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MINIMAL COMPLETE CLASSES OF TESTS OF HYPOTHESES WITH
MULTIVARIATE ONE-SIDED ALTERNATIVES

By JounN I. MARDEN

University of Illinois at Urbana-Champaign and Rutgers University

In this paper we present minimal complete class theorems for testing
problems with simple null hypotheses and multivariate one-sided alternative
hypotheses. The results extend previous ones by not requiring that the tests
be based on exponentially distributed random variables or that the null and
alternative parameter spaces be topologically separated.

1. Introduction. We are interested in characterizing admissibility in a variety of
problems testing .

(1.1 Hy:0=0 versus Ha:0€0,=0 — {0}

based on observing X whose distribution depends on the parameter § € ® C R”. We require
that © be one-sided in the sense that ® C V where

12) Vis a closed convex cone in R” with vertex {0} such that
' v € Vand v % 0 implies that —v & V.

Section 2 contains minimal complete classes of tests of (1.1) under conditions general
enough to apply to the one-sided combination problems and invariance-reduced multivar-
iate normal problems described below. It is assumed that the range space of X, %, is an
open convex subset of R™, and that X has a density f(x; §) with respect to Lebesgue
measure g on R™ which is positive and jointly continuous in (x, ).

In a combination problem there are p independent statistics Xj, - - - , X, such that it is
appropriate to test §; = 0 versus 6; > 0 based on X;, and an overall test of (1.1), where 8§ =
(6, «- -, 6y), is desired. Examples include combining tests of means based on X; ~ N (6;, 1)
(see Birnbaum, 1955); combining tests on noncentrality parameters 6; based on X; being
noncentral x> (Marden, 1982), F (Marden and Perlman, 1981) or ¢; combining tests of o?
= 1 versus 67 > 1 or versus o7 < 1 based on X; ~ o7x? where §; =1 — 672 or 0;% — 1;
combining tests of 0% = 6% versus 6% > 0% based on X; ~ (¢%1/0%) F where §; = 1 —
6%/0%; and combining tests of p; = 0 versus p; > 0 (or p? = 0 versus p? > 0) based on X;
being a sample correlation coefficient from a bivariate normal with correlation p; (or based
on the square of such). In the normal mean and o7 < 1 cases, the density of X is exponential
with natural parameter # and natural statistic X, and ® equals the nonnegative orthant.
Hence the results of Birnbaum (1954 and 1955), Matthes and Truax (1967) and Eaton
(1970) can be used to show that the minimal complete class of tests consists of all tests
equal a.e. [p1] to one with an acceptance region A which is convex and decreasing, i.e., if x
€ A and y; < x; for all i, then y € & implies y € A. A similar result can be shown for the
noncentral x* problem even though it is not in an exponential framework. The other
problems need our theorem. See Marden (1980a) for details.

Often, a testing problem on multivariate normal parameters can be reduced by invari-
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ance to one of the form (1.1) where 6 and X represent the ordered characteristic roots of
certain matrix valued parameters and statistics. In such cases, ® is contained in the ordered
nonnegative cone. The minimal complete classes of invariant tests in the multivariate
analysis of variance and generalized multivariate analysis of variance problems can be
found using the results of Section 2. See Marden (1980b). Other applications are made in
Marden (1980a) to invariant tests in testing ), = I versus Y, > I or versus Y, < I based on
a Wishart (})), in testing }; = Y versus Y, > Y, based on two independent Wisharts, and
in the canonical correlation problem.

Our theorem builds on the work of Farrell (1968) and Ghia (1976). Farrell considers
testing Hy: 6 € O, versus H,: 60 € O, based on X exponential when 0, is compact and @,
N ©4 = @. Note that these conditions imply that ® and €4 are topologically separated. If
for some V asin (1.2), ®4 C V and V — B4 is bounded, then a minimal complete class of
tests consists of all tests of the form

1 if x&C .
1 if f flx; 0)v(dB) > f f(x; 0)p(dB)
@4 ©

0

(1.3) $(x) =

0 otherwise a.e.[u],

where » is a o-finite measure on 4, p is a finite measure on @,, and C is a convex and
decreasing [ V] subset of %, the partial ordering -<.[V] being defined by

x=y[V] if xd<y'§ forall €V,

(1.4)
x<y[V] if x9<y@ forall §€ V— {0).

