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SOME PROPERTIES OF THE ASYMPTOTIC RELATIVE PITMAN
EFFICIENCY

BY GUNTER ROTHE

University of Dortmund

A general approach to Pitman efficiency as a limit of the ratio of sample
sizes is presented. The results can be used especially to derive the Pitman
efficiency of tests based on asymptotically x*-distributed statistics with differ-
ent degrees of freedom.

1. Introduction. The concept of asymptotic relative Pitman efficiency (ARPE) is a
useful tool for the comparison of test sequences. However, the available techniques
generally allow only the investigation of ARPE of tests based on test statistics which under
the hypothesis have the same asymptotic distribution, especially both a normal or a x*-
distribution with the same number of degrees of freedom. Using a very general definition
of ARPE, in Section 2 and 3 we give conditions which can be verified in many applications
and under which the ARPE can be calculated.

Section 4 contains the case of asymptotically normal or x*-distributed test statistics
(including the case of different degrees of freedom) as well as some applications.

Throughout the paper, {P,, § € O} is a family of probability measures on a space
(2, A) where O is a topological space. Furthermore, for 6, € O, {¢.} is a sequence of level-
a-tests (a > 0) for H:§ = 6, against K:d € © — {6} = O’ (say). In order to avoid
complications we also assume that for every 6 # 6,

(1.1.a) Ey(¢n) = a
(1.1.b) lim, . Eg(¢n) = 1.
(1.2) {60} # C(8o).

Here, C(6,) denotes the connected component of 6. ,

Usually, ¢, is a test based on n observations. Now the question arises how many
observations are necessary to achieve a given power 8 € ]a, 1[. Thusfor0<a<f <1, we
define

DEFINITION 1. A function N:©’ — IN is called a Pitman efficiency function for 8
(B-PEF), if

(1.3.2) Eo¢ne) = B
(1.3.b) Ey(pneg-1) < B
where ¢ = a.
Further, let
(14.2) Ny(6) = inf {(n € N:Eo() = B
(1.4.b) Ny(0) = inf (n € N:Eo(¢n) =B forall m=n).

REMARK. Clearly, Ng, resp. ﬁp, are the smallest, resp. the largest 8-PEF. The existence
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664 GUNTER ROTHE

of B-PEF’s is guaranteed by (1.1). If {Es(¢)} is an increasing sequence, the B-PEF is
uniquely determined, but this property is frequently difficult to verify.

For our definition of Pitman efficiency, we modify the concept of Wieand (1976), using
the notation II for the set of all sequences {6,} satisfying 6, € ©’, 6, — 6,:

DEFINITION 2. Let {¢/"}nen, i = 1, 2 be two sequences of level-a-tests with 8-PEF
NgY, Ng?, respectively. Then

Nﬁ&)(oﬂ)
(1.5.a) e = infy lim inf, .. ———
Nﬁ(l)(on)
resp.
: N5 (6,)
(1.5.b) eT; = supp lim sup,_.« 7\]_—/3‘1)(—9'!)

are the lower (resp. upper) ARPE.

If e1z = ez = e1; (say) then ey is the ARPE of {6} w.r.t.{¢2).

Simple calculations show that under the conditions A, B, and C given below our
definition of ARPE coincides with several somewhat different versions (e.g., those of
Noether (1955), Fraser (1957), Olshen (1967), and Wieand (1976)).

2. Limiting behavior of efficiency functions. In this section we assume that the
following condition is satisfied:

ConpITION A.  There are functions g:0 — [0, [ and H:[0, ©[ — [a, 1[ such that
(2.1.a) giscontinuous,and g(f) =0 iff 6 =6,
(2.1.b) H is strictly increasing and bijective
(2.1.c) For sequences {0,.}.in O satisfying g(d.)n - n=0as n — o,

we have lim,_. Eq,(¢.) = H(n).

REMARKs. 1. By (2.1.b), H is continuous, H(0) = « and lim,. H(t) = 1

2. By (2.1.a) and (1.2), there is a b > 0 such that [0, b]C{g(6), § € ©}.

3. Although Condition A is satisfied in many cases, its verification can become very
tedious, generally uniformity or contiguity arguments are needed (cf., Section 4).

