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AN ALGORITHM FOR ISOTONIC REGRESSION FOR TWO OR MORE
INDEPENDENT VARIABLES'

By RicHARD L. DYKSTRA AND TIM ROBERTSON

University of Missouri, Columbia and University of Iowa

Algorithms for solving the isotonic regression problem in more than one
dimension are difficult to implement because of the large number of lower
sets present or because they involve search techniques which require a
significant amount of checking and readjustment. Here a new algorithm for
solving this problem based on a simple iterative technique is proposed and
shown to converge to the correct solution.

1. Introduction. Algorithms for calculating the least squares isotonic regression
function have received a great deal of attention in the literature and six such algorithms
are discussed in Section 2.3 of Barlow, Bartholomew, Bremner and Brunk (1972). In
situations where there is one independent variable all of the algorithms work very
efficiently. Perhaps the most widely used algorithm is the “pool adjacent violators
algorithm” which is applicable only in the case of a simple linear ordering or an amalga-
mation of simple orderings.

In many isotonic regression problems we have more than one independent variable
present and are concerned with partial orderings. An important example involves the
prediction of success in college. Usually, this prediction is based upon several independent
variables such as rank in high school graduating class and score on a standardized
examination such as the ACT composite and is measured in terms of a predicted grade
point average or predicted probability of obtaining a particular GPA or better. The
predicted value is usually obtained by regression methods and is assumed to be nonde-
creasing in each independent variable. The isotonic regression function has been found to
compare very favorably with other techniques with respect to predictive accuracy; cf.
Perrin and Whitney (1976) and Kolen and Whitney (1978).

Some of the algorithms described in Barlow et al. are applicable to the case of computing
the doubly nondecreasing least squares regression function but the number of computations
required can become prohibitive. For example, consider the minimum lower sets algorithm
described in Section 2.3 of Barlow et al. Suppose one of our two independent variables has
a possible values and the other has b possible values. By counting paths from the upper
left hand corner to the lower right hand corner of our a X b grid, it follows that the number

a+

of lower sets is equal to a b) (including the empty set). If @ = b this number is

approximately (@) '/2.4° by Stirling’s formula. Thus if @ = b = 20, and if consideration
of each lower set were to require one microsecond of computer time, then finding the first
level set would require 2312 minutes or 38.5 hours of CPU time. (One microsecond seems
conservative in light of the fact that computation of the average value over that set would
take at least two multiplications, two additions and a division and the comparison would
require a subtraction. The present standard for making such predictions is four arithmetic
operations per microsecond.) Moreover, if the first level set is small (as it would be with
good data) the second cycle is nearly as difficult as the first.

The algorithm proposed by Gebhardt (1970), one given by Dykstra (1981), and the
minimax order algorithm (cf. Chapter 2 of Barlow et al, op. cit.) all involve search
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techniques which can require a significant amount of checking and readjustment. Thus
computer programs which implement these algorithms require intricate branching logic
and are complicated to program. On the other hand, these algorithms provide exact
solutions rather than converge to the correct solution and should be easier to use than the
one proposed in this paper for small data sets or if one does not have access to a modern
computing facility.

Since the doubly nondecreasing regression function is so difficult to compute, research-
ers have proposed using ad hoc estimators based upon one dimensional smoothings. (The
number of computations required for one dimensional smoothings is essentially linear in
the number of entries.) Makowski (1974) studied consistency properties of estimators
obtained by successive one dimensional smoothings. Kolen, Smith and Whitney (1977),
Perrin and Whitney (1976), and Kolen and Whitney (1978) proposed two different tech-
niques for producing estimates which are nondecreasing in each variable. One of their
techniques was first to do one dimensional row smoothings. After all rows had been
adjusted, reversals in the columns were adjusted by the same method. They then returned
to the original table and did one dimensional column smoothings followed by row
smoothings. Neither smoothing necessarily produces a doubly nondecreasing table so they
averaged the two results. (The average is not necessarily doubly nondecreasing, but it was
for their data.) This method was applied to the problem of estimating the probability of
obtaining a “B or better” GPA for entering college students. This data can be found in
Table 1. The two entries are the total cell frequencies and the observed relative frequencies.
We note that there are a number of “reversals,” even with a relatively large sample size.
The smoothed estimates, by the above method, are presented in Table 2 and the isotonic
regression function with weights equal to frequencies in Table 3. Note that not only the
estimates but also the level sets are different. These level sets are very useful for making
inferences about equivalent scores within the table.

