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DECONVOLUTION AND ESTIMATION OF TRANSFER FUNCTION
PHASE AND COEFFICIENTS FOR NONGAUSSIAN LINEAR
PROCESSES'

By K. S. Li1 AND M. ROSENBLATT

University of California, Riverside and San Diego

NonGaussian linear processes are considered. It is shown that the phase
of the transfer function can be estimated under broad conditions. This is not
true of Gaussian linear processes and in this sense Gaussian linear processes

. are atypical. The asymptotic behavior of a phase estimate is determined. The
phase estimates make use of bispectral estimates. These ideas are applied to
a problem of deconvolution which is effective even when the transfer function
is not minimum phase. A number of computational illustrations are given.

1. Introduction. Most of the literature on finite parameter time series models is
either centered on Gaussian models or the results are motivated by what one can do in the
case of Gaussian models. Here we deal with stationary nonGaussian linear processes and
show that under broad conditions, aspects of the structure that are completely nonidenti-
fiable in the Gaussian case can be resolved in the nonGaussian case. Assume that the
random variables v;, t = ... ,—1,0, 1, - . . are independent and identically distributed with
mean zero, Ev, = 0, and variance one Ev? = 1. Let {a;} be a sequence of real constants
with

Y2 e al <o
Consider the linear process generated by {a;} and {v.}
(1) Xp = 3w QU ).
Let a(z) = ¥ ;a,2’ be the z-transform corresponding to the process {x;}. Then
a(e~i)\) = Zi aje—ij)\

is called the frequency response function or transfer function. We are concerned with the
estimation of a(e™") on the basis of observations only on the process {x.}. Further, the
linear nonGaussian process serves as a model for types of seismic exploration. The weights
a; can be regarded as the signature of a disturbance passing through a medium and the
random weights v, as reflectivity of slabs in a layered medium. It has been observed that
in many geophysical contexts the observed data (the x,’s) are distinctly nonGaussian and
a basic object is to deconvolve, estimating the a/’s and v,’s in the process. A discussion of
related questions in the geophysical context can be found in Donoho (1981), Godfrey and
Rocca (1981), and Wiggins (1978).
The spectral density of {x,} is

=L e 2
f(>\)—27r|a(e )5

In the Gaussian case (when {x.} is normally distributed) the full probability structure of
{x.} is determined by f(A) or equivalently by the modulus of a(e™**), | a(e™**) |. The phase
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1196 K. S. LII AND M. ROSENBLATT

information in « (e ~*?) is not identifiable in the Gaussian case.
If a(2) is a rational function
A(z2)

a(z) = BG)

with A (z), B(z) polynomials

Az) =29, arz*, ap # 0, B(z) = Y30 br2", b =1,
the process {x.} is a finite parameter autoregressive moving average process; that is,
(2) ] NP o byxi, =21 _o ArUi—p.

If {x.} is a Gaussian process satisfying (2), then any real root z, # 0 of A(z) or B(z) can
be replaced by its inverse and pairs of nonzero conjugate roots by their paired conjugated
inverses zZ ! without changing the probability structure of {x.} if the process is appropri-
ately rescaled. This follows since |e** — zo| = | 20| |e™** — 25" |. With real distinct roots
there are 277 ways of specifying the roots without changing the structure of {x,}. To
ensure unique determination of the coefficients a; and b, of (2) (since there is a different
specification of these coefficients corresponding to each of the possible root specifications)
in the Gaussian case, it is the custom to assume that all the roots of A(z) and B(z) are
outside the unit circle | z| = 1 in the complex plane.