An easy consequence is

LemMMmA 1. For k., €N, k, — «, g(0,)k. — n, we haveEy (¢r,) — H(n).

Proor. (a) If {k,} is strictly increasing, there is a sequence {6} such that for m >
1/b (by remark 2 above)

(2.2.a) On=0, if m==~k,
(2.2.b) mg(fr) =n, otherwise.

Then g(67)m — 7 and E, (¢x) is a subsequence of Ey, (¢m) which tends to H(n) by
Condition A.

(b) If {k,} is not strictly increasing, each subsequence contains an increasing subse-
quence, hence each subsequence of {Ey,(¢x,)} contains a subsequence with limit H(r) by
part (a) of the proof and the result follows. 0O

The idea of the concept is to show that under simple conditions, for every sequence
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6.} € 11, k, = N(8,) satisfies the conditions of the lemma with n = H ~1(8). The conditions
on {6,} we require are given by

DEFINITION 3. {6.} €Il is called an essential sequence (ES) for the 8-PEF N, if
(2.3.a) N(6,) —
(2.3.b) lim sup,—.« £(6-)N(6,) < co.

Then we have

THEOREM 1. Let {6,} € Il be an ES for the B-PEF N, then
(2.4) lim, ... g(6,)N(6,) = H “HB).

ProoF. (a) Let {6} be a subsequence of {6.} such that g(6,)N(6.) — n* (say). Then,
by (2.3.a), N(#,) — o« and consequently by Lemma 1 8 =Ey,(¢n@,) — H(n*) as well as
B = Eg (¢ney-1) — H(n*), since g(67)(N(6) — 1) — n*. Hence B = H(n*) and n* = H?
(B).

(b) By (2.1.b) each subsequence of {g(6.)N(6.)} contains a convergent subsequence
that must have the limit H~!(8) by part (a) of the proof. Thus the assertion follows. [

3. Essential sequences. Considering ‘the definition of ARPE, it is useful to find
conditions under which a sequence {6,} € I is essential forN; andNg.

The goal of this section is to show that for every 8 € ]a, 1[ each sequence of IT is an ES
for N; as well as for N; (and hence for all PEF’s), if the following two conditions are
satisfied:

ConpitioN B.  For every n € N, the function y:0 — Es(¢») is continuous at 8 = 0.

ConpiTioN C. For every sequence {6,} € Il such that g(6.)n — o, we have
Eo,,(‘i’n) - 1L

REMARK. Note that C is an extension of A to the case n = ». A generalization similar
to Lemma 1 is possible and will be used in the proof of Theorem 2.

However, yet we only assume A to be true. Then we have

LEMMA 2. For every 8 € la, 1[ and every sequence {6,} € I1,

(a) (2.3.a) holds for N = Ny
(b) (2.3.b) holds for N = &;

Proor. (a) For B8 € ]a, 1[ and {,} €11, defined = (8 + a)/2,n = H™'(d) and k&, =
[n/8(6.)] (where [x] = sup {z € Z:z < x}). Then k, — ; kg(6,) — 1 and thus
E, (¢,) — H(p) = d < B. Hence, k, < Nj(8,) for sufficiently large n and the assertion
follows.

(b) Define d’ = (8 + 1)/2, 7" = H™' (d'), k. = [1/g(0,)]. Then by similar arguments
kn < Np(6,) and

lim sup g(6.)Np(8,) = lim sup g(0n)kr = 7 < . 0

Now we can show

THEOREM 2. Assume Condition A is satisfied. Then
(a) Every sequence {6,} € I1 is an ES for Ng for all B € ]e, 1[ if and only if Condition
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B is satisfied. .
(b) Every sequence {6,} € Il is an ES for Ny for all 8 € Ja, 1[ if and only if Condition
C is satisfied.

As a direct consequence of the theorem 1 and 2, we get

CoroLLARY. Under Conditions A, B, and C, for every sequence {6, € I, every B €
o, 1[ and every B-PEF N, (2.4) is satisfied.

