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CONVERGENCE OF SIMAR’S ALGORITHM FOR FINDING THE
MAXIMUM LIKELIHOOD ESTIMATE OF A COMPOUND
POISSON PROCESS

By DANKMAR BOHNING

Free University Berlin

Simar (1976) suggested an iteration procedure for finding the maximum
likelihood estimate of a compound Poisson process, but he could not show
convergence. Here the more general case of maximizing a concave functional
on the set of all probability measures is treated. As a generalization of Simar’s
procedure, an algorithm is given for solving this problem, including assump-
tions to ensure convergence to an optimum. Finally, it is shown that Simar’s
functional fulfills these assumptions.

1. Introduction and formulation of the problem.. Simar (1976) considers the
maximum likelihood (ML) estimation of a compound Poisson process. This problem leads
to the maximization of the concave functional ¢, defined by

(1.1) #(8) =X, ailog{ j

T

e 't (dt)},

where ay, - - - , ay are known, positive real numbers summing to 1, T is equal to [0, «), and
8 € A, the set of all probability measures (p.m.’s) on 7. More generally, we consider the
maximization of a concave functional ¢:A — R U {—x}, where T is now an arbitrary
topological space, and A is the set of all p.m. on its associated Borel sigma-algebra.

Let A* = {§ EA| $(8) > —}, and, for K € R, A¥ = {§ € A| $(8) = K}. Also let &, be the
unit measure at ¢ € T. Note that for ¢ = ¢,, A* = A\{do}. Let S(8) denote the support of §
EA.

AssuMPTIONS. (i) There exists 3 € A* such that ¢(<§) = ¢(8) for all § € A. (ii) For all
8 € A* there exists 8*(8, t) € (0, 1] such that

(1-pB)8+ Bs. A", BE0,B"]

REMARK. Assumption (ii) allows the definition of the directional derivative
(1.2) ®,(8, &) = limp_0. B {$((1 — B)S + BS,) — ¢(8))
for any 8 € A* and any vertex direction &..

AssuMPTION. (iii) For all y > 0, K € R there exists Bo = Bo(y, K) € (0, 1) such that

(3, 8) =y implies $((1—B)S +B8) — (0) =B

for all B € [0, Bo(y, K)), all 8 € A¥, and all ¢ € T. From here on we sometimes write just
® instead of ®,. Note that
(1.3) supeerd (8, &) = ¢(8) — ¢(8), S €A™

2. A general algorithm and its convergence. The following algorithm and the
associated convergence theorem is taken from Bohning (1981). For

¢(8) = log det[f t'8(dt)}, TC R,
T

this algorithm is discussed by Silvey and Titterington (1973).
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ALGORITHM 1. (¢ = ¢,: Simar’s algorithm)
1. Choose §; € A*,setn = 1.
2. Find ¢, € T such that ®4(3, 8;) = sup,er P (Jx, 8:).
If ®4(5,, 8;) = O stop.
3. Choose 8,+1 € A(n) = {§ € A*|S() C S, U {t.}} such that ¢(8.+1) =

supseam)d ()
4. Setn=n+ 1, and go to 2.

REMARK. For the sake of brevity we assume that Steps 2 and 3 are always well
defined. For example, Step 2 is well defined if (a) 7" is compact and ¢ — ®(5, ;) is
continuous, or (b) 7' is locally compact and ¢ — ®(§, §;) disappears at infinity. Recall that
continuous f: T — R is said to be disappearing at infinity if and only if for all ¢ > 0 there
exists a compact set 7. C T s.t. | f(¢)| < & for all ¢t € T'\T.. Since

®,,(6,8) = Y {ait'e™/ j t'e”'8(dt)} = 1,

case (b) is true for <I>¢P.

CoONVERGENCE THEOREM. If ¢ meets Assumptions (i), (ii), and (iii) then for any
sequence (8,) created by Algorithm 1, we have that either (8,) is finite with its last element
being maximal or,

limo—e(8) = 6(8).