In this paper we present an algorithm for calculating the least squares isotonic regression
function which is increasing in each of two or more variables. This algorithm uses
successive one dimensional smoothings and is very efficient and easy to program. This
algorithm is described in Section 3 for the case of two variables. The extension to more
than two variables is discussed in Section 4. In Section 2 we summarize some well-known
properties of isotonic regression for the case of two variables which will be used in the
proof that the algorithm yields the desired result.

2. Some preliminaries. Welet & = {(;,j);1=1,2, ---,a;j=1,2, ---, b} and
define the partial order << on by (i,j) < (&, ¢) ifand only if i — 2 <0 andj — /=< 0. We
denote an arbitrary real function whose domain is Q as a matrix, i.e.,

G=(glj)=(g((l9])))9 i=1’29""a; j=192""’b-

We say that afunction F': Q@ — R is isotonic or order preserving if (i, j) < (&, ¢) implies f,;
= fx+. This is equivalent to requiring that F be nondecreasing along both rows and columns.
The least squares isotonic regression problem is to

minimize Y;,;(g:; — fi;)’w.;

for F belonging to the class K of isotonic functions, where w;; > 0 and G are given.

Since the class of isotonic functions forms a closed convex cone, it is well known (c.f.
Theorem 1.4 in Barlow et al., op. cit.) that the solution to the isotonic regression problem,
say G*, is that function G* € K satisfying

2.1) (g — gl) glhwi, =0,
and
(2.2) Y&y — &5 hijwi, = 0,

for all functions H € K.
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TABLE 1
The probability of making a “B or better” GPA
(top number = total cell frequency; bottom number = relative frequency)

High School Grade Point Average

ACT
Composite 0-1.55 1.56-2.25 2.26-2.95 2.96-3.65 3.66-4.00
28+ 0 7 10 47 44
.0000 2857 2000 5745 8864
23-27 7 56 88 180 84
.0000 1250 1818 2833 5238
18-22 23 166 152 149 33
0435 0301 0724 1946 1212
13-17 27 149 96 61 4
.0000 0470 0313 0492 5000
0-12 10 57 33 . 7 0
0000 .0000 0606 .0000 .0000
TABLE 2

The probability of making a “B or better”
GPA, estimated by Kolen and Whitney Method.
Same categories as Table 1.

*.0314 .2353 .2353 5745 .8864
.0314 1250 .1818 .2833 .5238
.0314 .0375 0724 .1867 1934
.0000 .0375 .0402 .0493 1784
.0000 .0000 .0383 .0421 *.0425

TABLE 3
The probability of making a “B or better”
GPA, estimated by least squares isotonic regres-
sion (weights = cell frequencies). Same categories
as Table 1.

*.0333 .2353 .2353 5745 .8864
.0333 1250 .1818 .2833 5238
.0333 .0377 0724 .1881 .1881
.0000 .0377 .0377 .0492 .1881
.0000 .0000 0377 0377 *.0377

* Any value which satisfies the order restrictions
will suffice here since this cell has zero weight.

3. The algorithm. The algorithm which we propose requires only the ability to solve
the isotonic regression problem with the usual nondecreasing order (in one dimension)
along rows and columns. Our algorithm is given as follows:

Step 1. Let G™ = (&) denote the isotonic regression solution of G = (g;;) over rows,

i.e., GY minimizes Y&, (g; — fi;)*w;; subject to fu=fo=-:-=foforj=1,...,b Wecall
R“) (r?) = (8 — gi;) the first set of “row incremen
Step 2. Let G @ = (g‘;)) denote the isotonic regression solutlon over columns from the

initial values G + R, i.e,, G minimizes ¥ /-, (g, +r{} — fi,)"wi; subject to f1 < fis <
o <fofori=1 ..., a. We call C" = GV — (G + RY) the first set of “column
increments.” Note that G® = G + R® + C?.

Step 3. At the beginning of the nth cycle, we obtain G® by isotonizing G + C*™ over
rows. The nth set of row increments is defined by R™ = G® — (G + C”") so that G*
=G+ C™V + R™, We then obtain G™ by isotonizing G + R over columns. The nth
set of column increments is given by C™ = G™ — (G + R™), or equivalently G™ = G +
R™ +C™,
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Column Cone
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F16. 1. Schematic Diagram of Proposed Algorithm for Two Independent Variables.

The utility of the algorithm lies in the following theorem.
THEOREM 3.1. Both G™ and G™ converge to the true solution G* as n — .