PrROOF OF THEOREM 2. (a) Assume 0 < a < 8 < 1. Under B, for every m € IN there
is a §,, > 0 such that for |§| < 8, and for all n < m we have Ey(¢,) < 8. ThusN; () > m for
|8] < ... Hence every sequence {6,} € II satisfies (2.3.a) as well as (2.3.b) by L2(a). If B
does not hold, there exists £ € IN, 8 € ], 1[ and a sequence {§,} € II s.th. Ey (¢r) > B for
all n € IN. Hence Ng(6,) < k and (2.3.a) is not satisfied. -

(b) Assume there exists 8 € ]a, 1[ and {6,} € II such that {6,)} is not an ES for N, .
Then, by L2(b), w.l.0.g., g(6.)Nz(8,) — o (and consequently g(6,) (Ng (6,) — 1) — «) can be
assumed. Then, by C and the subsequent remarks, E, (¢5,00-1) — 1.

But this is a contradiction to Ey,(¢¥,6,-1) < B. On the other hand, if C does not hold,
there exists a § > 0 and a sequence {6,} € II such that ng(6,) — « as well as Ey, (¢n)< 1
— 8. Then, for B =1 — 8/2, Ng(6,) > n and Ng(8,)g(8,) — o, which is a contradiction to
(23.b). O

Hence we obtain as a general result of the preceding arguments,

THEOREM 3. Let {¢Y)}, i = 1, 2 be level-a-test sequences satisfying Conditions A, B,
and C with function g;, H,, respectively. Further let

3.1 g1z = infy lim inf, . £1(8,)/82(0,)
and define g1; similarly (cf., (1.5.b)). Then

(3.2.2) en() = grHz'(B)/Hi'(B)
(3.2.b) e2(B) = g:H:'(B)/H1'(B).
Proor. For {6.} €Il and every B8-PEF N, we have
. N N®(8,) s N®(0,)g2(6r) . .. &)
(33) mfn lim lnf,,_,.,, I—VW = lm,,_,mm . mfn lim mfgz(ﬂ,,) . 0

REMARK. Clearly, gi: = 1/g2. If g12 = g%», ARPE exists by Theorem 3, but generally
depends on S.

4. Verification of condition A. By the arguments in the preceding section the
calculation of ARPE mainly reduces to the problem of verifying Condition A and hence
find suitable functions g and H. In this section we assume that ¢, is an upper level-a-test
w.r.t. a test statistic T, i.e.,

¢n =1 lf Tn > tn
4.1) = Yn =
=0 <

where ¢, and y, are constants such that Eg, (¢.) = a. We shall consider the shape of H™! if
the distribution of T, has one of the following asymptotic properties:

Ao. There is an u > 0 such that g(6.)n — 7 implies 2y, (T,.) — N(n* 1) for every n =0
and, for K € IN.
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Ax. There is an u > 0 such that g(6,)n — 7 implies Dy, (T») — x*(K, ™), where x*(K,
8% is a x*-distribution with K degrees of freedom and noncentrality parameter .
Then we obtain

TH :0REM 4. Assume {¢n} is based on {T,} by (4.1). Then, for 0 < a < 8 < 1, we
have: If T, satisfies Ak for K = 0, Condition A holds with

4.2) H'(B) = d"“(a, B, K).

Here dia, B, 0) = @' (B) — @ Y(a), where ® is the distribution function of the standard
normal distribution, and, for K = 1, d* = d%(a, B, K) is the (uniquely determined)
noncentrality parameter s.th. the B-fractile of X*(K, d*) and the a-fractile of x*(K, 0)
coincide.

ProoF. For K =0, H(t) = 1 — ®(@® (1 — a) — ). But H(t) = B iff ¢t = (®Y(B) —
D (a)) V™

For K > 0, the assertion follows similarly using H(f) = 1 — Fox e (F;ﬁ1 (K,O)(l - a)).
Here F, denotes the distribution function of the distribution u. 0O

REMARKS. 1. Assume that for i = 1, 2; {${’} are based on {T%} by (4.1) and let
Conditions Ak, B, C be satisfied with functions g; and constant K;, u;, respectively. For
g1z asin (3.1), we have:

(a) If K; = K; and u; = us, thenep; = g1 independent from « and S.

(b) If K, # K; or u, 5 us, we have

(4.3) en(a, B) = grd"*(a, B, Kz)/d"“(a, B, K1),

which depends on « and S.