However, for a nonGaussian stationary process satisfying (2) (in which case the inde-
pendent v,’s are nonGaussian) the different 27*? specifications of roots mentioned above
generally correspond to different probability structures and different stationary processes.
As a simple example, consider the moving average

X =60, — Bui—1 + Uz
with the roots of A (2) being 2 and 3, and the moving average
Ye= 30 — Tvi—1 + 20,2

having a polynomial A (z) with roots % and 3. Both {x:} and { y.} have the same spectral
density but if the independent random sequence {v,} is exponentially distributed, the
marginal distributions of the {x.} and {y.} sequences are different. In the problem of
deconvolution where one wishes to recover the process {v;} (assumed nonGaussian which
is most often the case in applications) in some sense, the proper specification of nonzero
roots (which are inside and which are outside) becomes crucial (see Rosenblatt, 1974).
There is a discussion concerning the distribution of roots as related to prediction problems
in Rosenblatt (1980). The assumption that all roots are outside the unit disc is often called
the minimum phase condition.

There are results on the estimation of the coefficients a, and b, of (2) (corresponding to
roots assumed outside the unit circle) in Box and Jenkins (1976). In the Gaussian case
these are essentially equivalent asymptotically to maximum likelihood procedures. In the
nonGaussian case the computations are carried out as if the process were Gaussian. One
has a least squares but not a maximum likelihood solution in the nonGaussian case. The
coefficients estimated are those corresponding to roots outside the unit circle even though
the actual structure of the process may not be one with all the roots outside the unit circle.
Thus one will typically not be able to resolve the actual structure using these procedures
in the nonGaussian case. Of course, if one knows the actual nonGaussian distribution of
the v,, one can use the maximum likelihood estimate or an asymptotically equivalent
procedure to estimate the coefficients in (2) even if the roots z, are not all outside the unit
circle (see Basawa, Feigen and Heyde, 1975). Higher order spectral methods discussed in
the next section do not require this knowledge. Our discussion follows that of Rosenblatt
(1980).
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2. Higher order spectral method. We prove the following lemma.

LEMMA 1. Let {x;} be a nonGaussian linear process (see (1)) with the independent
random variables {v.} having all moments finite. Assume that

Xlilla;|<e

and a(e™) # 0 for all \. Then the function a(e ™) is identifiable on the basis of
observations on {x;} alone up to the integer a in a factor e'* and the sign of a(l) =
Y ax. Actually it is enough to have moments of order k > 2 finite with cumulant yx # 0.

Since the v/s are assumed nonGaussian with all moments finite, there must be a
cumulant of v;, yx # 0 of smallest subscript 2 > 2. The kth order cumulant spectral density
of the process {x.} is given by

1
or v M) T ent ! Yoo CUM(Xe, Xy, =+ Fewsy,) €XP(=2 521 Tsks)

(3)

= e T —M =ty LA+ FApy)

_(QW)k_I a(e ) s a(e )oz(e ).
Let

—_ —IA (X(l)
h(A) = arg{a(e )_Ia(1)| } )

Then

a(l) k P "

|01(1)| i = (27) bx(0, - -, 0)/{f(0)}*?
and

n )

@ RO+ FhQeo) = RO+ e+ M) = a‘“g[{ﬁlil } b e ’Ak_l)}

since h(—\A) = —A(A). Further

(5) h’(0) — A'(A) = lima_o ! A {h(\) + (k. —2)h(A) — R(A + (R — 2)A)}.

(k—2

Now

A
h@) = J {h'(u) —h'(0)}du+ch=h Q) +cA
0

where ¢ = A’(0). In particular
h(7) = hi(7) + cm.

Since the s are real we must have A(m) = aw for some integer a. Set A;(n)/m = §. Then
h(m) = amr = (8§ + ¢)m, so that
c=a-—0.

