implying K(A™"(xn), 0%) = K(A ' (xn), ©0) =-2K(0n, Oo) for all sufficiently large N.
Therefore there exist positive constants c; and ¢, such that {A™'(xn) — 0%} {A(08) — 2~}
= e K\ Hxw), 0%)2N"V2 < 2'2¢, N~V K Oy, ©o)/? and hence
K (v, ©0) — K(X\™'(xn), ©o)
= K(6v, 0%) — K(\'(xn), 0%)
(3.8) =K (v, A\ (xn)) + (A (an) — 08} {A(On) — xv}
< KOy, O0){caN'K (8n, ©o) " + 2'2c; N™2K (O, 9o)~%}

for all sufficiently large N. Combination of (3.7) and (3.8) completes the proof of the
lemma. O

ProoF OF THEOREM 3.1. Let {{n;s} be a family of tests for which ez, exists, let
{an) be a sequence of levels with limy_,cay = 0 = limy_.. N 'log ay, and let {Ox} be a
sequence of alternatives with imy_,.. H (8, ) = 0, limy_, NH*(dy, 69) = » and

(3.9 0 < lim infy_,e Egy@ Ky =< lim supn_wEgy@Nay < 1.

By Lemma 3.2 (a) it follows that limy_,. K (6, ©¢) = 0 and limy_, NK(®n, ©) = «. By
definition egie ;, = limy_.omgtr , (N)/N. Since power functions are continuous on int ©,
it is no restriction to assume that 0, is closed. Moreover K (8x,.) is a continuous function
on int ® and hence there exists fon € O such that K (8, on) = K(xn, Qo). The MP level-
ay test of yn against 6y based on j observations is given by

1 >
@& = v i (Ov—On)E =cin,
0 <

where vy;,y and ¢;,y satisfy Eq, ¢/ (X;) =an,j=1,2, ---, N=1,2, .. .. Defining
m¥y =inf{m; E(;N(P,T,’N = EoN(PH}aN}
it follows that
my=mgwr y(N), N=1,2 ...,
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cf. (1.6).

It suffices to show that lim infy_,..m% /N = 1. The proof of this is along the same lines
as the proof of Lemma 2.1: (Lemma 2.1 can not be directly applied, becau$e ¢* is a test of
8~ against 6y and not a test of Hy against y)

By Lemma 3.2 (b) it follows that

limy_,Pg,[1 — e = {K(A"(Xn), @) }*{K (O, ©0)} /P =1+¢] =1
for each ¢ > 0. Since K(A\'(x), ®) = d implies K(A"'(x), 6o) = d, 6 € Oy, it follows by
Lemma 3.2 in Kallenberg (1981b) that
(3.10) lim infy_ { NK(0n, ©0)} *|log an| = 1.

Let {{;} be any sequence of real numbers satisfying lim; .. {; < 1 and let { N,} be any
sequence of natural numbers with lim;_,..N; = o and such that {; N1 < {atN. < --- and {; N,
EN,j=1,2, .... It suffices to show that

(3.11) im0 Eon @ Rian, = 0.
Let
¢/t = max[0, {cg N, N, — (v, — bon,)'A(On)} || O, — bon, || ($N;) ]
and
A, = {x; (Oy, — Oon,) {x — N(Ox)}|On, — Oon, | (G N)) V2 € (cf, e} + 1))
Then

ay, = exp{—GN/K (8, on)} f expl— G N, (O, — o)’ (x — M8))] dPYY(x)
Al

= exp{— {N;K(On,, bon,) — (&N;))'? ||, — Bon, || (¢} + 1)} Pﬁ#ff (4;).
By (3.10) it follows that ¢} — oo, implying (3.11). 0

4. Locally most powerful tests in curved exponential families. It is well-known
that under weak conditions LMP tests are Pitman efficient. On the other hand LMP tests
are far from optimal from a non-local point of view. In this section the performance of
LMP tests is considered in the intermediate case.

Suppose that the density of X, equals

(4.1) exp{ydx — y(v0)}, 6 E O,

with respect to a o-finite measure . on R*. Here O is an interval in R', vy a differentiable
bijection from © onto y(0) CT' = {y € R*; [ exp(y'x) dp(x) < o} and Y/(y) = log [ exp(y'x)
dp(x). So the distribution of X, belongs to a curved exponential family in the terminology
of Efron (1975). This means that our one-parameter family is smooth in the sense that it
can be embedded in an exponential family in a suitable way. We consider the testing
problem Hy: § = 8, against H, : § > 6o, where 8, € O is given. Indicating differentiation with
respect to 8 by a dot, the size-a LMP test of H, against H; based on N observations is given
by :

1 >
(42) (pII‘)/;a(:fN) = 8N;Ct y’ﬂn-fn = dN;a)
0 <

where £y = N~ ¥ I, x, and the constants dn,, and 8y, satisfy Es@%;.(Xn) = a; cf. Efron
(1975).
Now we have the following result.
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THEOREM 4.1. Assume that ve, € int T, that H(0n, 6o) — 0 < On — 6o, and that the
Fisher information of X; at 0, is positive. Then the LMP test of H, against H, is strongly
i-efficient. «

Note that a positive Fisher information at 6, implies v, # 0. The proof of Theorem 4.1
is similar to the proof of Theorem 3.1 and is therefore omitted.

Related results concerning the behavior of LMP tests in curved exponential families
can be found in Kallenberg (1981a).