Ghia treats the same problem but does not require that fbe exponential. For a fairly large
class of densities f he defines a partial ordering on % based on properties of the tails of f.
The minimal complete classes contain tests (1.3) where the sets C, which he calls
“truncation sets,” are decreasing in the new ordering. He also considers cases for which
0,4 is compact and contained in ©, and shows that the sets C can be eliminated from (1.3).

Unfortunately, in our problems the condition that {0} N ®4 = & does not hold, hence
we cannot directly apply the above results. Farrell and Ghia need to separate the null and
alternative spaces lest » and p in (1.3) turn out to be the same measure. We modify the
middle term in (1.3) to solve that difficulty, which admits locally optimal tests into the
class, but we restrict the null space to be simple and the alternative to be one-sided. The
densities we allow are more general than exponential but not as general as Ghia’s. In
Section 4 we show how our results apply to “almost exponential” and other densities.

Problems in which 0, is not restricted to be one-sided are being attacked by Professors
R. Farrell and L. Brown, and the author. These anticipated results will apply to combining
the two-sided tests with alternatives o7 # 1 or ¢% # 6%, and to the invariance-reduced
problems with alternatives ), # I or Y # Y.

2. The minimal complete class theorem. Consider problem (1.1) as in the first
paragraph of Section 1. Define

(2.1) Ry(x) = h(0)f(x; 0)/f (x; 0),

where the function A will be described later. We make the following assumption.

LocaL AssuMPTION. There exist real-valued functions 4(x), - - -, 4(x) such that for
each x,
(2.2) Ro(x) =14+ ¢'0 + 0(c) as ¢— 0,

where 0 = 6(0) = Y5-1 |6, and ¢= (4, - -+, 4). Also, there exists an a > 0 such that for
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O, = {0 € 0O4|0 =< a},

(2.3) f [supses. | Ro — 1 |/0]f(x; 0) dx < co.
e

Define the class € of truncation sets to be all sets C C % for which there is a sequence
{m.} of proper measures on ®4 with

(2.4) C = closure {x | limsup,—e f Ry(x)m.(d) < }.

04

Throughout this paper the topological terms (closure, interior, boundary, etc.) will refer to
the relative topologies on %, and on #” in Case B below. For ©, the topology will be the
full one on R”.

We treat two different cases.

CasE A. Suppose 0 is convex and bounded, and @, = {# € V|0 < ¢ < a} for Vin (1.2).
Assume the function A in (2.1) can be chosen bounded away from zero so that Ry can be
extended to a continuous, finite and positive function (also called Rs) on & X ©. In addition,
for each § € ® — 0, there exists a sequence {#,} C 04, 8, — 6, such that for every x,

(2.5) Ry (x) T Ro(x).

In this case, for each x, Ry is bounded away from zero and infinity as a function of 4.
Thus C in (2.4) is either Z or & as the limit superior of 7,(0,) is finite or infinite, i.e.,

(2.6) &= {%, D} in Case A.

Note that if this case does hold then h(f) = 1/f(x*; 8) will work for any x* € & The
function A is necessary when the density f is identically zero in x for § € ® — O because we
need R, to remain positive.

Caske B. Suppose ® = V(1.2) and take A = 1 in (2.1). There exists a function w from
% onto #; a convex subset of R”, for which the following hold.

(i) €= {w™'(Cy)| Cw E %}, where %, is the class of closed, convex and decreasing [ V]
(1.4) subsets of #. Furthermore, for each C,, € %,,

2.7 int w™(Cy) = w'(int C,,),
2.8) w[boundary w™'(C,)] = 0,
and if y € int C,, then there exists y’ € int C,, such that
(2.9) ‘ y<y'[V]

(ii) Take C € ¥ as in (2.4). If x & C, then on a subsequence of {n},
(2.10)  limp_e f Ry(x')m.(d@) = o for all x’ suchthat w(x’)= w(x)[V].

(iii) If w(x’) > w(x)[V], then
(2.11) 1im; . oSUP,=.[Ro(x) /Ry (x")] = 0.

