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ASYMPTOTIC THEORY OF NONLINEAR LEAST SQUARES
ESTIMATION!

By CHieEN-Fu Wu

University of Wisconsin, Madison

For a linear regression model, the necessary and sufficient condition for
the asymptotic consistency of the least squares estimator is known. An
analogous condition for the nonlinear model is considered in this paper. The
condition is proved to be necessary for the existence of any weakly consistent
estimator, including the least squares estimator. It is also sufficient for the
strong consistency of the nonlinear least squares estimator if the parameter
space is finite. For an arbitrary compact parameter space, its sufficiency for
strong consistency is proved under additional conditidns in a sense weaker
than previously assumed. The proof involves a novel use of the strong law of
large numbers in C(S). Asymptotic normality is also established.

1. Introduction. The method of least squares plays a central role in the inference of
parameters in nonlinear regression models. Due to nonlinearity, the resulting nonlinear
least squares estimators defined in (1.2) do not enjoy any tractable finite sample optimality
property (e.g., the minimum variance linear unbiased estimator, etc.) A general approach
to the theoretical study of nonlinear least squares is thus asymptotic. However in the past
more attention was paid to the numerical methods for calculating the estimator ([6] and
its references). Much of the work was done by first assuming the consistency of nonlinear
least squares estimator and then proving the asymptotic normality, constructing confidence
regions, etc. ([2-4], [7], [10-12], [14].) The relatively harder question of consistency was
first rigorously proved by Jennrich (1969) and Malinvaud (1970). Jennrich (1969) consid-
ered the following model:

(1.1) yi= f(x,‘, 6o) + €, i=1,...,n,

when x; is the ith “fixed” input vector which gives rise to observation y;, 6, is the unknown
» X 1 vector parameter from a compact parameter space © C R?, fi(0) = f(x;, §) are
continuous functions in § € © and ¢ are independent identically distributed errors with
mean zero and unknown variance o” > 0. Any vector 6, in © which minimizes the residual
sum of squares

(1.2) S.(0) =Y %1 (yi — flxi, 0))*

will be called a least squares estimate of 6, based on { y;}1". Its existence and measurability
were proved in [19]. An estimator 6, of 6, is said to be strongly (weakly) consistent if 8,
— 6 a.s. (in prob.) as n — . The strong consistency of 8, was proved in [19] under the
following assumption:

(1.3) n~'D,(6, ') converges uniformly to a continuous function D @,6’)
and D(4, 6,) = 0 if and only if § = 6,,

where
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(1.4) D6, 6') = Y21 (f(xi, 0) — f(xi,87)°.

Under slightly stronger assumptions, the asymptotic normality was proved in the same
paper. Jennrich’s method of proof was later extended to more complicated models in
[13], [24], [25]. Essentially they all assumed (1.3). The question of hypothesis testing was
considered by Gallant in a series of papers [10-12], again, by assuming the consistency of
0,.

To assess the generality of the assumption (1.3), take the more familiar linear regression
model f(x;, ) = x76, where x; is a p X 1 vector. Then (1.3) is equivalent to

1
> XX, — some positive definite matrix,

where X, = [x1, ..., x,]. From the recent work on the strong consistency of linear least
squares estimator [9], [20], it is known that
(1.5) X X)) t—>0

is equivalent to the strong and weak consistency of the linear LSE under assumption (1.1)
on the €. For the nonlinear model (1.1), the analogue of (1.5) is

(1.6) ‘ D,.(8,80") > = as n— forall 676’

It was the attempt to relax condition (1.3) that originally motivated the author to study
the problem.

In Section 2 we prove that (1.6) is necessary for the existence of any weakly consistent
estimator of # € © under conditions much weaker than (1.1). Since no particular form of
the estimator (e.g., the least squares estimator) is assumed, this is rather a necessary
condition for the “asymptotic identifiability” (or distinguishability) of the statistical
problem under study. The expeditious proof of Theorem 1 is made possible by two previous
results due to Hoeffding and Wolfowitz (1958) and Shepp (1965).

In Theorem 2 of Section 3 we prove that (1.6) is necessary and sufficient for the strong
consistency of the least squares estimator §, when © is a finite set. This result can also be
interpreted in the context of hypothesis testing as in [16]. For general compact O, sufficient
conditions for strong consistency are given in Theorem 3. These conditions, when special-
ized to the linear regression model, require that

(max. eigenvalue of X X,) "9/

lim supne — <o for some ¢>0
Pn min. eigenvalue of X, X, ’

which is much weaker than (1.3). Unlike (1.3), only some weak growth rate condition
D,(6, 8,) is imposed in Theorem 3. When the errors are normally distributed, the least
squares estimator and the maximum likelihood estimator (MLE) are equivalent. The
existing results on the asymptotic consistency of the maximum likelihood estimator for the
independent not identically distributed (i.n.i.d.) case do not seem to be applicable here.
For example, condition C4 (or C’4) of Hoadley (1971), when specialized to model (1.1) with
normal errors, implies that D, (6, 6,) diverges to infinity at rate n for all 8 # 6,, which is
closely related to (1.3). The crucial step in the proof of Theorem 3 involves the almost sure
convergence in supremum norm of a sequence of random functions. This technique may
be useful for extending the existing results on the MLE for i.n.i.d. observations. A result
due to Jim Kuelbs on the strong law of large numbers in C(S) (space of continuous
functions on S with supremum norm) is given in the Appendix. A general result about the
strong consistency of variance estimation is given in Theorem 4.

