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TOWARDS A FREQUENTIST THEORY OF UPPER AND LOWER
PROBABILITY

By PETER WALLEY' AND TERRENCE L. FINE?

Cornell University and Bell Laboratories; and Cornell University

We present elements of a frequentist theory of statistics for concepts of
upper and lower (interval-valued) probability (IVP), defined on finite event
algebras. We consider IID models for unlinked repetitions of experiments
described by IVP and suggest several generalizations of standard notions of
independence, asymptotic certainty and estimability. Instability of relative
frequencies is favoured under our IID models. Moreover, generalizations of
Bernoulli’s Theorem give some justification for the estimation of an underlying
IVP mechanism from fluctuations of relative frequencies. Our results indicate
that an objectivist, frequency- or propensity-oriented, view of probability does
not necessitate an additive probability concept, and that IVP models can
represent a type of indeterminacy not captured by additive probability.

1. Introduction.

1.1 Objectives and background. We present here a frequentist account of upper and
lower (interval-valued) probabilities (IVP). Our results parallel, sometimes with notewor-
thy differences, the elements of the familiar frequentist account of the usual additive
numerical probability (NP) concept, and they provide the rudiments of a frequentist
theory of statistics for IVP. Although we concentrate on frequentist notions in this paper,
our philosophical position does not restrict us to just frequentist views of probability. We
accept some subjective and epistemic views of probability as well (see Fine, 1981).

By IVP we refer to a pair of functions taking their values in the unit interval, called the
lower (P) and upper (P) probabilities, that are defined on an event algebra .« and satisfy
the axioms given in Section 2. The lower probability P is superadditive, P is subadditive,
and P is always at least as large as P. Section 2 also contains elementary consequences of
the axioms as well as definitions of important subclasses of lower and upper probabilities,
notably upper and lower envelopes, to which most of our results refer.

Of particular note is the fact that the IVP concepts we consider have instances that are
not compatible with the usual NP concept satisfying Kolmogorov’s axioms; if

(3A € &)P(A) > P(A),

then neither P nor P are probability measures. Given the possible nonadditivity of upper
and lower probabilities, it may be surprising that we propose to link them to relative
frequencies. After all, relative frequencies have hitherto provided a basic interpretation of
the additive NP concept and the most commonly invoked motivation for the axioms of
probability as presented in introductory courses. We discuss, in Section 4, a limiting
frequentist interpretation of P and P as the lim inf and lim sup of relative frequencies in
hypothetical unlinked repetitions of an experiment, that generalizes the usual limiting
frequentist interpretation of additive probability.

In fact, the mathematical framework developed here provides a basis for frequentist
interpretations of other concepts of probability, including comparative probability (CP)
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and modal probability (Walley and Fine, 1979). There is a natural connection between CP
and upper and lower probabilities, which gives some support to our characterizations of
independence and asymptotic certainty or favourability.

While upper and lower probabilities have been previously treated in the literature,
these treatments have largely been devoted either to mathematical aspects of structure or
to those applications and interpretations associated with the subjectivist and epistemic
schools of probability (e.g., Good, 1962, Levi, 1980, and Shafer, 1976). Fine (1974, 1977) and
Walley and Fine (1979) indicated objective bases for CP and IVP, although these bases
(quantum mechanics, relative frequency lead times, imprecise set-valued observations)
were largely suggestive. The present goal is the development of an objective, frequentist
interpretation for IVP that parallels the relative frequency development of the usual NP

-concept and that can provide the statistical basis whereby we can infer IVP models of
random experiments from observations made on unlinked repetitions.

1.2 Sketch of the argument. We now sketch the link between relative frequencies and
IVP that is developed in technical detail in the following sections. IVP will be regarded as
a representation of propensities of outcomes. The frequency-propensity connection will be
given by laws of large numbers expressed in terms of IVP. There are several propensity
accounts of probability that disagree with each other. Perhaps Giere (1973) is closest to
our present view.

Suppose that propensities of events in unlinked repetitions ¢, - .-, €, are represented
through the lower probability P. To provide a connection between frequency and propen-
sity which extends the classical laws of large numbers, we examine our ability to infer or
estimate the marginal P from relative frequency data. Clearly we cannot base an estimator
of P(A) upon just the terminal relative frequency r,(A) of event Ain ey, - - - , &,; for relative
frequencies observed at any time n form a probability measure on the event algebra <.
Rather we consider an estimator

r,(A) = min{r;(A): k(n) = j =< n}, where k(n) — oo,

that makes use of the additional information concerning the past evolution of the sequence
of relative frequencies. Let P~ describe the IID repetitions ¢;, - - - . In Section 5 we show
that the estimation process succeeds in the sense that, letting

Gns =[|1:(4) — P(A)| < 8], lims... P*(G75)/P"(Gr5) =0, V>0

we call this notion of convergence ‘“asymptotic favourability” of (G.s;). Hence our
“confidence” that our estimator r,(A) is within § of P(A) grows with increasing sample
size. This result parallels the Bernoulli law of large numbers. However, we must warn the
reader that the inference situation for IVP has some novel puzzling elements that do not
confront us in NP.

We also consider the problem of hypothesis testing, i.e., of selecting one element from
a finite family of possible lower probabilities governing e on the basis of the outcomes of
€1, « + + , &n. We provide conditions in Section 5 under which this problem can be solved with
increasing “confidence” as the sample size n increases.

Finally, we supplement the preceding results by studying the stability of relative
frequencies. It might be expected from our ability to estimate P(A) that convergence of
the sequence of relative frequencies might be accorded little support, and this is in fact the
case. We show in Section 4 that apparent divergence of relative frequencies is asymptoti-
cally favored over their apparent convergence for nonadditive models. Hence our theory
of IVP expects our nonadditive propensities to support only partially stable relative
frequencies, the stationarity of our model notwithstanding.

1.3 Our philosophical position. The following comments on our philosophical position
are not required for an understanding of the technical developments of this paper but will
clarify our motivation in carrying out this study. We have both ontological (nature of



UPPER AND LOWER PROBABILITY 743

reality) and epistemological (nature of knowledge) commitments to IVP. Our ontological
commitment leads us to view IVP models as representations of properties (propensities) of
classes of physical/empirical phenomena. Our epistemological commitment leads us to
IVP descriptions of our knowledge concerning some “random experiment.” Ontological
probability relates to the familiar term “chance” while epistemological probability relates
to “uncertainty.”

A discussion of our view of probability is available in Walley and Fine (1979) and Fine
(1982). Central to our philosophical position is an acceptance of a concept of indeterminacy
that is distinguished from the concepts of chance and uncertainty. We admit both physical
and epistemic concepts of indeterminacy and have employed IVP models in both domains.
Our position on epistemic indeterminacy is one with which non-Bayesian statisticians
should feel at ease. The unknown but non-random parameter is to us a case of an
ontologically determinate but epistemologically indeterminate quantity. We do not follow
the Bayesians in supposing that our knowledge concerning the value of an unknown
parameter can always be cast in the form of a NP descriptibn. However, unlike the non-
Bayesian statisticians, we expect to be able to differentiate degrees of epistemic indeter-
minism which can then be represented by IVP or by other probability structures.

The thornier issue is that of an ontological indeterminism that is distinct from chance.
We believe that there are empirical phenomena that exhibit the sort of indeterminism for
which our theory is appropriate. For example, the utterances of an individual speaker have
statistical regularities for some features but seemingly not for all. Speech does not seem to
be a stochastic process, a view compatible with the Chomskyean view of the creativity of
speech. One can also speculate that the confusing probabilistic interpretation of quantum
mechanics, confusing because it is far from clear what specific frequentist concept is being
invoked, should be revised to take account of indeterminacy as well as the more regular
concept of chance (see Fine, 1974). Finally, we might also suggest that the familiar view,
that in the long run observed relative frequencies will converge to a fixed number that is
then regarded as either a measurement of the probability of the event in question or the
probability itself, is often implicitly recognized to be a fiction. Critical reflection on even
such familiar physical processes as die tossing reveals that in the long run we can expect
to encounter erratic time variations that admit only rough, qualitative explanations (e.g.
abrasions of the die). This qualitative information can perhaps be accommodated by an
IVP model but seemingly not be an additive probability model. See Section 6 for further
discussion of this point.

2. Basic properties of upper and lower probability. We start by defining a
hierarchy of regularity properties for upper and lower probabilities. Although this paper
is mainly concerned with upper and lower envelopes, the other properties will be referred
to and have some general importance.