2. For K > 0, d*(a, B, K) has been tabulated by Haynam et al. (1962) (cf. also Harter
and Owen (1970)).

3. Often limg .4, g(6)/c(8) = 1, where c(6) is the Bahadur slope of the test statistic {7}
(cf., Bahadur (1960)). In these cases the Pitman efficiency factors into the product of the
local Bahadur efficiency and a function of « and 8 which reflects only the analytic structure
of the test statistic’s limiting behavior.

4. Pitman’s conditions in the modified version of Olshen (1967) imply our Condition Ao
with u = %, g(6) = c*(§ — 6,)*. An analogous modification of the extensions due to Noether
(1955) resp. Hannan (1956) lead to Condition Ay, resp. A,, with u = mé, g() = (¢/m!)*/*"
(0 — 60)'/°, where £ = ¢, or £ = (¢c’A™}(6b)c)"?, in the notation of the respective authors.

5. Often contiguity arguments lead to Condition A. As an illustration, consider the rank
statistic @ for the k-sample problem as defined by Hajek and Sidak (1967) in (VI. 3.1.2).
In Chapter VI they show that suitable assumptions on the underlying model lead to (VI.
4.3.2), which in the case n;/n — A; > 0 for 1 < j < k is equivalent to our Condition A,_;
with © = R*, u = % and g(A) =p? I(f) 351 A4 — D)2

We close with two numerical examples:

1. Assume T, = (1/ \/;) Y1 X;, where X; ~ N(6, 1) independent. For H:6 = 0 against K:
0> 0 we use {65} based on {T,} by (4.1). How many observations are “lost”, if we use the
two-sided test although the problem is one-sided, i.e., if we use{¢} based on{T%}? {T.)}
satisfies Ao, {72} satisfies A;, both with g(6) = 6, u = %; Conditions B and C can be verified
easily. Hence we have

d*(a, B, 1)
(@ () — ®7'(B)*’

Some values of this function are given in Table 1.

e(a, B) =
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2. In a recent paper, Schach (1979), using the concept of Bahadur efficiency, compares
a test proposed by Anderson (1959) with the method of n rankings using the optimal scores
(cf., e.g., Puri and Sen (1971), Section 7). It can be shown that Conditions Ax, B and C
with different K but the same g and u are satisfied for the two tests. Details are omitted
and can be found in Rothe (1978). Hence the ARPE turns out to be

dz(a, B’p - 1)
d*, B, (p — 1))

where p is the number of treatments in each block. Some values are given in Table 2, the
values of d%(a, 8, K) have been taken from Harter and Owen (1970).

(44) €Anderson, opt.n-?-anking (a, B) =

TABLE 1
ARPE of two-sided against one-sided Gauss-test for one-sided
alternatives.
N 0.1 0.050 0.010 0.005 0.001
0.2 0.332 0.519 0.732 0.778 0.842
0.4 0.548 0.665 0.795 0.826 0.871
0.6 0.655 0.736 . 0.831 0.855 0.890
0.7 0.693 0.762 0.845 0.866 0.897
0.8 0.736 0.788 0.859 0.878 0.906
0.9 0.768 0.815 0.873 0.890 0.914
0.99 0.825 0.858 0.901 0.912 0.930
TABLE 2

ARPE of Anderson-test against method of n-rankings with optimal
scores.

a\ B 0.3 0.5 0.7 0.9

0.1 0.727 0.758 . 0.780 0.812

0.05 0.743 0.772 0.795 0.821

0.01 0.777 0.800 0.819 0.840 p=3

0.005 0.790 0.810 0.827 0.847

0.001 0.812 0.829 0.844 0.860

0.1 0.523 0.560 0.591 0.627

-0.05 0.541 0.575 0.604 0.639

0.01 0.576 0.606 0.631 0.661 0=5
0.005 0.589 0.617 0.640 0.669

0.001 0.614 0.639 0.660 0.685

0.1 0.428 0.461 0.489 0.524

0.05 0.443 0474 0.501 0.5635

0.01 0.473 0.501 0.525 0.555 p=7

0.005 0.484 0.510 0.533 0.562

0.001 0.506 0.530 0.551 0.578

0.1 0.330 0.356 0.379 0.408

0.05 0.341 0.366 0.388 0.417

0.01 0.363 0.386 0.406 0.433 p=11
0.005 0.371 0.393 0.413 0.439

0.001 0.388 0.408 0.427 0.451
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