Proor. If we denote the inner product norm as
IF|l = (F, F)'* = (T T fhw)"”,
we first show that
(3.1) I1G™ 2= |G™ 2= |G ™P|* forall n.
To establish some additional notatioh, we denote the “row cone” by
K.={(F;fijsfo;=++=fo for j=1,...,b},
and the “column cone” by
K. =(F;fa<fe<-.--<fip for i=1,...,a}.
The respective dual cones, as discussed in Barlow and Brunk (1972), are

K} = {H; Y& hijfijw;<0 for j=1,...,b; forevery F€E K.}
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and
K= {(H;Y% hijfjw;<0 for i=1,..-,a; forevery FE€ K.}.

Since —R™*" is the projection of G + C™ onto K}, the work of Barlow and Brunk
guarantees that

—R™"Y minimizes |G+ C"™ - F|* for Fe& K}.
Similarly,
—C™ minimizes |G+ R™ - F|* for Fe K.
Therefore, since —R™ € K} and -C"™V € K¥,
IG+R™ — (=C" NP2 |G+ R™ — (=C™)|P = |G + C™ — (=R"V)|?
which is equivalent to (3.1).

Next we show that {C™} and { R™} are bounded. If not, let (i, jo) be a minimal point

)

in @ (with respect to our partial ordering <) such that either {r{;} or {c{’;} is
unbounded. Say there exists a subsequence {n;} such that r{"}— —w. (Since Y2, r{%,
w; j, < 0 for all n (Barlow and Brunk, 1972),r{") — % would contradict the fact that (i, jo)
is minimal.) But this, together with G™ = G + R™ + C™ and the fact that G is bounded
in norm (cf. (3.1)) implies that c,‘{,‘j}(, — oo, This, in turn, contradicts the fact that (i, jo) is
minimal since S/, ¢{w;, ; < 0 for all n.

Projections onto convex sets are distance reducing (see Theorem 7.6 of Barlow et al,,
op. cit.) so that

" C(i) — C(i—l)“2 — "G + C(i) — (G + C(i—l))"2 > "R(i+1) - R(i)“2
(3.2)
=G+ R™" — (G+ RV 2= | C*Y = C?|* for alli.

We now show that

(3.3) |R®Y — RP|>—~ 0, hence [|[C*" —C?|*—0,asi—> oo.
If (3.3) were not the case, there would exist (io, jo) € @ and & > 0 such that

(3.4) | Pt — r| > for infinitely many i.

However, since { R} is bounded, there exists a finite M such that

(35) |r®. Pl | <M forall ij.

If we write

||R(i+;) — R(i)"2 — " C(i+1) _ C(i)"2 = " G + R(i) + C(i) - (G + R(i+1) + C(i+1))"2
(3.6)
+ 2(G + R(i) + C(i) - (G + R(i+1) + C(i+1))’ C(i+1) _ C(i))’

the left side of (3.6) converges to 0 since by (3.2) both terms converge to the same quantity.
The last term of the right side is nonnegative by (2.1) and (2.2). Thus

3.7 R“Y —RD) + (CHV - CY) >0 as i— .
In similar fashion, beginning with

" C(i+1) - C(i) "2 - “R(i+2) - R(i+1)"2,
we can conclude

(3.8) (R™? — R®Vy + (C"*Y = CY)Y >0 as i— .
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Subtracting (3.7) from (3.8) yields
(R™*? — Ry - (R™D —RU) 50 as i—

Thus, for a sufficiently large N, and fixed no, we can keep

No+1+i) No+i) .
(rl(o,l?) l—rgo,})ol)} L"‘lyzy"'anﬂ
arbitrarily close to
(No+1) __ ,.(Ng)
(r‘oyloo r‘o-loo)'

This, however, contradicts (3.4) and (3.5) both being true.
Since {R ™} and {C ™} are bounded, there must exist convergent subsequences. Suppose
R™ — R and C™ — C. Then, in light of (3.3),
G =G@+R™+C™ °
and
é(n,-ﬂ) =G+ R(n,+1) + C(n,)
both converge to G* = G + R + C (in anticipation of this being the desired solution). Since

G™ is an element of K, and G is an element of K. for all n, we know that G* € K, N K.
(these cones are closed). Furthermore,

(G- G* G*)=(G+R—G* G*) — (R, G*)
=limioo(G + R™ = G™, G™) + limisu (G + C™ = G+, G*)

=0+0.
Similarly, if V€ K, N K,
(G-G*,V)=(G+R—-G*,V)— (R, V)
= limio(G + R™ — G™, V) + lim;o(G + C™ — GV, V) <0 + 0.