5. The k-sample case. The concept of i-efficiency has been defined so far for testing
problems in the one-sample case. Here we will extend the definition to the k-sample case.
Let S = (X X2, ... ; X) be k independent sequences X&' = (X{, X{, ...) of
independent random elements X¢’ taking values in some measurable space (%, %)
according to a probability measure Py» 89 € @Y, (m=1,2, -++;j=1,2, --+, k). The
distribution of S will be denoted by Py where 8§ = (87, ..., %) €0 = 0P x @? x ...
x ©® obtains. For each N=k, k + 1, ... let NY(N), ... , N®(N) be positive integers
such that N = ¥%_, NV (N) and
(5.1) limyo.A () = limyoo NT'NY(N) =pP € (0,1), j=1,--- k.
With N observations, the random elements X{", «++ , X0h; «+-; X{®, ...; X% are
available. Consider the testing problem Hy: 6 € 0, against H;: ©;, where ®, and ©; are

given subsets of O, satisfying @ N ©; = 0. Let {x} = {8, ---, 6%)} be a sequence of
alternatives. Replacing (1.3) by '

(6.2) limy_«infpeomaxi<;<xH (0, 05") = 0, limy_..infyee, T5-1 NVH? O, 65") = oo,

the concept of i-efficiency is defined (with some obvious modifications) as in Section 1.
The following modified version of Lemma 2.1 will be used later.

Lemma 5.1. Let TR = TRH(X(", - -+ ,X{Ww), i=1,2, N € N, be test statistics rejecting
the hypothesis for large values of T §. Suppose that there exist positive functions b®(p,
cvo,pi 0),1=1,2, such that for all sequences {0n} satisfying (5.2)

(i) limpyePg {1l —e= N72TQ/6YAR, o« AR 00) <1+ ¢) =1 foreache>0,
(i) limyoe{~ (N£}) 10g supsee,Po(TH = N’ty)} = 1if N*’ty —  and ty = o(N~")

as N — o,
{b(l)o\}‘})’ . }\}\1;); 0N)}2

(iii) if n = n(N) —» o as N — o, then limy_, OOD. AP ) =eexists,0<e

«

= oo,
Then the i-efficiency of TY w.x.t T exists and is given by
(5.3) . ern e = e,

If in (i) tv = o(N7Y?) is replaced by tn = O(NY*(log N)?) or ty = o(1), respectively,
then the weak or strong i-efficiency, respectively, of TS w.x.t. TR exists and is equal to
e.

The proof of Lemma 5.1 is analogous to the proof of Lemma 2.1. Note that in (2.8) we
now use

y

Dy O k). 2
limy_o, DUAN, -, AN Ow) )
= B, -, AL, )
according to (iii).
Similarly, Corollary 2.2 can be adapted to the k-sample case. As an application the
intermediate efficiency of simple linear rank statistics in the two-sample case will be
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discussed. So let £ = 2, ® = {(F, G); F, G € &}, where & denotes the set of continuous
distribution functions on R'. The null hypothesis is given by Hy: 0 € {§ € 0; §© = §*}
= {(F, F); F € #} and the alternative hypothesis by H; = H{(F) = {(F, Fa); A € (0, o)},
where F € Fsatisfies H(Fa, F) > 0 A — 0 and NHZ(FAN, F) > o © N2Ay — . We
consider simple linear rank statistics of the form

(5.3) Sv=8.(p) = N an(Rin),

where R,y is the rank of X{” among X{", ... ,X%h, X, ... , X% and where the scores
an(1), - -+, an(NN) are given in either of the following ways:

(5.4) an(@) =@@E/(N+1)), 1=<i=<N,

(5.5) an(i) = Ep(U§), 1=si=<N.

Here U{ denotes the ith order statistic in a sample of size N from the uniform distribution
on (0, 1) and

(5.6) ¢(¢) is a non-constant function on (0, 1) with bounded,
continuous first derivative ¢’ on (0, 1).

Define o%(p) = [ {p(t) — [ p(u) du}® dt. Let {An} be a sequence of positive, real numbers
with limy_-Ay = 0, limy_oN/?Ay = o, and let Hy(x) = AYF(x) + A$Fa,(x). The
asymptotic normality of

N‘”{N—lsN— A® j 9 (Hy(x)) dF(x>}{a"’«p)p“’p“'}“”“’

is well-known.

A Cramér type large deviation theorem for simple linear rank statistics under the null
hypothesis (cf. Lemma 5.1 condition (ii)) can be found in Kallenberg (1982). Suppose that
the derivative fa = 0Fa/0A exists in (0, A) for some A > 0 and that there exists a function
f such that limaofs = f, F-a.e. To compute the i-efficiency of Sy = Sy (1) w.r.t. Snz =
Sn(pz) with @i, ¢, satisfying (5.6), it is further supposed that there are F-integrable
functions A; such that | i{(Hn)fa,| =< h;, F-ae.,i=1,2,N=2,3, --. and [ ¢i(F)f dF >0,
, = 1, 2. Then the i-efficiency of Sy; w.r.t. Sy exists and is given by

2
WF)f dF
f kS
o*(p)

(6.7)
f 93(F)f dF

To prove this result, Lemma 5.1 is applied with
T}\;}’ = 2VINV2 {6} q@;)p Vp @} ‘I/Z{N“SN,i AN f @i(F) dF},
and

AR, AR; An)
_ 21/2”\}){02@:‘)}7(1)}7(2)}_1(2{J’ @:i(Hy(x)) dF (x) — J’ i(F) dF}, 1=1,2

So, again we have that the i-efficiency coincides with the Pitman efficiency; cf. Chernoff
and Savage (1958). This result is related to Corollary 5 of Kremer (1979). In Kremer’s, and
Wieand'’s (1976), approach, first the alternative is fixed, then the limit for N —  is taken
and afterwards the alternative is sent to the hypothesis. This suggests that with small
levels and local alternatives, (5.7) is a good approximation. Here the case of small levels
and local alternatives is directly attacked, proving Kremer’s suggestion.
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