(iv) There exists a positive function «(#) such that for any £ € V — {0} and ¢ real,

(2.12) lim, ..o (s€)exp(—st) Ry: (x) = {Cg g g'zg; Z ;

and

(2.13) f [supssoa (sé)exp(—st) R,: (x)1f (x; 0) dx < oo
{x| & wlx)<t}
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Recall that a test is a measurable function from % to [0, 1]. We define the class ® of
tests for problem (1.1) to consist of all tests of the form

1 if x&C,
(2.14) o(x) =41 if d(x; A, 7, m) >c,
0 otherwise a.e. [u],
where C € &,
(2.15) d(x; N\, e, m) =¢' A + J [(Ry — 1)/0]ma(dB) + J Rymp(dB),
Ba S

A €V, m, is a finite measure on @, (see the Local As_sumption), 7 is a locally finite measure
[i.e., it assigns finite mass to any compact set] on @, @ = @4 — O, | c| < ®, and

(2.16) | d(x; A, 7o, m)| <0 for x € int(C).

_In Case A the description of ® can be made simpler. The set C is trivial by (2.6). Since
®, is compact, 7, is a finite measure, and since ¢ = a for § € _@b, [& o 'm(d@) < . Thus
for any (4, m, ¢) as above we can find a finite measure 7’ on ® — {0} and a | ¢’| < o such
that

d(x; A, 7o, M) — = ¢'A +J [(Ry — 1)/0]n"(df) — ¢’,

0-{0}

and vice versa.
Here is the main result.

THEOREM 2.1. Suppose the Local Assumption holds and either Case A or B obtains.
If for any (A, ma, 7, ¢) as above, not all zero,

(2.17) p({x| d(x; A, 7, m) = ¢}) =0,

then ® is the minimal complete class of tests for problem (1.1).

3. Proof of Theorem 2.1. The proof is broken into two parts. In Part I we show that
® is essentially complete. In Part IT we show that if ¢ € ® and v is essentially different
from ¢, then

3.1) ro(¢p) < ro(y) forsome € O,

where 7y is the risk function ry(¢) = Eo(¢) if § = 0 and ry(¢) = 1 — E4(¢) if § € O4. The
parts together imply that @ is minimal complete: Part II immediately shows that every ¢
in @ is admissible. Suppose ¢ is admissible. Part I guarantees that there exists ¥ € ® such
that ro(¢) = re(y) for all € ©. By Part II, ¢ = ¢ a.e. [u]. But @ is defined only up to null
sets, hence ¢ € ®.

Part 1. Suppose ¢ is a weak* limit of a sequence {¢.} of proper Bayes tests, i.e.,

(3.2) f on(x) dx — J ¢ (x) dx for all compact BC %.
B B

Wald’s (1950) Theorem 5.8 implies that the set of all such ¢ constitutes an essentially
complete class. Hence we need to show that ¢ € @. Let ¢, be Bayes with respect to (v,
pr) # (0, 0), where », is a finite measure on ©4 and p, = 0 represents the mass at d=0,so
that ¢, = 1 (0) a.e. [u] when [o, f(x; 8)7.(d8) >(<)p.f (x; 0). This Jast expression with “>”
can be rewritten as

(3.3) Qn J [(Ry — 1) /0 ]7an(d8) +J Rymsn(dO) > cn,
e Op
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where g, =0, g, + | ¢z | = 1, 7an is a probability measure on @, and 75, is a finite measure
on ©,. If g, = 0, then 7., can be chosen arbitrarily. Since ©, is compact, {7..} can be
considered a sequence of probability measures on a compact space. Clearly {(g., c»)}
ranges over a compact space. Thus there exist (g, ¢), ¢g = 0 and ¢ + |¢| =1, and a
probability measure 7} on ®, such that on a subsequence

(3.4) (qn, cn) = (g, ¢) and 7., — 7 weakly.
Choose a sequence {¢}, € > 0, such that €; | 0 and #%({#| o¢;}) = 0. Let

(3.5) y,leJ [0/0]man(dl) € V,

the inclusion following because V is a convex one. We will show that along subsequences
of {n} and {j}, as n — o« and then j — o,

j [(Ro — 1)/0]an(dO) = ¢"yrnj + j [(Re—1—¢'8)/0]man(dB)
O o

=€

(3.6) + f <oz [(Bo = 1)/01mn(d)
-y +J [(Ry — 1)/0]7a(dB),
Ba

finite for some y € V, where 7, is 7¥ restricted to ®, and
3.7) (v, 7a) # (0, 0).