PROOF. (¢(3)) converges since it is monotone increasing. Let ¢" be its limit. Assume
¢+ < ¢(8). Then

(8, 8,) = supicr®(S,, &) = ¢ (8) — $(8,) = 6(8) —p*=y>0

for some suitable v, using (1.3). Thus by assumption (iii)
$(8nsr) = $(8:) Z $((1 = Bo)d + fud) — $(8) =1 fo>0
for all n € N, which contradicts the Cauchy property of (¢(8.)). O

COROLLARY. Let (8,) be any sequence constructed by Simar’s algorithm. Then either
(8,) is finite with its last element being the MLE, or
i, by (82) = (8).
PRrROOF. Since Simar has already shown the existence of a MLE, and since A* =
A\ {80}, only Assumption (iii) has to be verified. For this purpose consider the set
M={x€E R’N”):'J’ e”‘tu(dt) = xi41,i=0, .-+, N, for some measure p s.t. u(T') < 1}

which Simar has shown to be compact and convex. Additionally consider the two mappings

‘ T
m:§ € A-m(d) = <f e~'5(dt), «--, f e—'tNS(dt)) EM
and
Wi (%9, + -+, xn)" € RY' — ¥(x) = T o ailog(x) € R U {—}.

Note that ¥ is continuously differentiable on M\ {0}. From the mean value theorem we
get

&p((1 — B)8 + B8) — 6,(8) = ¥((1 — B)m(S) + fm(5)) — ¥ (m(5))
= BV¥((1 — rB)m(S) + rfm(8,)) ' m(s,) — 1
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for some r, 0 = r < 1. Thus
(1 — B)d + B8) — $p(8) — BDy,(3, 8.) _
= B{V¥((1 — rB)m(8) + rBm(s,)) — V¥ (m(8))} " m(5,).

Now, the problem is that if m(§) € M*¥ = {x € M| ¥(x) = K}, then (1 — r8)m(5) + rfm(5,)
need not be in M¥, For this reason, we introduce the set M** = {x € M| ¥(x) = K — ¢} for
¢ > 0. This again is a compact set, on which V¥ is uniformly continuous. We can thus find
Bo = Bo(K, v) such that for all 0 = 8 = B,

(1 — rB)m(8) + rfm(3,) € M**

and

| V¥ ~ rB)m(®) + rfm(6)) ~ V¥ M) <
where § = sup{[|||:1 € M}. Altogether we get
. |65((1 = B)S + B8) = 4y(8) — B, 6,0)| <51 5=

for all 8 € [0, B,] and all § € A¥, ¢t € T. Assume that
Bol((1 = B)S + ) — 6,(8) < 1.
Then — ®(9, §;) = — y implies

1
(1= B3 + BB) = 0,(8) — B, 5,8) < BT ~ By =~ B,

which contradicts (2.1). Thus ®(8, ;) = y > 0 implies ¢,((1 — B)5 + B8.) — ¢»(8) = B%I for
all 8 € [0, Bo] and all § € A%, t € T, if we set Bo(y, K) = Bo. O

REMARK. The argument used in the proof of the corollary is more general in nature.
It applies for any convex linear mapping m:A — RY, e.g, m{(1 — B)6 + B&} =
(1 — B)m(d) + Bm(5), B €[0, 1], 8, 6 € A and any mapping ¢: RY — R U {—ox}, which has
the property that it is continuously differentiable on M¥, and, ¢ = Yom. In optimal
experimental design a multitude of optimality criteria fulfill the above assumption (Wu,
1978). For this reason the proof of the corollary is not simplified by using a second degree
Taylor expansion.

Acknowledgment. I would like to thank Ben Torsney, University of Glasgow, for
drawing my attention to Simar’s article.

REFERENCES

BOHNING, D. (1981). Numerische Methoden in der optimalen Versuchsplanung. Unpublished disser-
tation at the Department of Mathematics, Free University Berlin.

SILVEY, S. D. and TiTTERINGTON, D. M. (1973). A geometric approach to optimal design theory.
Biometrika 60 21-32.

SIMAR, L. (1976). Maximum likelihood estimation of a compound Poisson process. Ann. Statist. 4
1200-1209.

Wu, C. F. (1978). Some iterative procedures for generating nonsingular optimal designs. Commun.
Statist. A 7 1399-1412.

FREE UNIVERSITY BERLIN
KELCHSTRASSE

1000 BERLIN [WEST] 41
WEST GERMANY