Let ./ be a finite algebra. Since any finite algebra is isomorphic to the algebra of all
subsets of some &, we will assume .« = 2% Throughout, P: .o/—> [0, 1] will be a non-negative
set function satisfying P(¢) = 0 and P() = 1, and its conjugate function P: o/ — [0, 1] will
be defined by P(A) =1 — P(A°).

P is called a lower probability, and P its conjugate upper probability, when they satisfy

(VANB=¢)P(AUB)=P(A) + P(B) (super-additivity), and
P(AUB)=P(A) + P(B) (sub-additivity).
"P is called a lower envelope when
(VAe A)P(A) =inf{n(A): m € M}

for some non-empty class .# of probability measures on .. Then P(A) = sup{n(«): 7 €
M} is the conjugate upper envelope. # will usually be compact under the natural topology,
so that the inf and sup are achieved.

If P and @ are any set functions on ./, P is said to dominate @, written P = @, when
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(VA € &/)P(A) = Q(A). Note that P =@ = @ = P. Denote the class of all probability
measures dominating P by .#(P), so that = € .#(P) iff P = 7 = P. #(P) may be empty
when P is a lower probability.

P is called 2-monotone when

(VA,Be &/)P(A) + P(B) = P(AUB) + P(AN B).
It can be shown that P is 2-monotone if and only if
() (VAN B =¢)(3r € 4(P))n(A) = P(A), 7(B) = P(B).
The probability assignment m for a set function P is defined by
(VA € #)m(A) = Tpca (-1)'*PIP(B),

where || C|| denotes the cardinality of C. By the Mobius Inversion Theorem (Shafer, 1976,
Lemma 2.3), P can be recovered from m by (VA € &) P(A) = Ypca m(B). P is called a
belief function when m is non-negative.

LEMMA 2.1. P is an additive probability measure = P is a belief function = P is 2-
monotone = P is a lower envelope = P is a lower probability.

ProoF. The first implication holds because a probability measure has probability
assignment concentrated on atoms and equal there to its probability mass function. If P is
a belief function with probability assignment m,

P(A U B) = Yccaus m(C) = Yeca m(C) + Yece m(C) — Yecans m(C)
=P(A) + B(B) - P(AN B).

The third implication is a consequence of (*) above, and the fourth follows from sub- and
super-additivity of sup and inf. [0

Examples on 4 or fewer atoms can easily be constructed to show that none of the
converse implications holds in Lemma 2.1.

We shall use without comment the following easily verified properties of upper and
lower probabilities.

LEmMMA 2.2. If P is a lower probability and P its conjugate upper probability, then
forall A, B, € o/

a) P(A) = P(A)

b) AD B= P(A) = P(B) and P(A) = P(B)

c) AﬂB=’¢=I3(AUB)2P(A)+1_’(B)2£(AUB)

d) P(A)+ PB)=P(AUB)+PANB)=<1+P(ANB).

LeEMMA 2.3. (Dempster, 1967). If P is a lower probability on < then .# (P) is a closed
convex polyhedron (possibly empty) in the simplex of all probability measures on <.

It appears that a frequentist theory of upper and lower probability can be developed
most naturally in terms of upper and lower envelopes (see Theorem 4.2), and envelopes
have the major role in this work. The extra regularity of 2-monotonicity is needed for the

“Huber-Strassen Theorem (Theorem 5.2), and also seems to be needed to establish such
basic frequentist properties involving pairs of events as the following: if A N B = ¢, P(A)
> P(B) and P(A) > P(B) then P"[r.(A) > r,(B)] > P"[r.(A) < r.(B)], where r, denotes
relative frequency and P" describes n IID repetitions of P (to be defined in Section 3.1).

The further regularity of belief functions will be used in an alternative definition of the
independent product, given in an Appendix.

It is noteworthy that upper and lower envelopes are central also in a personalist theory
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of upper and lower probability. It can be shown that P: o/ — R is a lower envelope if and
only if it satisfies the following “coherence” condition. Write G(4, w) = Ix(w) — P(A).
Then P is said to be coherent if (A positive integers m, n; Ao, Ay, - -+, A, € )

(Vw € Q)mG (Ao, w) > Y1 G(A;, w).

The personalist interpretation of this condition is that P (A) represents the maximum price
you are willing to pay in order to receive 1 unit if A occurs, and G(4, w) is your gain from
a “marginally acceptable” bet on A. The condition then denies the existence of acceptable
bets on A; whose overall outcome is uniformly worse than the outcome of an unacceptable
bet of m units on Ag; it implies that no combination of acceptable bets can lead to sure
loss, by taking Ao = ¢ (clearly, P(¢) = 0). The personalist and limiting frequency
interpretations seem to lead to similar mathematical structures (upper and lower enve-
lopes), and similar definitions of upper and lower expectations and conditional probabilities.
See Section 4.3; details are in Williams (1976) and Walley (1981).

Further general results about lower probabilities and related set functions may be found
in Dempster (1967, 1968), Good (1962), Huber (1973), Huber and Strassen (1973), Levi
(1980), Shafer (1976), Smith (1961), Suppes (1974), and Wolfenson (1979).

3. Independence and asymptotics. Our results involve a particular generalization
to non-additive set functions of the usual definition of stochastic independence. (An
alternative generalization is treated in an Appendix). As is obvious from our notation, our
discussion will be restricted to product spaces with identical marginal spaces (R, &), but
the definitions and results of this Section extend in an obvious way to arbitrary finite
marginals (§;, <).

3.1 Independence.

NOTATION. & = 2"_ is a finite algebra. We write Q" for the n-fold Cartesian product of
Q, and " = 2% . Let A’ = {w € Q" w, € A} denote the cylinder set with base A at the ith
co-ordinate. We write X;—; A; = N}_, A/ for “rectangles” in 2/".

DEFINITION. Suppose (1 <i=<n)P;: «— [0, 1] are lower envelopes. Their independent
product is written as [[/=; P; or (for simplicity) P" and defined by

(VA € &#")P(A) = min{([[}=1 m)(A): m; € M(P)), 1 = j =< n},
where [[}=1 7; is the product probability measure, defined by
([[3=1 m)(X7=14)) = [[}-1 7(A;) and extended to «/" by additivity.

Note that P*(A’) = P;(A), so it is proper to refer to P, as the ith marginal of P". P" is
a probability measure (the usual product measure) iff all its marginals P; are additive.
Most of our results concern IID products P", for which the marginals P; are all equal to
some P.

P"(A) may be interpreted as the greatest lower bound to the probability of A € &/" in
independent trials governed by probability measures 7;, where 7, is chosen in an unknown
way from .#(P;). We emphasize however that this is not the interpretation that most
interests us here. In particular, our use of P" to describe repetitions of an experiment does
not commit us to a belief in “underlying” probability measures #; € #(P;) that are
operative on the individual trials. Indeed, we shall outline in Section 4 a different
justification for our definition of the IID product P”, in which P is interpreted as the lower
envelope of a class . of limit points of relative frequencies in an (ideal) infinite sequence
of repetitions. Such an interpretation does not require measures in .# to be actually
operative in individual experiments. Our use of standard probability theory to establish
most of our mathematical results, possible because of our definition of P" in terms of
M (P,), should not mislead the reader into thinking that we are dealing with such standard
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statistical problems as estimation of characteristics of measures m;, 72, .-+ governing
independent trials. Of course, our results can always be given this interpretation, but it
may not be the most interesting one.

Both P" and the alternative product @ " defined in an Appendix have several desirable
qualitative properties of “independence” that can be expressed in terms of the comparative
probability relations they induce. The limiting frequency interpretation of Section 4.3
supports P" over @”, but our present results do not rule out the possibility of other
characterizations of independence for “ontologically indeterminate” experiments.

Denote the upper envelope conjugate to P" by P". The next results shows that P" and
P factorize on rectangles.

LEmMA 3.1. Letoa,BC {1, ---, n}, a N B = ¢. Write o/, for the sub-algebra of 4"
generated by {A': A € o, i € a}. Then

(VA € o/, BE o3P (AN B) = P"(A)P"(B) and _P"(A N B) = P*(A)P"(B).
Proor. Routine verification.
COROLLARY 3.1. (VA, € &) P"(X}.,A;) = [[}-1 Pi(4)), and similarly for P".

3.2 Asymptotics. As the remaining results refer to asymptotic properties in an unlim-
ited sequence of trials, it is convenient to define a single independent product envelope on
the Cartesian product of infinite sequences of outcomes.