Thus G* is the desired solution by (2.1) and (2.2). Moreover, since —C minimizes |G+ R
— F|?, F € K, and —R minimizes |G + C — F|’, F € K}, we may use the distance
reducing property of projections to say

IC™ —CIP =] G+ C™ = G+ O)F = | R"* = R
=|G+R™ = (G+R)|*=|C"™" —C|* forall n.

Thus R™ — R and C® — C as n — o, which implies that G® = G + R™ + C"" and
G™ =G+ R"™ + C™ both converge to G* =G+ R+ Casn— x.

4. Other points. It is important to note that the solution G* = G + R + C does not
uniquely determine R and C. In fact, if we begin with column smoothing rather than row
smoothing we will obtain different limiting values for R and C even though the same
limiting G* is obtained.

As one would expect, this procedure works equally well when the order restrictions are
modified to require nonincreasing rows, or nonincreasing columns, or both. One has only
to change the one dimensional smoothing to operate in the appropriate direction.

We also wish to point out that G* itself solves many more minimization (maximization)
problems than the least squares problem stated above. For example, from Theorem 1.10
of Barlow et al., if @ is an appropriate convex function and ¢ is a subgradient (basically a
derivative) of @, then G* solves the problem

4.1) maximizerck.nk. Yie1 251 {@(fi)) + (& — fido (fij)}wij.
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Along somewhat similar lines, Theorem 3.1 of Barlow and Brunk (1972) guarantees
that the problem

(4.2) minimizerex,nk, Y1 3 1=1 {®(f.)) — giifi}wij
is solved by (¢~ '(g})) where once again ® is an appropriate convex function and ¢ is a
subgradient of ®.

Thus G* solves a much wider range of problems than is readily apparent. For example,
suppose one has a multinomial random vector X;;, where the cell probabilities p;; are
placed in a rectangular grid and one wishes to find the maximum likelihood estimators for
the p;; subject to nondecreasing (nonincreasing) rows and columns. This problem can be
phrased in terms of (4.1) from which it follows that the solution is given by G* where G
= (X;j/n) and w;; = 1.

Similarly, if the X;; are independent bionomial (n;;, p;;) random variables, one can show
that the maximum likelihood estimators for the p;; subject to nondecreasing (nonincreas-
ing) rows and columns is given by G* where G = (X;;/n;;) and w;; = n;;.

In order to illustrate the algorithm on a larger table, we consider the data presented in
Table 4. The entries are the first year grade point averages of 2397 students who entered
the University of Iowa in the Fall of 1978. The independent variables are the composite
scores on the ACT Assessment and the student’s high school percentile rank. The expected
first year grade point average is assumed to be a nondecreasing function of both of these
independent variables. (The number in parentheses is the number of students in the
category.) '

Note that for values in the table having zero weight, the solutions are not uniquely
determined. For example the value 2.79 in the second row and ninth column of Table 5
could be replaced by any value in the range [2.79, 3.51].

The least squares solution, correct to four significant digits, was obtained after 500
iterations (250 row smoothings and 250 column smoothings) at a cost of 9 seconds of CPU
time. These results are given in Table 5 with the level sets indicated. Since the cost of our
algorithm is essentially linear in the number of points in the grid, even very large arrays
can be isotonized at a reasonable cost.

The algorithm extends in a natural fashion when one has more then two independent
variables, and the proof of convergence follows similar lines to that given in Section 3.
Thus suppose one has three independent variables and wants his function to be nonde-
creasing in rows, columns and layers. The algorithm would proceed as follows:

Step 1. First smooth G = (g;;z) over all rows. Let G denote the row-smoothed values
and R = ¢0}) = (8ijr — &i;») the first set of “row increments”.

Step 2. Smooth G + R™ over all columns. Let G® denote the column-smoothed values
and C = (c{}}) = {&ijr — (& +7},)} the first set of “column increments.”

Step 3. Smooth G + RY), + C“’] over all layers. Let G® denote the layer-smoothed
values and LY = (l‘”k) ={g ” —(gijn+rh + c‘“ )} the first set of “layer increments”.

Step 4. Now smooth G 0" ¥ LO over rows again to obtain the second set of row
smoothed values G®. The row increments are updated and become R® = ff)k ) ={& 1(12;
— (gijr + ek + 150}

Step 5. Continue. Sequentially smooth over columns, layers and rows each time updating
the increments.

Additional independent variables are handled in a similar fashion.

While we have been concerned with enforcing monotonicity in independent variables,
the scheme is also amenable to certain other types of partial orders as well.
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