Now (2.2) and the fact that for each x, Ry is bounded in § € ©, show that the integrands
in the last two terms to the right of the equality in (3.6) are bounded in 8 for fixed x, hence
the limits as n — o« are found by replacing 7., by 7. Then as j — , the final term goes
to the final term in the line below it, and the penultimate term vanishes since its integrand
is zero when 6 = 0. Since o(y,;) < 1, there exist subsequences of {n} and {;j} on which
lim, . lim,_«y.; = v, where y € V because V is closed. Also, since V is one-sided (1.2),
there exists 8 > 0 such that | Y 6;/c| = 8 for all § € V — {0}. Hence |}, ynji| = 6mn(0 <€)
for each (n, j), implying that |Y y;| > 87%(@ = 0). Equation (3.7) then follows since
7¥(0,) = 1, which proves (3.6).

Define C as in (2.4) with 7, = 7,,. Consider first Case A. By the discussion above (2.6),
either C = & or limsup 7;,(®3) = o, in which case there exists a subsequence such that
lim,, e fo, Ro(x)7on(d8) = o for all x. For fixed x, the first term on the left-hand side of
(3.3) is bounded in n, as is c¢,. Thus since ¢ is the weak* limit of {¢.},

(3.8) - ¢=1ae. [p] for x&C.

When C = Z, 7,(03) is bounded, so that there is a finite (hence locally finite) measure
7, on ®, which is a weak limit of a subsequence of {7,}. By the boundedness of R in # for
each x we have

(3.9 jRg(x)mm(dé’)—)J Ry(x)mp(df) < for x €& int(C).
Oy O

Next assume Case B obtains. The development here is similar to Ghia’s (1976) Theorem
4.4. We have C = w™(C,) for some C, € %,,. If C = & then (3.8) holds trivially. Suppose
C # %, and take z & C. By Case B (ii),

(3.10) J Ro(x)mon(df) —> o forall x € B,
O
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along a subsequence, where B, = {x|w(x) = w(z)[V]}, so that ¢ = 1 a.e. [n] on B.. Let
{z.} be a countable set in C° such that {w(z,)} is dense in C¢,. The above discussion
indicates that ¢ = 1 a.e. [] on U;B.,. But since {w(z;)} is dense and V is one-sided, C, =
Ui{y|y = w(z,)[V]}. Hence (3.8) holds.

Next we show (3.9). Take int(C) nonempty, and x, € int(C). Equation (2.7) shows that
w(xo) € int(C,). Since Ry(xo) is bounded from below in # for any compact set & C V, (2.3)
implies that limsup 75,(2) < . Thus there exists a locally finite measure 7, on ®, which
is a vague limit of a subsequence of {7.}, i.e., T, (R2) — 7 (Q) for all compact & C ©,. Take
x € int(C). Since {#| a = o < i} is compact and 7, is a vague limit,

lim, ., j Ro(x)mns(d) = J’ Ry(x)ms(dB)

(3.11)
=< limsup,_.« j Ry(x)mpn(df) < oo,

©p

the inequality holding by (2.4). Hence (3.11) and the Monotone Convergence Theorem
show that

(3.12) liml_,mj Ry(x)my(d8) =J Ry(x)ms(dB) < co.
a<o=i i O

Now

jRo(x)mm(dﬁ)—J Ra(x)ﬂb(dﬁ’)'
Op 0y

(3.13) =

j Ry(x)mpn(dO) — J’ Ra(x)ﬂb(dﬁ)‘

+J Ro(x)mp,(d@) +J’ Ry(x)ms(d8).

Take the limit superior of (3.13) as n — «. The absolute value on the right-hand side goes
to zero by (3.11). Next let { — . The final term in (3.13) vanishes by (3.12). Consider

(3.14) lim;, o lim,, e f Ry(x)mpn(dB).

o>t

By (2.9), there exists x” € int(C) such that w(x’) > w(x)[V]. Clearly

(3.15)  limsup, .« j Ry(x)7n(d0) < sup,>i{Re(x)/Rs(x’) Jlimsup,_.« J Ry(x")mp,(dB).
Since x’ € int(C), (2.4) shows that the final limit superior in (3.15) is finite. Case B (iii)
then implies by (3.15) that the value of (3.14) is zero. Thus the right-hand side of (3.13)
vanishes, proving (3.9).