NOTATION. As before, o7 = 2% is a finite algebra. Let 2 denote the countably infinite
Cartesian product of Q. Let /" now denote the algebra of subsets of 2 generated by the
outcomes of the first n trials (isomorphic to /" as previously defined). Then (.2") is an
increasing sequence of finite algebras. Write o/* = U, %" for the infinite algebra of finite-
dimensional cylinder sets.

In the rest of the paper all events considered are in &/, and their propensities will be
represented by a single lower envelope P*, generally an IID product, defined on &”. In
order to discuss versions of the laws of large numbers for envelopes we need to define some
notion of convergence to certainty for a sequence of events A, € &/*. We now define two
such notions.

DEFINITION. Suppose that P”: o/ — [0, 1] is a lower envelope, i.e., P*(A) = inf{n(A):
7 € M(P”)} where #(P~) is the class of all probability measures on .«/” that dominate
P, and P~ is the conjugate upper envelope. Suppose also that (Vn = 1)A, € &~ If
P=(A:)/P~(A,) — 0 as n — o, we say that the sequence of events (4,) is asymptotically
certain (a.c.) under P~. If P*(A;)/P”(A,) — 0, we say that (A,) is asymptotically favoured
(a.f.) under P*.

REMARK (i). Any consistent sequence of set functions P" defined on /" induces P~ on
&/* in the obvious way. If P" are lower envelopes, so is P*.

Proor. It follows from the Bolzano-Weierstrass Theorem and a diagonal argument
that any sequence =, € #(P") (m, defined on .2") has a subsequence converging to some
T € M(P*). Since P" are envelopes, for any A € /" we can take m,(A) = P"(A) = P*(A)
for j = n, so that the limit 7 of any convergent subsequence satisfies 7(A) = P*(A). Thus
P~ is the lower envelope of Z(P>). 0

Conversely, the restrictions P”" of a lower envelope P* to /" are lower envelopes. Thus,
the above definition could be written equivalently in terms of a consistent sequence of
lower envelopes P" defined on an increasing sequence of algebras .«7".

It is clear that we are still essentially concerned only with finite algebras, and need not
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worry about the extra conditions (e.g., continuity) that need to be imposed on envelopes
defined on infinite spaces.

REMARK (ii). (A,) a.c. under P~ iff P*(A,) — 1 (by sub-additivity of P=). Hence, (4,)
a.c. under P~ implies (A,) a.f. under P”: asymptotic certainty is stronger than asymptotic
favourability.

REMARK (iii). When P~ is additive, (4,) a.c. iff (4,) a.f. iff P*(A,) — 1, so the two
concepts agree with the usual notion of asymptotic certainty.

REMARK (iv). (A,) af under P® implies P*(4,) — 1, but it is possible that P*(A,)
— 0 (in which case we are becoming “increasingly ignorant” about the possible occurrence
of A,). Thus, asymptotic favourability is a rather weak property. The results of Sections
4 and 5 using this property must therefore be interpreted with some caution. One rationale
for using a.f. is that it (and a.c.) have a simple interpretation through measurement scales
in comparative probability. (4,) a.f. under P implies, for example, that A, is eventually
more probable than A, under comparative probability relations induced in a natural way
by P*. (A,) a.f. implies that P gives unboundedly greater support to A, than to A} as n

—> 00,

Note that if (4,) a.c. under P* then #(A4,) — 1 for any 7 € #(P~). We might therefore
expect asymptotic certainty to have most of the properties familiar in the special case of
additive probability. In particular we have the following,

LEmMA 3.2. Suppose P” is a lower envelope on /%, (Vn=1,1<j=<J)A;, € &, and
(V1<j=<J)(A4) ac. as n — © under P*. Then(N}—1 Aj,) a.c. as n — o under P~

PrROOF. 1— P*(NJ- Ajx) = P*U AS%) =34, P2(AL) =YY% [1 - P*(4;,)] =0
by hypothesis. [0

We will see (Theorems 5.3 and 5.4) that the corresponding property fails in general for
asymptotic favourability, which need not be preserved under finite intersections.

4. Unstable relative frequencies. We now take P” (defined on <) to be the
infinite IID product of the lower envelope P (defined on the finite algebra .« = 2%). P is
then the lower envelope of the class of all infinite products of 7; € .Z(P). In this Section
we examine the behaviour of the sequence (r,) of relative frequency measures under P,
and show that such IID repetitions of a non-additive envelope P favour apparent divergence
of relative frequencies over their apparent convergence.

4.1 Apparent convergence of relative frequencies.

DEFINITION. For A € <Z, define the relative frequency r,(A): 2 — [0, 1] by r.(A)(w)
= |{i: 1 =i = n, w; € A}|/n, where ||S| denotes the cardinality of S. Write r, for the
random relative frequency measure on . Write

Cald; By ) = NJal|75(A) — ra(A)| <eé]

for the event that r1(A), .-, r.(A) apparently converges (k, ¢). (See Fine, 1973, page 89,
for discussion). Use C,(k, €) = Nac.s Cu(A; &, €) to denote the event that ri, -+, r,
apparently converges (%, €), and D,(A; &, ) = [Cn(A; &, €)]°, D,(k, €) = [Cy(k, €)]° to denote
apparent divergence.

THEOREM 4.1. Suppose ¢ >0, k: N— N, and k(n) — o as n — .

(@) (V0> 0)(Nac v NJ=km [P(A) + 7 >1,(A) > P(A) — 1)) a.c. as n —  under P~.

(b) Ife > P(A) — P(A) then (C.(A; k(n), €)) a.c. under P*. Hence, if ¢ > max {P(A) —
P(A): A € ¢} then (C.(k(n), €)) a.c. under P*. For example, if P is additive then
(Ve > 0)(Cn(k(n), €)) a.c.
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(c) (VP)P*(Dn(k(n), e)) > 0 as n — o,

(d) If0 < P(A) < P(A) < 1,e < P(A) — P(A), and lim sup k(n)/n is sufficiently small,
then (D.(A; k(n), €)) af. under P™. Hence, if P is non-additive, ¢ < max {P(A) —
P(A): A€ o, 0<P(A) < P(A) < 1) and k(n)/n — 0 as n — o, then (D,(k(n), €))
af. under P*.

Proor. (a) Let 7 € .#(P) with w(A) = P(A). For n > 0,

P* (NJ=rw [ri(A) > P(A) = q]) = 7" (NJehiw [1/(A) > 7(A) —]) > 1 as k(n) — o,

by the strong law of large numbers. Apply Lemma 3.2 to the intersection over A € ./, and
note that

[P(A) + 1> ri(A) > P(A) — 1] = [r;(A) > P(A) — ] N [r;(A°) > P(A°) —q].
(b) Nk [P(A) + 0> r;(A) > P(A) — 4]
C Nk [[1(A) = ra(A) | < P(A) — P(A) + 21]
C Cu(4; k(n), ¢) provided 2n<e—|P(A) — P(A)|.

Thus, (a) implies (C..(4; k(n), ¢)) a.c. under P~ when ¢ > P(A) — P(A). If ¢ > max {P(A)
— P(A): A € o}, (Cu(k(n), €)) = (NacoCu(A; k(n), &) a.c. by Lemma 3.2.

(c) B*(Dn(k(n), €)) = P"(D,(k(n), &)) < min{z"(D.(k(n), ¢)) : 7 € #(P)} — 0 by (b).
(d) We use the following consequence of Chernoff’'s Theorem (Chernoff, 1952).

LEMMA 4.1.  Write b(n, p, \) = Yan<jzn ( ’;) D’q"™ for the probability that a binomial
(n, p) random variable is at least An, where g = 1 — p. Suppose 0 < p»<A<1. Then

n'log b(n,p,A\) > —a(p,\) as n—> o,

where a(p, \) = A log (2) + (1 =) log (%") >0.

To prove (d) of the Theorem, suppose that 0 < P(4) < P(A) < 1, e < P(4) — P(A), and
8 > lim sup k(n)/n. Eventually k(n) < dn, so it suffices to prove the result for k(n) = [on].
To simplify notation, assume dn is integral (the general argument is similar, with én
replaced by [8n]). Write r, = r,(4), C. = C.(4; én, ¢), D, =Cy, and let r}, denote the

relative frequency of A on trials n + 1, ---, 2 8n, so that rs, and r5, are IID under P~.
Then

D, D[ 70 — Posn | = 2] = [%| 150 — Fhn| = 2¢]
Dlrsn =%+ 2] N [rh, < Y% — 2¢].