The integer a cannot be determined without further assumptions since it corresponds to
reindexing or subscripting the v/s. The sign of a(1) is also intrinsically undecidable since
one can multiply «,’s and v,’s by (—1) without changing the observed process {x}. Thus,
under the conditions specified above for a nonGaussian linear process {x.}, a(e™") is
identifiable up to the integer a and the sign on the basis of observations on {x;} only and
is given by

ale™) =|2nf(\) |2 exp{ih(\)}
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with

Ay ()

T

A
(6) hrQ) = f {h'(w) — h'(0)}du + cA = hi(A) — A+aA.
0

Notice that h;(A) can actually be computed. In Section 3 we will consider an estimate of
the identifiable aspects of a(e™*) suggested by Lemma 1 and the convergence properties
of this estimate. Comments on the computations using spectral methods follow in Section
4. A few remarks on other computational methods are made in Section 5. Examples of
estimation and deconvolution are given in Section 6. It should be noted that in some
seismic investigations, a can be estimated through knowledge of speed of wave (e.g. sound)
propagation through the medium.

3. Phase estimation and convergence of estimates. There are many discussions
concerned with the estimation of the second order spectral density f(A) (see Anderson
1971, or Jenkins and Watts, 1968). We will concentrate on the estimation of A(A). For
simplicity of discussion we will assume that the third order cumulant y; of v, is nonzero.
The program in the higher order case can be carried out in a similar manner. Equation (5)
becomes

R'(0) — h'(A) = limA_,o-Al— {(hQA) + A(A) — A + A4)}

when % = 3. From (4) we find that up to a sign
AA) + h(A) — A\ + A) = arg{bs (A, A)}.

From this point on we will drop the subscript and understand that we are dealing with the
bispectral density b (A, u).
The following approximation is useful in deriving the theorem of this section.

LEMMA 2. Let the assumptions of Lemma 1 be satisfied. Assume that ,b(\, u) is a
consistent estimate of b(A, p) (as n — «) based on a sample of size n. If one considers
0. (A, p) = arctan(Im,b(A, p)/Re,b(A, n))
as an estimate of

O\, p) =arg b(A, p)

then
Im b\, p)

7 6.\ p) =0\ p) =———— {Re,b(\,p) — Re b\,

(7) A, p) —0Q, p) B {Re.b(A, 1) eb(\, pn)}
Reb\p) . o _
WZ— {Imnb(}\,p.) Im b(}\,,U.)} + Op(nbO\,,U.) b(}\,[.t))

We note that for a complex number
z=x+iy=re?

with 7 = | z| and 6 = arctan(y/x) a principal value determination, one has

a0 x a0y %0  2xy 0°0 _  2xy
dy r*’ ox r¥’ ax*  rt’ 9y rt
and
9% 2x? 1 2y?




NONGAUSSIAN PHASE AND DECONVOLUTION 1199

The relation (7) follows on using these observations in a Taylor expansion of the arctan
function.
Let us consider estimating

hy(m) A

hi(A) —

Set A = A(n), kA = A, and let A = A(n) — 0 as n — «. Assume for convenience that
b(0, 0) is positive. A simple modification indicated later takes care of the case in which
b(0, 0) is negative. Now

- (A = hQ\) — W (0)A = h(kA) — fl% kA

= =257 {h(A) + h(A) — R((G + DA)} = =%l argb(jA, A).
This suggests
H,(\) = =Yj=1 arg,b(jA, A)

as an appropriate estimate of A;()).

THEOREM. Assume that b(0, 0) is positive and that EX$ < «. Consider
(8) H,(\) = =Y}=1 arg.b(jA, A),
kA = ), as an estimate of
hi(A) = R(A) — R (O)A,

where it is understood that the bispectral estimates are weighted averages of 3rd order
periodogram values. If (A, u) € €* and the weight function is symmetric and bandlimited
with bandwidth A, then

H,(\) — hi(A) = Ra(A) + 0p(H(A) — hi(N))
with

A
11
ER,(\) ~ J' Tlr% {AD?Re b(u, 0) + 2BD,D,Re b(u, 0) + CD?Re b(y, 0)} dud
O bl

> {ADZIm b(u, 0) + 2BD,D,Im b(x, 0) + CD2Im b(u, 0)} dul + o(A)

_ (" 1Reb(y,0)
o 20w, 0)]

and
2 ¢

2
9) Cov{R.(A), R.(n)} = % min(A, ) | w’(u, v) du dv
A nys
for A(n) — 0, A’n — o as n — «. Here A, B, and C are the second moments of the weight
function w of the bispectral estimates
A=Ju2w(u, v) du du, B=J’uvw(u, v) du dv, C=j v: w(u, v) du dv

and D, and D, are partial derivatives with respect to u and v respectively.