For both cases we have shown by (3.6) and (3.9) that the left-hand side of (3.3)
approaches d (x;A, 74, 7s) of (2.15) and (2.16) where A = gy and 7, = q7.. Thus

(3.16) ¢=1(0) as d(x;\, 7, m) > (<) ¢ a.e. [pn]onint(C).
Furthermore, ¢ + |¢| = 1 and (3.7) imply that (A, 7,, c) # (0, 0, 0), so that (2.17) holds.
Finally, (2.8), (2.17), (3.8) and (3.16) yield (2.14), which completes the proof of Part I.

Part II. Take ¢ € ® and v essentially different from ¢. If ro(¢) % ro(y), then (3.1)
holds because the risk function is continuous in § and 4 contains points arbitrarily close



968 JOHN I. MARDEN

to 0. Assume ro(¢) = ro(y) = a. We will present a sequence of finite measures {m,} on 0,4
such that

(317) limn—mo f [rﬂ(\l’) - rﬁ((l))]ﬂn(do) > Oy
©a

which implies (3.1). The main step in the proof is to show that for any test ¢; with ro(¢1)
=aq,

r(¢n) = limn—»oo{J ro(p1)ma(df) — (1 — @) J h‘1(0)7rn(d0)}
94 Oa

(3.18) {oo if p({x|ox)<1}NC)>0

f (1 — ¢1(x)) d(x; A, 7a, m) f(x; 0) dx otherwise, .

where the lower expression is bounded from below but may be +c. By definition (2.14),
r(¢) < c, hence the limit in (3.17) equals r(y) — r(¢). If r(y) = o, then (3.17) holds
immediately. If r(y) < o, then by (3.18)

(3.19) r@) —r(¢) = J @ —¥) d(x; A, 70, ) (x5 0) dx < oo,
C

For this latter possibility to obtain, it must be that = 1 a.e. [u] on C°. Hence, since ro(¢)
= ro(¥),

f¢(x)f(x; 0) dx=J' Y (x)f(x; 0) dx.
C C

Thus r(¢) — r(¢) > 0 by the Neyman-Pearson Lemma and Equations (3.18) and (2.17),
which proves (3.1).
It remains to show (3.18). Let =, be the finite measure on 0,4 defined by

(3.20) 7. (dB) = h(O)[n6(dO; A/n) + 6 7. (dO) (1 /n<o<a)
+ Wb(da)-[(aﬁa<n) + Z mms(day ein)]y

where §(d6; 0’) represents the measure putting mass one at §’, and the 6,,’s, which will be
explained below, represent §’s on the outskirts of the parameter space. We consider the
two cases separately.

First look at Case A. If C is empty, then ¢ is admissible immediately. Thus by (2.6) we
can take C = %. Since m is finite and © is convex, there are at most a countable number
of points in ® — © which enjoy positive 7, mass. Call these points {6:}, i € I, and for each
ilet {#:,} be a sequence such that 6,, — 6; and (2.5) holds. Let mi, = 7({6:}). Write

1 = ¢){n(Ryn(x) — 1) +J [(Ry(x) — 1)/0]ma(dB)

1/n<o=a

r(d)l) = limn—mo J

(3.21)
+ J Rymp(dO) + Y, minRy, (x)} f(x; 0) dx.

Interchanging the limit and integral above is valid. Use the Dominated Convergence
Theorem and (2.3) for the first two terms and the Monotone Convergence Theorem and
(2.5) for the others, and note that only the positive terms may have an infinite integral.
Thus (3.21) implies (3.18).

Next take Case B. Let C, be the set in Case B (i). Since C,, is convex and decreasing
[V], there exist sequences {&} C V and {t;} C R indexed by i € I, a subset of the whole
numbers, such that

Co=Ne{ye¥|&y=t}.
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In (3.21), take 0., = n& and
(3.22) M = a(né)exp(— nt,)27"
By (2.12) and (3.22),

o forany x& w (C,)=C

(3.23) Ky, Rong () = {0 for any x € int(w(Cy)) = int(C).

Equation (2.3) shows that Fatou’s Lemma can be used to find a lower bound for the limit
inferior of the integral in (3.21), hence (3.23) gives that the upper part of (3.18) is true. If
¢1=1a.e. [u] on C°, then we can interchange the limit and integral in (3.18) as for Case
A, using (2.13) and the Dominated Convergence Theorem on the final term in the braces,
which completes the validation of (3.18).