Hence P*(D,) = P"(D,) = b(én, P(A), » + 2¢)b(5n, P(A°), % + 2¢) and lim inf n~!
log P*(D,) = —6a, for some a; > 0 (not depending on 8) by Lemma 4.1.
Similarly, if 0 <y <1 — §,

CoCllrapn —ru| <el =[|ra-pn = Fin| <e/Y1C[ru-pn<p + ] U [rin=p—n]

where p = [P(A) + P(A)]/2, 1 = ¢/2y. Hence P*(C,) < b((1 — vn, P(A9, 1 —p —7) +
b(yn, P(A), p — 1) and lim sup n™' log P*(C,) < — min{(l — Y)az, B2} for some as, B2 > 0,
provided 1 > y > ¢/[P(A) — P(A)] so that n < p — P(4) = [P(A) — P(A)]/2. For 8 <
min{l — vy, (1 — y)as/ai, yBe/a:}, this gives

P*(C,)/P*(D,) >0 as n— . 0
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Thus, if 2(n) — «© and k(n)/n — 0, apparent convergence (k(n), €) of ri(A), - -, r.(A)
is asymptotically certain When_P(A) — P(A) < ¢ but apparent divergence (k(n), ¢) is
asymptotically favoured when P(A) — P(A) > «.

REMARKS. (i) Theorem 4.1 can be generalized to upper and lower expectations as
follows. Define the upper and lower expectations of an .2/-measurable random variable X:
€ — IR under P to be

EX =max{E,X:7 € #P)} and EX = min{E,X:7 € #(P)},

where E,X = [ X dn is expectation under «. If P is a lower envelope then clearly EI4 =
P(A). Indeed, by the Hahn-Banach Theorem, there is a super-linear functional E defined
for all real X satisfying EX = inf X, (VA = 0) E(AX) = AEX and (VA € &)EI. = P(A) iff
P is a lower envelope, and in that case EX = min{E,X:7 € .#} for some class of
probability measures with lower envelope P.

For 2-monotone P the minimum in EX is achieved by a:probability measure which
induces on IR the distribution function F(x) = P({w: X(w) < x}) for X, but more generally
there may be no such measure in .Z(P).

Write X; = X(w;)(i = 1). It can be easily seen that

(Ve> 0P ([EX—e<n' Y X;<EX+¢]) > 1 and
P ([EX+e=n"'YL1 Xi]) > 0.

The first statement generalizes the usual weak law of large numbers and may be
strengthened as in Theorem 4.1(a).

(ii) If P~ is any stationary lower envelope on &%, i.e. (VA € &/*) P*(TA) = P*(A)
where TA = {w:w’ € A, w; = wi—1, I = 2}, then there is a stationary probability measure
7 € M (P”) defined on 2. It follows that P*(D,(k(n), €)) — 0 as k(n) — «. Thus Theorem
4.1(c) holds more generally.

(iii) Define, for A € &/*, R*(A) = min{7"(4):7 € 4(P)}. Then (VA € 4/*)R*(A) =
P>(A). Since R*(Cy(k(n), €)) = min{#"(C.(k(n), €)):7 € #(P)} — 1, Theorem 4.1(d)
distinguishes P” from R”. The latter models the standard approximate specification of
additive probability in which the non-additivity of P results merely from our ignorance
about the “true underlying” probability measure (“epistemological indeterminacy”), rather
than from any imprecision inherent in the repeated experiment (“ontological indetermi-
nacy”). When such imprecision exists there is no reason to expect convergence of relative
frequencies. Moreover, according to Theorem 4.1(d), apparent divergence is favoured
asymptotically.

4.2 Minima of relative frequencies. Despite the weakness of asymptotic favourability,
Theorem 4.1(d) suggests that there may be more information contained in outcomes of a
repeated experiment about an underlying marginal envelope P than is contained in the
terminal relative frequencies r, alone. We might therefore attempt to estimate P from the
fluctuations of (r,) over long intervals. We will consider the class of estimators for P of the
form

(VA € &) rn(A) = min{r;(A) : k(n) < j < n},

where % is some function such that 2(n) — « and k(n)/n — 0 as n —> « (e.g. k(n) =
[vn]). Then

Dn(A; k(n), &) C [ra(A) + 1a(A°) <1 — €] C Du(4; k(n), &/2)

so that Theorem 4.1 may be interpreted in terms of r,; for example, (d) asserts that non-
additivity of r, is asymptotically favoured under P* when P is itself non-additive.

Just as the finite relative frequency measures r, support the usual additive probability
theory (all r, are additive probability measures, and all such measures can be attained as
limits of sequences r,), so do the functions r, support an approach based on envelopes.
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Moreover all sequences of outcomes, including those whose relative frequencies diverge,
give rise to envelopes.

THEOREM 4.2. r, is a lower envelope on </, P defined by P(A) = lim inf, .., r,(A) =
lim inf, . r.(A) is the lower envelope of the class M ., of all limits of pointwise convergent
subsequences of (r,), and the class of set functions P, generated in this way by infinite
sequences w of sample points is just the class of all lower envelopes on .

PROOF. r, is the lower envelope of the measures i), -« + , I'x. Since inf{r,(A): n = m}
= inf{r;(A): j = min,=, k(n)}, and k(n) — o, lim inf r, = lim inf r,. If P = lim inf r,,
clearly P(A) = 7 (A) for all # € 4., (such 7 are probability measures since ¢ is finite). For
any A € « there is a subsequence (n;) such that r,, (A) — P(A), and by the Bolzano-
Weierstrass Theorem (r,,) has a subsequence converging to a probability measure 7 €
M. Clearly m(A) = P(A). Thus P is the lower envelope of Z,,.

To see that any lower envelope P on «/ can be generated in this way by some w, use
Lemma 2.3 to write P as the minimum of a finite set ;, - - - , 7y of extreme measures. Find
measures o, 71, - - - such that 2”x;,(A) are integers and =, — ;. Let b;» be a sequence
of 2™ sample points generating relative frequencies ;.. The sequence w then consists of
successive segments of length 2’, in which the nth segment is made up of 2"~ blocks b,
where j(n) = (n — 1)mod N + 1, m(n) = (n — j)/N. Write 4, = Y1 2/%, Because £,_1/2"
— 0, the nth segment dominates previous segments, and r, (4) — ;) (A) — 0. Hence lim
inf r, < P. Because m(n) < n, any block b;» of the nth segment is dominated by previous
segments, so that all relative frequencies in the nth block can be approximated by a
mixture of 7;(,) and 7;,—1). Hence lim inf r, = P, which establishes the result. It can be
seen also that if 2(n) = O(n*) with A < 1 then r,, — P, for the constructed sequence. Hence
all lower envelopes can be attained as limits of r,. [

Popper (1959, Section 63-66) calls the limit points of (r,) “middle frequencies,” and
admits “chance-like” sequences w with more than one middle frequency. In his Appendix
iv, Popper effectively demonstrates the existence of infinite sequences w in which lim inf
r, and lim sup r, are insensitive to certain types of subsequence-selection.

Results on the estimability of P through r, are given in Section 5.3.

4.3 A limiting frequentist interpretation of P and P. Theorem 4.2 suggests that, as a
generalization of the limiting frequency interpretation of additive probability, we charac-
terize the probabilities of events in .« by some closed set .# of probability measures on 7,
to be interpreted as (ideal) limit points of relative frequencies in an infinite sequence of
repetitions. We would expect .# generated by an “IID” sequence of outcomes to be convex,
but we will not assume convexity here. For a particular infinite sequence w € Q*, let .# be
the class of all limit points of (r,). The following result shows that .# characterizes the
limiting behaviour of w in the sense that it determines the upper and lower limits of
continuous functionals of 7.

LEMMA 4.2. Let f be any real functional defined on all probability measures on </
and continuous (under the natural topology) at all w € #. Then lim inf f(r,) = min{f(=):
T EM}.

Proor. If r,, — « then f(r,,) — f(7), so lim inf f(r,) < min{f(7): 7 € M}. If f(r,,)
— lim inf f(r,), (r»,) has a subsequence converging to some 7 € #, and f() = lim inf f(r,)
by continuity of fat «. [

As in the standard theory, we can use the limiting frequentist interpretation to suggest
definitions of expectation, conditional probability, and independence. It is natural to
identify upper and lower expectations EX and EX, where X: 2 — R, with the lim sup and
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lim inf of the average value of X in repetitions, i.e., EX = lim inf n7'Y)-; X(w,) = lim inf
[ Xdr.. Since f(7) = [ Xdx is continuous, Lemma 4.2 implies

EX=min{J’de:wEﬂ} , E_X=max{deﬂ:7rE//l} .