It has been shown in Brillinger and Rosenblatt (1967) under the assumptions of the
theorem that

(10)  E{ub(\, p)} — b\, p) ~ % J’ J (uDy + vD, )b\, p)w(u, v) du dvA® + o(A?)
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and

T FWIA+p)

(11) Var{nb(k, IL)} AZn

w?(u, v) du dv, 0#N#p#m,

if A’n — o as n — o, A(n) — 0. Further estimates ,b(A, ), .6\, 1), 0= p <A, 0=y =<
A’, are asymptotically uncorrelated as n — o if (A, ) and (X', p’) are distinct. Using (7) and
(8) we can write

H,(A) — hi(A) = Ra(A) + 0p(HA(A) — hi(N)),
Im b(jA, A)

Ib—(jA—,K)—IZ— {Rend(jA, A) — Re b(jA, A)}

(12) RN =Y [
_Reb(jA, A)

m {Im, b(;A, A) — Im b(j4, A)}]

and show by employing (10) that the approximation for ER, given in the statement of the
theorem is valid. Further, by using (11) it follows that (9) holds.

COROLLARY. Assume that all moments of {x.} exist and that the assumptions of the
theorem are satisfied. Then EH,(\) — hi(\) and H,()\) is asymptotically normal with
variance given by (9). The mean square error of R,(\) is of order

Cy
Ci1A% + ——.
! A’n
The optimal rate of convergence is n~%° when A(n) ~ n™. If b(A, u) € ¢° and the
weight function is bandlimited with first and second moments zero, the mean square
error of R.(\) is of the order
Cy
CiA* + ——.
! A’n

The optimal rate of convergence is then n™*" with A(n) ~ n™*/".

The asymptotic normality with variance given by (9) follows on using (12).

Generally we will estimate A;(A) and hence A(A) for a whole range of A values. The sign
of (0, 0) may not be positive. We estimate it by noting the real part of ,b(A, A). If it is
negative we multiply all ,b(jA, A) with a minus sign. The estimate H,(A) is then given by

H,(\) = = Y arg{— .b(jA, A)).

4. Computations using spectral methods. We remark on the computational as-
pect of phase estimation of a(e™*) and give a few illustrative examples to indicate its
effectiveness.

Given a sample {x,} of size n = kN, we center and normalize it so that it has mean zero
and variance one. Break up the sample into & disjoint subsections of equal length N so
that the variance of the bispectral estimate from each section is not too large. Then choose
a grid of points A, = jA in (0, 27),j =1, ---, M, A = 27 L/N for an appropriate integer L.
Though the symmetry condition 2(A\) = — A(— A) implies that one need only deal with A
in (0, 7), there may be some advantage in considering A € (0, 277). We will comment on this
point later on. Form the bispectral estimate xb(jA, A) of the type discussed above with a
weight function of bandwidth A from each subsection. Average the estimates from the
different subsections so as to arrive at a final estimate ,b(jA, A). A detailed discussion
of this kind of algorithm can be found in Lii and Helland (1981). Compute 6.(j) =
arg{,b(jA, A)} + 2kw where the integer % is chosen to ensure continuity of H,(ZA) =
H,(\) === 0,(j), (=2, -+, M + 1 (neighboring values are as close to each other as
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possible). Since the upper index is #— 1 we start with /= 2. Since A(0) = 0 one sets H,(0)
= 0 and estimates H,(A) = H,(A:) by an interpolation between 0 and H,(Az), A2 = 2A.
H,(7) is also computed by an interpolation procedure. This amounts to a complete
procedure for estimating A(A).