The proof is finished.

4. Remarks on the cases. The following problems mentioned in the Introduction
are Case A: combining scaled x? tests with alternatives ¢2 > 1, combining scaled F tests,
combining tests on correlation coefficients, the invariance-reduced problems with alter-
native Y > I or ¥; > Y, and the canonical covariates problem. The other problems are
Case B.

A useful generalization of the exponential density for Case B is the “almost exponential”
density whichhas A=1,® = V, and

(4.1) Ro(x) = a(@)b(x; 0)exp{8'w(x))
for continuous functions a and b where
4.2) 0 < i(x) = infyeob(x; ) < supscob(x; §) = s(x) < .

When b = 1, fis exponential. By (4.1) and (4.2),

lim, e J’ Ry(x)m,(d@) = 0 (o0) if and only if
(4.3) o
lim, o J a(@)exp{0'w(x)}m.(df) = 0 ().
04

Thus C in (2.4) equals closure (w~'(C%)), where

C, = {y € #'| imsup, - J’ a(f)exp(0’y)m.(db) < 00}
(4.4) o
= Un=1 NE=1 Nk {y € le a(f)exp(0’y)m.(db) < m}
©4a

Clearly the final set in braces is convex and decreasing [ V] for each (n, m), and since these
properties persist through intersections and increasing unions, closure (C},) € %,. Thus if
every such C’, satisfies closure (w™'(C.)) = w™" (closure (C,)), then Case B(i) holds.
To show (ii), take x such that x &€ C, and x’ with w(x’) = w(x)[V]. By (4.3),
lim, .« fo4 Ro(x)m.(df) = o on a subsequence, hence (4.3) and the definition (1.4) implies
that the same holds for x’, proving x’ & C. For (iii), take x and x’ with w(x’) > w(x)[V].
By (4.2),

(4.5) sup,>.Ro(x)/Ro(x’) =< [i(x)/s(x')sup,>.exp[— 8’ {w(x') — w(x)}].

Now inf,-.0'(w(x’) — w(x)) = inf,,0(0) inf, -1 y'(w(x’) — w(x)) = i8 for § > 0 since {y
€ V|o(y) =1} is compact and the inequality (1.4) is strict. Hence (2.11) follows from (4.5).
Equation (2.12) holds with a~'(8) = a(8) by (4.3), and (2.13) is satisfied if [ s(x)f(x; 0) dx
< o,

The problems on combining independent noncentral x® or F tests fall into the above
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framework. Other examples include the invariance-reduced problem in Marden and
Perlman (1980), which tests whether the mean vector of a normal is zero when it is known
that some of its components are zero; the problem in Eaton and Kariya (1975) which tests
the same hypotheses but has extra observations on the unknown components; and an
invariance-reduced problem which tests for a certain type of multiplicative interaction in
the two-way analysis of variance; see Johnson and Graybill (1972) for the set-up. Another
interesting application is to the problem of testing p = 0 versus p > 0 based on a sample
{X,} of independent bivariate normal variables with means 0, variances 1 and correlation
p. Though this is an exponential situation, the Birnbaum-Matthes-Truax-Eaton results
cannot be invoked since the natural parameter is two-dimensional but ranges over only a
one-dimensional curve in R2 However, the density does satisfy (4.1) and (4.2) with 8 =
p2/(1 —p? and w({x:}) = Y (x1 — x2)°/2, hence is a one-dimensional “almost exponential”
density. See Marden (1981).

The following type of density arises in some invariance-reduced problems, such as the
multivariate analysis of variance problem and that with alternative ), <I. Let ® = V =
(0 € R?|6, = --- = 6, = 0}, Obe the group of p X p orthogonal matrices, » be Haar
probability measure on ¢, and A(z) be the p X p diagonal matrix with z € R” containing
the diagonal elements. Suppose there exist continuous functions @ and b such that

Ry(x) = a(8) j b(x; 6, Texp{A(w(x))A@)'}dT,
«

where (4.3) holds with b there replaced by b here, and the infimum and supremum are
taken over § € ® and I" € 0. Then, as in the “almost exponential” situation, it can be
shown that Case B obtains. See Marden (1980a).
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