Similarly, we might identify the upper and lower probabilities of A conditional on B
with the upper and lower limits of the relative frequency of A in those trials on which B
occurs, P(A|B) = lim infr,(A|B), where r,(A|B) = r,(A N B)/r.(B). Since f(7) = w(A|B)
is continuous at 7 for which #(B) > 0, Lemma 4.2 gives P(A|B) = min{#(A|B): # € #}
and P(A|B) = max{7(A|B): # € #/} = 1 — P(A°|B), both defined whenever P(B) =
min{#7(B): 7 € #} > 0. We note that lim inf r, (A| B) need not be determined by .# when
P(B) > P(B) = 0. When Q = {a, b, ¢}, for example, sequences w can be constructed for
which  is the convex hull of (1, 0, 0) and (0, 1, 0) but lim inf r,({a}|{a, c}) can take any
value in [0, 1]. The personalist interpretation of upper and lower probabilities based on
“coherence” leads to the same definitions of expectations and conditional probabilities,
except that P(A|B) can be meaningfully defined whenever P(B) > 0, by P(A|B) =
inf{w(A|B): 7 € M, w(B) > 0}; see Walley (1981).

It might be argued that P(A|B) defined as lim inf r,, (4| B), though it correctly describes
limiting behaviour, may be a misleading representation of the information about the
possible occurrence of A provided by the knowledge that B has occurred. The reason is
that if # € # and #(B) is small, observation of B provides “evidence against” « in some
sense, so that measures in ./ are no longer on an equal footing. As a simple example,
suppose A C B and .# is the convex hull of 7; and 7, where ¢ < %, m(A) = m(A) = (1 —
€), m(B) =1—¢, m(B) =e. Then P(A|B) = P(A°|B) =¢, P(A|B) = P(A°|B) =1 — ¢, yet
B seems to support m; over 7., and hence A° over A.

The rule of conditioning for belief functions proposed by Dempster (1967),

Q(A|B) = P(AN B)/P(B)

and Q(A|B) = 1 — @(A°|B), each defined when P(B) > 0, gives in this example (for
which P is indeed a belief function) @(A|B) = @ (A4|B) = ¢, which takes no account at all
Of 'ITz!

Dempster’s rule gives in general more precise conditional probabilities than the above
frequentist def_"mition when # = ./ (P). This is because, if P is defined as above, P(A|B)
= P(A N B)/P(B). Hence, if P is a belief function and P(B) > 0,

P(A|B) = Q(A|B) =Q(A|B) = P(A|B).

Finally, consider independence of experiments. Let w be an infinite sequence of
outcomes of a joint experiment, w, € Q°. For additive probability, independence of the two
marginal experiments can be characterized by the condition

(VA, B € #)lim r,(A X B) =lim r,(A X Q)lim r,(Q X B).

If probability is identified with limiting relative frequency, the marginal probabilities ;,
7, then determine the additive joint probabilities #* by 7*(A X B) = m1(A) m2(B).

In general, in order to describe the marginals as “independent” we would require that
the sequence w satisfies

(a) (VA, Be€ o)liminfr,(A X B) = lim inf rn(A X Q)lim inf r,(Q X B),
(b) (VA, B € &/)lim inf r,, (2 X B) > 0=>lim inf r,(A X |2 X B) = lim inf r, (A X ©), and
similarly for r,(Q X B|A X Q).

(a) asserts that lower limits of relative frequencies factorise over rectangles. (b) asserts
that lower limits of relative frequencies of events in one marginal experiment are unaffected
by restricting to a subsequence of repetitions in which an “independent” event B occurs,
provided the relative frequency of B is eventually bounded away from zero.
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Now let .#* be the set of limit points of (), P*(A) = lim inf r,(4) = min{7(4): 7 €
MY for A C €, P, and P, the marginals of P?, and P?*(4|B) = lim inf r,(A|B) =
min{7(A|B): 7 € #*} when P*(B) > 0. The P corresponding to “independent” sequences
w must then satisfy .

(@) (VA, B € &) P*(A X B) = P1(A) P»«(B)
(b") (VA, B € &)Py(B) > 0= P*A X Q|2 x B) = Pi(A) and P1(4) > 0= P*Q x B|A
X Q) = Py(B).

Properties (a’) and (b’) may be required of any definition of the “independent product”
(P?% of P; and P,. The independent product defined in Section 3.1 satisfies (a’), by
Corollary 3.1. Note that (b’) refers implicitly to .#? since conditional lower probabilities
are not determined by the unconditional P2 If we take 4% = {mm: m € M(P:1), m €
M (Ps)}, the product of Section 3.1 will satisfy (b’) also.

The IID products R%*(A) = min{#*(4): = € #(P)} satisfy condition (b’), with .#* =
{n% 7 € (P)}, but fail to satisfy (a’). The belief function products @* defined in an
Appendix, satisfy (a’) but are incompatible with (b’). (Note that (a’) and (b’) are essentially
the same condition for additive probability, but are quite distinct in general.) The limiting
frequency interpretation therefore supports the definition of independence through P? of
Section 3.1, rather than @* or R It is not clear to us whether the product defined in
Section 3.1 can be characterized through simple conditions like (a’) and (b’).

With P? the independent product of Section 3.1, the convex hull of .#* = {mm: m €
M(P)), 2 € M(P,)} is generally strictly contained in .#(P?). As can be seen from examples
with ||Q = 2, 7(4 X &|Q X B) may be minimised over 7 € M (P? by some 7 not in .#?, so
that (b’) fails when conditional lower probabilities are defined through .#(P?) rather than
A*. The situation is simpler if we regard (a) and (b) as conditions on M2 Let My and M
be the classes of projections onto the marginal spaces of measures in /7 and let ext(.#)
denote the set of extreme points of .#. Call .#* an independent class of measures when

ext(A?) = {mms: m € ext(M1), m € ext(M3)}.

It is easily checked that infinite sequences corresponding to independent classes .#” satisfy
(a) and (b). Moreover, independent classes of measures correspond to the independent
products defined in Section 3, in the sense that P? is such an independent product iff it is
the lower envelope of an independent class of measures for which %, = A (P1), M2 =
M (P5). (As noted above, .#(P?) is generally not itself an independent class). Thus, if
“independent” marginal experiments are characterized by .#; and .#,, interpreted as
hypothetical limit points of relative frequencies in repetitions, the joint experiment is
characterized by .#> whose extreme points are all products mm: with 7, € ext(.4;). If
convexity is required, .#? is then completely determined by .#; and .#».

5. Estimability. Again consider an IID sequence of repetitions of («, P), modeled
by the IID product (=7, P*). In this Section we define three notions of estimability of the
unknown marginal lower envelope P from an observed sequence of outcomes, and show
that in a weak sense the marginal is estimable through the minimum estimators r,.

5.1 Concepts of estimability. We define estimability of the marginal envelope with
respect to a class ¢ of lower envelopes on .7, interpreted as a class of possible marginals
governing IID repetitions of the experiment. This generalizes the usual statistical specifi-
cation in which ¢ consists only of additive measures. We will say that the marginal is
“estimable from £” when we can (in some sense) discriminate amongst the envelopes in &.
“Estimability from £’ is thus a property of the class £ For example, the marginal is
estimable, in all three senses of the next definition, from the class of all additive probability
measures on .&.

DEFINITION. The marginal envelope is said to be partially estimable from ¢ when
(Vn=1)(VA € )3 P,(A): 9° > [0, 1], P.(A) " — measurable,
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such that (VP € £) (Ve > 0) ([|P (A) — P(A)| <e]) af. under P”. (For example, Corollary
5.2 will establish partial estimability from a wide class of lower envelopes with P, = r,,
the minimum estimators of Section 4.2). The marginal is said to be completely estimable
from ¢ when (Vn = 1) (VA € &) 3 P.(A): @°— [0, 1], P.(A) o" — measurable, such that

(VP € &) (Ve > 0) (Naew [|Pn(4) — P(A)| <&]) af. under P~.

Say that the marginal is strongly estimable from ¢ when either definition is satisfied
with “a.f.” replaced by “a.c.” (It follows from Lemma 3.2 that the two properties involving
a.c. are equivalent).

We have therefore three concepts of estimability: strong estimability, which implies
complete estimability, which implies partial estimability (from a fixed £). When § consists
only of additive probability measures the three concepts coincide with the kind of
estimability established by the weak law of large numbers (since then a.c. coincides with
a.f.). We are interested in weaker restrictions on £ sufficient to guarantee estimability.