Since

1 27
ap = —f ale™) e dA
2w J,
an estimate ax of s is given by

_1 27
ap = — J’ ale™™)e™ dA
2
(13)

1 ‘ H,
=G mexp{l(h’n(m— ,iw) A;+k>\1>}

and this computation can be carried out by using the fast Fourier transform.

The o)’s are real numbers and so the a;’s may or may not be real. If the symmetric
property of f(A) and A()) is used and the integration is carried out from — 7 to 7 almost
real &;’s will be obtained. The imaginary part of the a;’s will only be the size of rounding
errors. In practice there is no indication of how good or bad the estimates are apart from
asymptotic results. In actual practice {jA}%" may not be symmetric about 7. If the
estimates H,(A,) are reasonably good the estimated &,’s from (13) should still be almost
real. The size of the imaginary part reflects the level of noise. When the estimates H,.(A,)
are not good the imaginary part of the a,’s becomes comparable to (or larger than) its real
part. This can serve as a direct indication of the quality of the estimation.

If the linear process is one-sided with a finite number of parameters one has a moving
average of order q

X=X %o U, ao # 0.
We could estimate a(z) =Y %o o, 27 by &(2) =Y Lo & 2’. In deconvolution we try to recover

the process {v:}, v, = %(B is the backward shift operator so that B’x, = x,-;) by

1
a(B)

computing the approximation 0, = x,. If all the roots of a(z) (and &(z)) are outside

(B )
the unit circle (the frequency function is minimum delay) then & '(z) has a one-sided
expansion Y ;2o a;B’. In the computation, the series is truncated after a certain number of
terms. If some of the roots of &(z) have modulus less than one we can still expand & *(B)
with a Laurent series expansion. Once the roots of &(z) are computed, one can easily get
the Laurent series expansion of & '(B) by partial fractions as described in Rosenblatt
(1974) or Henrici (1974).

Another way to find the inverse welghts in deconvolution is to use a least squares
criterion as described in Wiggins (1978). Another general method of deconvolution will be
mentioned in the section on computation. A discussion of related questions for autoregres-
sive schemes can be found in Huzii (1981).

5. Other possible computational methods. We briefly discuss two other possible
methods of estimating the coefficients of a nonGaussian moving average process of order

q
(14) xe= Y0 &V

As noted earlier, second order moments will not allow us to determine the location of the
roots of

(15) a(z) = Yo a,2’.
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Higher order moments will be used in the first method which makes use of a least squares
procedure. Assume Ev, = 0, Ev} = y # 0. Consider

(16) cr=Exxtn=vY, qalr, k=—-qg—-q+1,---,q
Estimate c; by

A

1
2
Cr = —n— 22=1 Xt X t+k

and solve the extremal problem
(17) ming Y-, @ — v Y, a/al)’.

There are ¢ + 2 unknowns aj, - - -, @z and y in (17). Due to the homogeneity of the o;’s we
have to normalize the problem appropriately; all the «,’s can be multiplied by a constant
¢ # 0 and y can be divided by ¢? without changing (17). There are a number of ways of
carrying out such a normalization. One could set Ev} = y = 1. Alternatively ao = 1 could
be the normalization condition. Some comments on the asymptotic distribution of the é;’s
are given in Appendix 2.

The second method is a searching procedure. One uses a typical second order method
to estimate the roots of a(z), r,,j =1, - - -, q, assuming all the roots have modulus greater
than one. An accurate estimate of the distribution of roots is obtained by taking the
conjugated inverse of an appropriate number of the 7,’s. Suppose all of the r;’s are real and
distinct. Then there are 27 possible sets of roots that give the same second order structure.
Each of these sets yields a distinct set of &’s which in turn lead to a distinct set of the cx’s.
Choose the set of &’s which determine the set of ¢;’s minimizing