Consider the case of finite £ = { P}, - - - , P}, which coiresponds to simple hypothesis
testing. Write P for the infinite IID product of P,. In this case strong (complete)
estimability from £ is easily seen to be equivalent to the following property

(Vn = 1)(3 disjoint Ef, ---, E7, € &™)
(Vi=j=m)(E})aclaf] as n— o under P7.

Similar properties correspond to discrimination amongst finitely many compound hy-
potheses.

5.2 Strong estimability. We show next that strong estimability is not possible in
general, even in the case of finite £.

THEOREM b5.1. For the marginal envelope to be strongly estimable from & it is
necessary that {#(P): P € £} are disjoint. If ¢ is finite, this condition is also sufficient.

Proor. For necessity, suppose 7 € #(P;) N #(Ps). If the marginal is strongly
estimable there are E? N E} = ¢ with PY(ET) — 1,P5(E%) — 1. But #° = P7 and 7° =
P% by definition of the IID product, contradicting disjointness of ET and E3.

For sufficiency, let £ = {Py, ---, P»}. By Lemma 2.3, £&; = ./#(P;) are closed in the
compact space of all probablllty measures on . Write £¥ = #(P,; — k™). Then o g
¢4 are compact, and N £k ; = £, so that Ne=1 (§F N £f) = ¢ The Finite Intersection
Property lmphes that £ N £* = ¢ for some k. Similarly, £, - - -, £, are disjoint for some .
Write 8§ = 27, Define

E} = Naey[ra(A) = P;(A) — 8] € 2.
Then E?%, - .., E;, are disjoint. But

P ([ra(A) = P;(A) —8]) = 7= ([ (A) =7 (A) —8]) — 1,

where 7(A) = P;(A). Applying Lemma 3.2, (E}) a.c. under P;°, which establishes strong
estimability. By Lemma 4.1, the upper error probabilities ej». = PP (E})° are in fact
bounded by lim sup n~"! log e;, =< — a;, where a, > 0 depends on P; and 8. [J

Thus, it is possible to discriminate with asymptotic certainty amongst a finite set of
envelopes if and only if their sets of dominating probability measures are disjoint. If this
condition is satisfied, the marginal is strongly estimable through the estimator P, that
takes the value P, whenever the termlnal relative frequency r, “almost dominates” P;, i.e.
(VA E A)r.(A) = P, (A) — §, with P, otherwise defined arbitrarily. Alternatively, using
Theorem 4.1(a), deﬁne b, = P; whenever the minimum estimator r, “almost dominates”
P;.
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The main result of Huber and Strassen (1973), which characterizes “most powerful”
tests for discriminating between two lower envelopes that are 2-monotone, fits naturally
into the above framework.

THEOREM 5.2. (Huber-Strassen). Let P, and P, be 2-monotone functions on </, with
M(Po) N M (P1) = ¢, and Pg, PY their infinite IID products. LetA; € ™ be a critical
region for the minimax test of Py against P, based on n IID repetitions, chosen to
maximize the minimum power PY(A) subject to level P§(A) < a. Then there are “least-
favorable” distributions mo € M (Py), m € M (P1), not depending on n or a, such that A%
may be taken to be an optimal level-a critical region for testing wi against w7, with
PT(AR) = 71 (AR, PF(AR) = 75(AD).

Although Huber and Strassen state their result in terms of R* = min{»*: 7 € #(P)},
both Theorems 5.1 and 5.2 apply to each of the products P~, R*, and @ defined in the
Appendix. (It is easily seen, using the Theorem in the Appendix, that#T(A%) =@T(AZ)
= P7(A%)). The above version of Theorem 5.2 involving P*, allowing models in which the
underlying probability measure varies between trials, will often be appropriate when
robustness is a concern. (An important special case, for which Huber gives the least-
favorable =;, is e-contamination in which the contaminating distribution may depend on
the trial.)

5.3 Partial and complete estimability. It is well known that the extension of the class
of deterministic models to the class of additive probability models loses strict falsifiabil-
ity—typically, all experimental outcomes are compatible with many probability models.
As we have seen, the further extension to include non-additive models loses strong
estimability. For example, the marginal is strongly estimable from the class of all additive
probability measures, but strong estimability fails as soon as this class is extended to
include any non-additive envelope. “Typical” sample sequences under P are those with
lim inf r, = P, and “typical” sets for non-additive envelopes with common dominating
measures will overlap. Again, non-additivity favors divergence of relative frequencies
(Theorem 4.1(d)), but not with asymptotic certainty (Theorem 4.1(c)). We seem forced
therefore to consider the weaker notions of asymptotic favorability and complete or partial
estimability.

First, we show that the marginal envelope is partialy estimable from a wide class of
envelopes, through the minimum estimators

r.(A) = min{r;(A): k(n) =j < n}

discussed in Section 4.2. We shall assume that £(n)/n — 0 and k(n)/log n - © as n —
00,

LEMMA 5.1. Suppose P(A) <1 and & > 0. Write

gn(my, « o, m) = ([I}=1 7)) [£n(A) = P(A) — €|r.(A) < P(A) +¢].
Then _
sup{ gn(m, -+, M) ay, +»+, M EM(P)} >0 as n— oo,
ProoF. We use the results of Samuels (1965). Write p = P(A),c=p —¢, 7 =p —¢/2,

7™ =[] n;. We may suppose P(A) = ¢, 500 < ¢ <7 <p < 1. Let m maximize 7 [rn(A)
=<go]overk(n) =m=n.

7™ r.(A) =p — €] - n-7"[rm(4) = o] - 12 fimo)
T A) <p+e] @A) =1]  fo1

where f, = 7™ [mr.(A) = k] and [x] denotes the integer part of x, since f; is increasing in
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k for k < Y% m;(A) (Samuels, Theorem 1). But
ford g P (_flmﬂ )[mﬂ_[m]
f[mo] F={mal+1 f firm‘]—l

-1
since f./fr-1 is decreasing in & (Samuels, equation 6). But f./fe-1 is increasing in each 7;(A)
(Samuels, equation 7); hence

fi >(m_k+1>( = )» its value when all 7;(A) = p.

foi = k 1-p
Thus,
fmr [(m — [mr] + 1) P ]s
fimor [m7] 1-p]|’
where s = [mr] — [mo] >m(r — o) — 1,
- [ 1) ()]
=75
where .
25/
Thus,

7"[r.(A) <p — €]
7™[r.(A) <p + €]

n? —m(r—c)+1 < nz,y—k(n)(-r—a)*'l = 8'”

and 8, — 0 provided k(n)/log n — .

LEMMA 52. If0 < A < P(A) < 1 then k(n)log P*[r.(4) < A] > — a(P(A), \),
where a(p, A) = Alog(A/p) + (1 — N)log((1 — A)/(1 — p)).

PROOF. P“[r.(A) < A]is clearly achieved by #*, where 7(A) = P(A).
7 [rrm(A) < A] = 7°[1.(4) < A] < Yo 77[r(A) < AL
Apply Lemma 4.1. 0
COROLLARY 5.1. Ife> P(A) — P(A),
P7[|ra(A) — P(A)| <e] > 1.
If0<e< P(A) — P(A) and P(A) < 1,

k(n)"'log P7[| ra(A) — P(A) | < €] - —a(P(A), P(A) + ¢).

ProoF. The first statement is a consequence of Theorem 4.1(a). For the second,
P|ra(4) — P(A)| < e]/P*[ra(A) < P(A) + €] > 1

by Lemma 5.1 (let #;, --., 7, attain the minimum in the numerator). But k(n)™
log P*[rn(A) < P(A) + ] » —a(P(A), P(A) + ¢) by Lemma 5.2. 0

THEOREM 5.3. Suppose P(A) < 1 or P(A) = 1. Then (Ve > 0)([| r.(4) — P(4) | < €])
is asymptotically favoured under P*.

ProoF. If P(A) = P(A), this follows from Corollary 5.1. Suppose then that 0 < & <
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P(A) — P(A), P(A) < 1. Let £(n) = [k(n)**n'"*], m(n) = [k(n)"’n*?], w(n) = n — m(n), so
that k(n)/4(n), £(n)/m(n), m(n)/n all - 0. Let r; denote relative frequency on trials m(n)
+ 1, --- m(n) + j. For n sufficiently large,

G, =[|r.(4) — P(A)|<e]DD.NE.NF,,

where D, = [mingm<j=mm i(4) = P(A)]
E, = [min/m=j=omT {A) > P(A) — €]
and F, =[r,m(A) = P(A) + ¢/2].
o [#A) = B@) for 1=j=mn)
Let m(A) = {a:r(A) —P(A) for mn)<j=n.

P2(G) = (=1 m)(DR U ERU F) = ™ (Ds) + g°(E; U Fr).
By Lemmas 4.1 and 5.2, :
k(n)'log 7™ (D5) —» —a(P(A), P(A)),
¢(n)'log 7°"(E7) — —a(P(A), P(A) — o),
w(n) 'log 1" (F7) > —a(P(A), P(A) + ¢/2).
Thus
lim sup k(n) 'log P*(G5) < —a(P(A), P(4)) < —a(P(4), P(A) +¢)
= lim k(n) 'log P™(G,).
So P*(G)/B™(G,) — 0.

DEFINITION. A set function P on .7 is called almost positive when (VA € &)P(A) =
0= P(A) =0.

COROLLARY 5.2. The marginal lower envelope is partially estimable from any class
of almost positive lower envelopes, through the minimum estimators

ra(A) = min{ry(A): k(n) = j = n},
provided k(n)/n — 0 and k(n)/log n — .

ProOF. Almost positivity implies that (VA € A)P(A) < 1 or P(A) = 1. Partial
estimability then follows from Theorem 5.3. 0

(In fact, P is partially estimable through r, if and only if £ contains no lower envelopes
which are not almost positive).

COROLLARY 5.3. The marginal is completely estimable from any finite class § of
almost positive lower envelopes.

ProOF. Let &= {Py, ---, P.}, where P; is trivial (i.e, (3w € Q)P({w}) = 1) for m <j
< u, non-trivial for 1 <j < m. For some i = 1, it is possible to construct A € /" such that
the values Pi(A), ---, Pi,(A) are all distinct, and (V1 <j = m)0 <Pj(4) <1 (details
omitted). Let r$: o#* — [0, 1] denote the minimum estimator for ¢ repetitions of the i-fold
joint experiment. For 1 < j < m write E} = [|r¥(A) — Pj(A)| < 8] € «", where ¢ =
[n/i]. If Pi({w}) = 1, let E} = Ni-1 {w:we = w}, so that PP(E}]) = 1. For 8 sufficiently
small, {E%, .-, E}} are disjoint.

Theorem 5.3 cannot be applied directly to P(A), because (P};)” # P . But Theorem 5.3
can be generalized to apply to any P* of the form P*(A) = min {(II%=1 ) (A): m; € M}, for
any closed .# with lower envelope P (since3r, 7 € .4 with7(4) = P (A), 7 (A) = P(A), so
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that the bounds in the proof of Theorem 5.3 must be achieved by measures in .#). Applying
this generalization to the event A € o and the class 4% = {([[i=1 m) : 7 € #(P})}, which
has lower envelope P,

Pr(E;)" _ min (51 ) ()" s € M)

PP(E})  min{([[i p) (ET) :ps € A7)

as n— o (so that /— ). Thus, for 1 <j=<m, (E}') af. under P;y. O

Is complete estimation possible in general? For the minimum estimator r, we have, by
Theorem 4.1(a),

(Ve > 0)(Naeo[r.(A) > P(A) — €]) a.c. under P~.
Moreover, we can show that if P is almost positive then
(Ve > 0)(Naen[rn(A) < P(A) + ¢]) af. under P~.

But, as the next result shows, it does not follow that P is comi)letely estimable through r,
— Lemma 3.2 fails for asymptotic favourability.

~ THEOREIXI 5.4. Suppose P is a lower envelope, with 0 < P(A) < P(A) < 1 and a(P(A),
P(A)) # a(P(A), P(A)), a as in Lemma 5.2. Write

Gn(A) =[|r(A) — P(A) | <e],
G, = G.(A) N G.(A").
Then for ¢ sufficiently small (Gy,) is asymptotically favoured under P”.

Proor. Suppose a(P(4), P(A)) < a(P(A), P(A)) = a(P(A°), P(A°)) (otherwise, sub-
stitute A° for A). Let ¢ be so small that

a1 = a(P(A), P(A) + ¢) < a(P(A), P(A) + ¢) = as.
Since G, C G.(A), Corollary 5.1 gives
lim sup k(n) 'logP™(G,) < —ae.
But G5, D G.(A°)° D [rem(A) = P(A) + €], so by Lemma 4.1
lim inf k(n) 'log P*(G5) = —a; > —as.
Hence (G7,) af. under P~. O

Thus, the marginal is not in general completely estimable through the minimum
estimator. We conjecture that it is not completely estimable from any wide class of lower
envelopes, e.g. all positive lower envelopes, through any function P,.

6. Discussion. The two results preceding Theorem 5.4, together with the partial
estimability property (Corollary 5.2), give some support to the class of minimum estimators
r» as estimators for a lower envelope P governing unlinked repetitions of an experiment.
But even if we ignore the admittedly weak property of asymptotic favourability, we might
still be led to something like the minimum estimators. By Theorem 4.1(a), we can assert
with asymptotic certainty that r, = P — ¢ in IID repetitions. We might then invoke a
criterion of maximal falsifiability to support the most precise model P consistent with r,,
=P - e(n), so that P, = r, approximately. Estimation of P by r, is conservative with
respect to the standard additive probability concept, in that the model chosen is close to
additive (r, close to r,) except when relative frequencies appear to be diverging. We make
no claim, however, that the minimum estimators are “optimal” in any sense; alternative
estimators with the partial estimability property can be found, and more study is needed
to distinguish the “good” estimators.
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Although we have concentrated in this paper on the extreme case of divergent relative
frequencies, it could be argued that upper and lower probability models are appropriate
also for some time series whose relative frequencies appear to converge more slowly than
expected under an additive IID model, so that different long blocks of outcomes have quite
different relative frequencies. An estimator such as

P(A) = min{k ™ Yjpss In(w) :j =k, k+ 1, -+ -, n},

for suitable k(n), would reflect such variation in frequency of occurrence, and could give
non-additive estimates even when relative frequencies converged.

The assumption of stability of relative frequencies is of course central to the application
of additive probability theory. It is often claimed to be an “empirical fact” that relative
frequencies apparently converge for many phenomena of interest (Fine, 1970, argues that
apparent convergence is a consequence of our data-processing procedures rather than of
any “laws of nature”). This is taken to support an additive model which predicts or
explains apparent convergence as in Theorem 4.1(b). We see that non-additive models
with sufficiently small interval widths P(4) — P(A) can equally well explain apparent
convergence. Moreover, apparent convergence is evidence against some non-additive
models with large interval widths (those lower envelopes dominated by the terminal
relative frequency measure) only in the weaker a.f. sense. If nonetheless one accepted
apparent convergence (for sufficiently small £(n)) as evidence for an underlying additive
IID measure, on grounds of maximal falsifiability or the greater familiarity of additive
probability, then r, and its conjugate 7, would be interpreted as lower and upper bounds
for this measure. Assuming an underlying additive measure, the appropriate model for IID
repetitions is B*, and the maximal interval width max {7,(A) — r.(A) : A € &/} will tend to
zero with asymptotic certainty under R*. The imprecision of r, in this case reflects merely
incomplete knowledge about the true underlying measure due to the limited number of
observations (“epistemological indeterminacy”).

In the case of apparent divergence of relative frequencies we would argue that non-
additive models P, representing “ontological indeterminacy”, should be considered. Several
interpretations are possible. First, the observed outcomes might be viewed as realizations
of independent additive measures 7, € .# which varied between trials. If this variation is
arbitrary or more detailed models were either not of interest or not estimable from data,
the IID product model P" would be appropriate. The estimator r, would then estimate the
lower envelope of the underlying class .# of probability measures that generate the
observed outcomes.

A second interpretation takes .# to be the set of limit points, and its lower envelope P
to be the lim inf, of relative frequencies in hypothetical unlinked repetitions. As in Section
4.3, this interpretation again supports the independent product P" as a characterization of
“unlinkedness” of experiments. Note that P*[lim inf r, = P] = 1, but P*[lim inf r,, = P]
= 0if P is nonadditive, so that the model is not self-supporting in the same way as additive
probability models.