Zzzﬂ, (ér — cr)®

among all the possible sets of {&}. If some of the roots r; are complex, the inverse complex
conjugates are taken in pairs. If there are multiple roots, the solution of roots in terms of
coefficients is unstable. Some comments on this question are made in Appendix 1. The
initial set of coefficient estimates corresponding to roots all outside the unit circle can be
obtained by the method described in Box and Jenkins (1976). Alternatively, one could try
to obtain the roots directly by solving for the roots of the polynomial

p(z) = z%g(2)
where
g(2) = a(z)a(z™) =Y/ B2’
with

B = ExeXisi)) = X/ @)

‘

We estimate 8, by

A

1 _
B=— T xikew -

The roots of p(z) with modulus greater than one are the initial set of roots.

6. Examples. We will consider a few simple examples generated by Monte Carlo
simulation to illustrate the computation and to give a qualitative feeling of the effectiveness
of the theory. Details and possible “fine tuning” of the computational method will be
considered elsewhere.

We generate x; = v, + a1U,—1 + QsUi—2, t = 1, - -+, 640 where v, = v/ — 1 and v;’s are
independent exponentially distributed random deviates with mean one obtained from the
GGEXN subroutine in the International Mathematical and Statistical Library (IMSL).
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Then
Ev,=0, var(v,)=Evi=1  Evi=2.

We partition {x.}%% into five sections, each of which has 128 points. Compute the
bispectrum estimate 1280”(jA, A),j=1, --+,13;i=1, - - -, 5 by the algorithm described in
Lii and Helland (1981). Here we set A = 187/128 = 0.442. Our final bispectrum estimate is

s10b(JA, A) = 1/5 Y0-1 1285 (JA, A).
Compute
8,(j) = arg{»b(jA, A)} = arctan {Im ,5(jA, A)/Re ,b(jA, A)}
by taking the principal value as well as
—H.(jA) = —H.(\)) = ¥/21 6.(5), j=2---, 14

Let

H,(0) = H.(Ao) =0,

H, () = H.(\) =% H,(As),

H, () = %{H,(74) + H.(84)} = %{H,(3.093) + H.(3.534)}
and

é=—H,(m)/m=—28.
Recall that ¢ is an estimate of

h(d)

A h’(0)

c=lims_o

up to an integer. From formula (13) we compute the a;’s. A standard smoothed periodogram
with uniform weights and bandwidth A was used to compute f.(A) as an estimate of the
spectrum f(\) of {x.}; f.(0) is obtained by a linear extrapolation. These examples are as
follows:

MODEL: x; = Vs + a1Us—1 + a2U,—2 With four cases specified in Table 1.

Here and from this point on all &’s are adjusted by sign and index shift.

Table 2 gives the details of the computations for Case 2. Figure 1 compares the
theoretical A with the estimated A.

As an indication of discretization error, notice that if we use the exact 4(\) and | ale™) |
instead of estimated ones, we get

ao = 0.9136, ay = —2.247, as = 0.5977.

When we increase the number of parameters to four, we observe qualitatively the same
type of result as in the three parameter case. But generally speaking, the instability is
increased. We give one example. The model is

Xt = U — 4.251)[_1 + 4.750;-2 bl 0.93801_3
with roots %, %, 4 and we get
ao = 1.106, a = —3.572, a = 4.293, as = —0.9762.

These simple examples indicate that one can estimate the unknown coefficients reason-
ably well and one is able to discriminate between different models even though they have
the same spectral structure.
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TABLE 1
Coefficients, roots and estimated coefficients for four cases

Coefficients Roots Estimated coefficients
Case
[L0)) (431 [19) r re &0 li 1 &2
1 1.0 —0.833 0.167 2.0 3.0 0.9593 —0.5816 0.1158
2 1.0 —2.333 0.667 0.5 3.0 0.7164 —-2.175 0.7605
3 1.0 —3.50 1.50 2.0 0.333 0.7561 —3.334 1.778
4 1.0 —-5.0 6.0 0.5 0.333 0.9603 —3.904 4.966
TABLE 2
Computations for Case 2
Length Est. Argument Argument Argument Adjusted —H,(\)
A lae )| Length  h(\) by Sum atd — —H.N+ G
-H,.(\) 0.(\) [\
0 0.6667 0.473 0.0000 0 0 0 0
0.442 0.8389 0.894 —0.6125 —0.2713 0 0.0904 —0.352
0.884 1.3018 1.315 —1.0828 —0.5425 —0.5425 0.1808 —-0.703
1.325 1.95563 1.888 —1.4915 —0.4851 0.0574 —0.0575 —1.382
1.767 2.6785 2.748 —1.8895 —0.6904 —0.2053 —0.0331 —1.80
2.209 3.3369 3.348 —2.2893 —0.6481 0.0423 —0.2563 —2.465
2.651 3.8064 3.520 —2.6920 —1.0097 —-0.3615 —0.0756 —2.727
3.093 3.9980 3.809 —3.0966 —1.0884 —0.0787 —0.1778 —-3.27
3.534 3.8752 3.951 —3.5014 —1.4842 —0.3958 0.0371 —3.497
3.976 3.4614 3.297 —3.9047 —1.6797 —0.1956 0.0518 —3.924
4418 2.8351 2.802 —4.3051 —1.5538 0.1259 —0.2550 —4.693
4.860 2.1146 2.168 —4.7031 —1.8428 —0.2890 —0.1469 —5.007
5.301 1.4344 1.429 —5.1070 —1.8785 —0.0357 —0.2921 —5.593
5.743 0.9199 0.936 —5.5558 —2.3478 —0.4693 —0.0037 —5.747
6.185 0.6755 0.443 —6.1366 —2.6185 —0.2706 0.0861 —6.099
1.00

ARGUMENT

|
o
o
o

F1G. 1. Theoretical h and estimated h for case 2 denoted by o and x.

177

2.65 3.54
FREQUENCY

4.42

5.30

6.19
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7
@
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10 42 74 106 138 170 202 234 266 298

10 42 74 106 138 170 202 234 266 298

4
@ 4
10 42 74 106 138 170 202 234 266 298
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F1G. 2. Deconvolution for case 2. (1) Moving average process x:, t = 10 to t = 298, (2) exponential v.
sequence that generates x;, (3) estimated U, as deconvolved by our procedure, (4) v, — 0;, (5)
deconvolution of x, using minimum phase assumption.

e

To illustrate our deconvolution procedure we consider the moving average
X = Uy — 2.3330,-1 + 0.667v,—2

with the v/s independent exponential variables with mean one. The v,’s are generated as
pseudo-random variates. The estimated model (using our bispectral techniques) is

Xt = 0716401 bl 2.17501_1 + 0.76051)[—2.
Let &(B) = 0.7164 — 2.175B — 0.7605B% Set

(18) lA)[ = E?=-9 d,x,_, = m

Xt

The first line of Figure 2 is the moving average process x; as generated for ¢ = 10 to ¢ = 298.
The second line is the independent exponential v, sequence that generates x, for the same
t range. Line 3 shows the estimated o, as deconvolved by our procedure. The fourth line is
the difference v, — 0,. The last line is a deconvolution of x, using the assumption of
minimum phase. The sample mean of v, — 0, is .00032 and the sample variance .030. Notice
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how our deconvolution has generally preserved the shape of the original v, sequence while
the minimum phase deconvolution has no resemblance to the original v; sequence.

A general way to find the deconvolution weights can be described as follows. We have
an estimate

a(e™) = Vouf,(\) exp{i(H.(A) + éN)}.

We compute b(e™) = a7 *(e™™). Then
1 27
& = —-j ble™Me™ dA
27 R

give the coefficients of the series expansion of & '(e™®) which are the weights desired in
deconvolution. This method is general. We do not require knowledge of the order of the
moving average process and there is no need to compute the roots from the estimated
coefficients and how the roots are distributed is irrelevant.