Thirdly, r, might be regarded as estimating a distribution of propensities over events,
to be represented in general by a non-additive envelope P. That is, the physical tendencies
of an experiment to give rise to various possible outcomes are represented directly by P
without intermediate reference to its dominating measures. There is no obvious reason for
modern propensity interpretations of probability to insist that propensites have an additive
representation, although this restriction seems to have been taken for granted. Propensities
are theoretical, dispositional terms referring to physical properties of experimental arrange-
ments which are related to (but not defined through) relative frequencies in repetitions. A
propensity account of probability should explicate this relation. On our account, propen-
sities P imply a disposition to produce lim inf r,(A) = P(A) in unlinked repetitions. Thus
there is a connection between propensity and frequency, without propensity distributions
necessarily sharing the additivity of relative frequencies. Note however that P is no longer
interpreted as a bound on underlying measures, so that the definition of independence
through P” rather than, say, @ " becomes an issue.
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Finally, a more pragmatic justification for the non-additive models studied here is that
they can extend the class of non-deterministic phenomena that we can usefully model.
Most propensity accounts of additive probability (e.g. Giere, 1973) regard propensities as
characterizing some “ultimate” randomness that is inherent in nature. It is very difficult
to argue convincingly that particular phenomena are ultimately random, though there is
strong evidence in the case of quantum phenomena. Nevertheless, additive probability
models are successfully used to model data generated by a wide variety of incompletely
understood phenomena. The use of such models does not rule out the possibility of more
refined (perhaps deterministic) models for the same phenomena. Upper and lower proba-
bility models might have a similar descriptive role, without any implications of “ultimate
indeterminacy,” in cases where no useful additive probability model is available. For
instance, repeated trials which are physically unlinked and indistinguishable may never-
theless produce diverging relative frequencies. Many geophysical, economic and sociolog-
ical time series, for which little is known about any dependence between successive
observations, display similar instability. Such behaviour canr be accommodated within
standard probability theory only through a non-stationary model, possibly a complex
model with no basis in our understanding of the phenomenon and no predictive value. A
non-additive IID model may be much simpler, and may be sufficiently precise to give
useful predictions, e.g. of the type in Theorem 4.1(a). (The notion of complexity involved
here can be given a precise, though possibly too narrow, explication in terms of the
Kolmogorov-Chaitin-Solomonoff conditional complexity of empirical time series).

These issues arise, at least on a conceptual level, even for such a paradigm of the
standard theory as die tossing. Toss any real die long enough and it abrades, corners round,
and its propensities at least would have to be held to be time varying. But how precisely
can this time variation be described? The variation is evidently not deterministic, but is it
then a stochastic process? If it is a stochastic process, are the relevant propensities precisely
calculable, at least in principle? If one is unwilling to postulate the detailed regularities
implied by a stochastic process governing fluctuations in outcome probabilities, one might
accept that the propensities of the die to produce outcomes are not as well determined as
is envisaged in propensity accounts of additive probability. One might then represent the
intrinsically indeterminate propensities of the die by a non-additive structure incorporating
the right degree of numerical imprecision (which need not be large) to represent the degree
of indeterminacy. The usual Bernoulli model for die tossing is of course adequate for most
practical purposes, but one can imagine applications for which it would be an over-
idealization.

Our purpose in modeling is to extract from data simple regularities that are generaliz-
able, predictively useful, and related to our theoretical knowledge of the phenomenon
modeled. Other aspects of the data are regarded as merely “accidental”. Just as
“randomness” (chance) is introduced in additive probability models to account for poorly
understood (“accidental”) variation in outcomes, so “indeterminacy’ might be introduced
in upper and lower probability models to account for poorly understood variations in
chance behaviour. The choice between deterministic, additive probability and non-additive
probability models must depend on our background knowledge concerning the regularities
they extract from data; in particular, on theoretical understanding of the mechanisms
involved, generalizability of time variation to related series, and confidence in reproduci-
bility of past regularities in future observations, as well as precision and complexity. These
are difficult issues, which need to be carefully examined in the context of particular
applications.
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APPENDIX—AN ALTERNATIVE MODEL FOR INDEPENDENCE

The notation is that of Section 3.1. Suppose the marginal lower envelopes Pj: &« — [0,
1], for 1 <j < n, are belief functions, with probability assignments m,. Define the belief
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function product @™ " — [0, 1] of P, ---, P, to be the belief function on .«" whose
probability assignment m is concentrated on rectangles, and given by

(V4, € )m(X}1A)) = [[}=1 mi(4)).

Then @" has marginals P, and is additive iff all its marginals are additive.

In a similar way to the independent product P" of Section 3.1, the belief function
product @"(A) may be interpreted as the greatest lower bound to the probability of A in
trials whose outcomes w; are chosen in an unknown way from subsets A; € .o/ which occur
independently according to measures m,. Thus, @ * models observations of independent
trials with imprecise outcomes, as discussed by Walley and Fine (1979). @ " may also be
interpreted through the related multivalued mappings of Dampster (1967, 1968).

In general, @" differs from the independent product P" with same marginals P,. Write
Q" for the upper envelope conjugate to @". As in Lemma 3.1 and Corollary 3.1, both
Q" and Q" factorize on rectangles so that, ‘whenever all the P; are belief functions,

Q"(XLA) = P"(X7A) == B(4) and Q"(X7-A) = PM(X)-A) = [[}-1 PAA)).

Thus P" and @" agree on rectangles. The next result (whose proof we omit) shows that P"
always dominates @ ", and characterizes the sets on which they agree.

THEOREM. Suppose all the marginals P; (1 <j < n) are belief functions. Then
(VA € /") P"(A) = @"(A),
with equality iff A can be written as
A =[UNXL.ClU A

for some Ao € o™ and C; € o such that for each j(1 < j < n) there is m; € M(P)) with (1
=i=<N) mi(Cy) = P;i(Cy), and (H"':l ) (Ao) = 0.

P" and @" therefore agree on rectangles, on complements of rectangles, and on sets
such as [r,(A) > p] and [r.(A) > r.(B)]. In general, P" is more precise than ", in that it
gives rise to narrower intervals [P™(4), P"(A)].

If we define @ on «/* through @ *(A) = @ "(A) when A € /", we have (VA € &)
@~(A) = P*(A) = R*(A). Many of the results of Sections 4 and 5, notably Theorems 4.1,
5.1, and 5.2, hold for @ * as well as P*.

Clearly, (A,) a.c. under @ implies (A,) a.c. under P”. As an example of the failure of
the converse, suppose A € «/ identical marginals with P(A) < p < P(A), and A, =[| r.(A)
— p| =1/n]. It is clear that P*(A,) — 1, and it can be shown that ©@>(A,) — 0, so that (4,)
a.c. under P” but not under @ *. [The proof relies on showing that, if B, = [r.(4) — p =
1/n] and C. = [p — r.(A) = 1/n), D, = X}_,D; C A, implies D, C B, or D, C C,. Hence

Q@7(An) = @"(Bx) + Q"(Cy) = P"(B,) + P"(C,) = 0.]

If one uses Dempster’s rule of conditioning for @" and the limiting frequentist rule of
conditioning for P", as in Section 4.3 one has

[Q"(A|B), @"(A|B)] C [P*(A|B), P"(A|B)]
when A and B are rectangles, in contrast to the above result that
[Q"(A), @"(A)] D [P(A), P*(A)]

in general. Belief function products are less precise than independent products formed
from the same marginals, but belief functions conditioned by Dempster’s rule are more
precise than the same functions conditioned by the limiting frequentist rule.

Note that @ satisfies the “independence” condition (a’) of Section 4.3, and also satisfies
(b’) under Dempster’s rule of conditioning (though not under the limiting frequentist rule,
which gives Qz(A X 2|9 X B) < P,(A) with strict inequality possible, as below). But the
Dempster conditional probabilities @ (A | B) cannot be interpreted as lim inf r,(A | B) for
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any infinite sequence of outcomes, and the belief function product is incompatible with the
limiting frequentist interpretation of Section 4.3, as the following example shows.

Let o/ = {¢, A, A°, R}, identical marginals P(A) = P(A°) = %. Then simple computations
give Q%(A X A U A° X A°) = %. Suppose (VD € «*)Q*D) = lim inf r.(D) = min{#(D):
7 € M*}, where 4 is the set of limit points of (r,). Let 7 € 4% 7(A X AU A X A°) = .
Suppose 7(A X A) < Vs (otherwise, replace A by A°) and 7(A° X A) = 7s (otherwise,
consider 7(2 X A|A X 2)). Then 1A X Q|2 X A) =1/1+7) =% <%= (4 X Q).
Thus, for some B, C € o/ with P(B) > 0,

lim inf 7,(C X |2 X B) = min{#(C X |Q X B):7 € 4%}
< lim inf r,(C X ) = Q*(C X ),

which violates the “independence” condition (b) of Section 4.3. This shows that the belief
function product @* cannot arise as lim inf r, for any infinite sequence of points in £°
satisfying (VB, C € &)

lim inf r,(2 X B) > 0 = lim inf r,(C X 2|Q X B) = lim inf r,,(C X ).
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