APPENDIX 1

In this appendix we consider the relationship between the coefficients of a polynomial
and the roots of the polynomial, at least locally. The polynomial is

Yoo @z’ = [[%-1 (z — 2))

where the roots are z;, j =1, -- -, p, and the coefficients a;,j =0, 1, --- , p, with @, = 1.
It is well known that

Gp-1=-3,2, Qp-2 = Y ek 22k,
p-3 = — VywhncZiZe26 +++ , Qo= (—1)7 21 <+« 2p.

Let us consider the relationship between the differentials of the coefficients a, and the
differentials of the roots z,. Now

an—l - -1 6(1,,_2

= =t = —Qp-1 — 2y
aZ( ’ 32( 21 ’ P ’
aap‘a
2
Ereia Yinkne 22k = —Qp—2 —20p-12,—227,
3

£=1, ---,p. Thus
day-1=-3%,dz, dap»=—a,1},dz —};zdz,
dap-3 = —ap—3 ¥, dz; — 2ay-1 Y, 2,dz; — 2%, 27 dz), « -+

and this can be written in matrix notation as

da,,,l dz
da,-» dzs
da,,_g =UV d.Z3
where
-1 0 00
_ —Qp-1 -1 0 0
U= 2 0
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and
1 1 1
21 22 23
V= 2 2 2
21 22 23

1
2n
zn

U is a triangular nonsingular matrix and V is the Vander Monde matrix. V is nonsingular

as long as the roots 2, are distinct.

APPENDIX 2

The object is to remark on some aspects of the asymptotic behavior of estimates of the
¢x’s in the context of a general linear process. Let x; be a nonGaussian linear process (1)

with
Ev =0, Euvi=1,
cum(vy) = ys,

Set
¥y = x7.

For convenience we introduce
8u = Cov(x, Y1-u),

Consider the estimates

Py

ga:ﬁ

of Ex;Yi+q. Then

r. = Cov(xs, x1-u),

1
Ztl\;l XtYt+a

EU?Eya

cum(vf) = ve.

he = Cov(ye, Ye-u).

A 1
Cov(£a, ) = w3 Dte=1 COV(XeYera, XrYrss)

I

where

Cov(XtYitas XeYrid) = FierClortra—b + 8tor—68t—r+a + CUM(X¢, Xr, Yrrs) CUM( Yesa)

+ cum(x;, X;, Yrra) cUM( Yers) + cum(xe, Yeva, Xry Yrtsd)-

Now
- _ 2
Ty =Y, 00y, 8u= Y3 X, 0,
Further

cum(yea) = Y, a2,

‘

u= Y4 2 a?“?—u + 2 (Z] ajaj—'u)2'

Cum(xl) Xry y7+b) = Y4 Zj a_]a_]2+baj+(t—7) = k(by t— 7)7

cum(xy, Xr, Yeva) = ¥4 ) 0,040l = k(a, 7 = t),

2 2
cum(Xe, Yeva, Xr, Yrtd) = Yo Zu Oy Oly+ (1 —t) Xt a X+ b+ (v —1)

+ 474 (Zu auau+(r—t)au+aau+b+(‘r~t))(Zu auau+(7—t)+b-—a)

+ 2Y§ (Zu auau+(r~t)au+a)(2 aiau+(t~7)+a——b)
+ 2‘Y§ (Zn auau+(t—-r)au+b)(z aiau+(f—t)+b—2)

=Fkia, b t—1).
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It is then clear that
limN—aooN COV(gAa, gAb) = Zs I'sCs+a—b + Zs gs~bgs+a
+ 102 {k(b,8) + k(a,s)} + 3 k(a, b, s).

Under the assumption that Y, | ;| < o, with a truncation argument like that employed in
Anderson (1970), one can show that

\/N (éa - gu)

are asymptotically normally distributed with covariance structure given by the preceding
formula.
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