Finally, in Section 4, we derive the asymptotic normality of 8, — 8, under much weaker
growth rate conditions than those assumed in [19]. Several examples are given in various
sections to illustrate the theorems.
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2. A necessary condition for the existence of a weakly consistent estimator. In
Section 1 we have remarked that (X,X,)~! — 0 is both necessary and sufficient for the
strong and weak consistency of the least squares estimator in the linear model case. The
analogue of this condition for the nonlinear model (1.1) is Dn(f, §’) — ® as n — ® for all
§ # 6’. In this section we will prove the necessity of this condition for the existence of a
weakly consistent estimator of 6 for model (1.1). The assumptions in (1.1) on the com-
pactness of ©, the continuity of £;(6) and the moment conditions on e; are not needed for
the validity of the following Theorem 1.

THEOREM 1. Let y; = fi(8) + €;, where § € © and the parameter space is a subset of
R, f:(8) are functions defined on ©, €; are i.i.d. with the common distribution G which
has a positive (a.e.) and absolutely continuous density g with finite Fisher information,
ie., [Z» (8)%/g < . If there exists an estimator 0, (y1,¥s, . .., ) such that

(2.1) 0. (1, ...y n) >0 in probability for all 6 € O,
then
(2.2) D.(6,6") = Y1 (f:(8) = £:(8")) — as n— o

for all 6 # 6’ in ©.

Proor. Denote Y, = (¥1, ..., ¥») and P,, = the probability measure of Y, under 6.
From a well-known result due to Hoeffding and Wolfowitz (1958) (for details, see Theorem
2.1.1 of [1]), a necessary condition for (2.1) is

P n ‘n
Pan (y,) - L2

d[-tn dﬂn (Y,) dIJ'n(Yn) =2,

(2.3) limy o dn(6, 6') = limy, . J

R

for any two distinct points 8 and 6’ in ©, where p, is any o-finite measure on R" such that
P, and Py, are absolutely continuous with respect to p,.. Denote P, = the probability
measure of the infinite sample (¥;)%; under §. Then (2.3) amounts to saying that Py and
P, are mutually singular (or disjoint) for any  # 8’ in ©. The sequence of random
variables ()%, under @ is a translate of the sequence of random variables (y;)iZ1 under
¢’. Under the assumptions on ¢;, if the two probability measures of ()21 under § and 6’
are mutually singular, then the sum of the squares of the translates (£i(6) — fi(6"))iz: is
infinite (see Theorem 1(ii) of Shepp, 1965), which is condition (2.2). O

Therefore, if there exist 6 5% 8’ in © such that lim,_,. D.(6, 8’) < , then it is impossible
to find a weakly consistent estimator of § € 6, no matter how this estimator is obtained.
In this situation, it is the “incompetency” of the statistical problem rather than the
“incompetency” of the estimation method that should bear the blame. When an estimator
is found to be inconsistent, one should first check whether the associated statistical
problem is capable of admitting a consistent estimator. If yes, find a new estimator.
Otherwise, a reformulation of the problem or a new design of experiment may be needed.

ExaMPLE 1. Malinvaud (1970) considered the first order decay model y. = e~ + &,
t=1,2,...,a€ (0,27), and demonstrated the inconsistency of the nonlinear least squares
estimator &. This can be easily explained by Theorem 1 since Y% (e™* — e™)® < o for
any a # B € (0, 27). For linear regression model, the “directions” of inconsistency were
defined and characterized in [29].

ExXAMPLE 2. Another example of inconsistency is the one-compartment open model
which has been used extensively in the study of pharmacokinetics [26] and chemical
reaction [5],
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0,

—a (e7% — e + ¢, t=1,2,...
2 — U3

y¢=fg(0) +€¢=01

L}

where 6 = (61, 62, 05), 01, 62, 8; > 0. Due to the exponential convergence to zero as t — o,
one can easily verify that Y2, (£.(8) — f.(¢))? < = for all § % ¢ with 62, 85, ¢z, s > 0.

3. Sufficient conditions for strong consistency. In this section we give sufficient
conditions for the strong consistency of ,. As in the previous sections, let £.(8) = f(x;, §)
and 6, be the unknown true parameter. We begin with a general lemma that provides a
criterion for consistency. Denote any least squares estimator defined in (1.2) by §,..

- LEmMMA 1. Suppose, for any § >0,
(3.1) lim inf, . infig_gy)=s (Sr(6) — Sn(6)) >0 a.s.*(or in prob.).

Then, 6, — 6o as. (or in prob.) as n — o,

ProOF. Only the proof of strong consistency is given. If 6. — 6, a.s. is not true, then
there exists a § > 0 such that P(w: lim sup,—.« | 0.(w) — 6| = 8) > 0. From the definition
of §,, this implies

P (lim inf, ... infig—g,(=5 (Sa(8) — Sa(60)) < 0) >0,
contradicting (3.1). O

The same lemma is applicable to any estimation procedure which is based on the
minimization or maximization of a certain function. The idea originated with Wald’s proof
of the strong consistency of maximum likelihood estimators.

The following Lemma 2 will be used later on. Since the condition on the denominator
A, is related to the o7 in (3.2) and is not restrictive at all, the lemma can be useful in its
own right.

LEMMA 2. Let {X;} be a sequence of independent random variables with EX, = 0
and Var(X,) = o? and

n 2)1/2+8
(3.2) An,— o, lim supn_m-(h‘:;)——< 0 for some 8 > 0.

Then,

1
Z; ZLI Xi — 0 a.s.

PROOF. (i) Assume lim,_... YT 67 = ¢ < o; from the completeness of the L? space and
Theorem 5.3.4 [8], there exists a random variable X with EX = 0, Var X = ¢ such that
Y71 Xi = X a.s., which implies (3.3) via (3.2).

(ii) Assume lim,_,. Y71 6 = o; from [8], page 126,

X
W—) 0 a.s.,

which implies (3.3) via (3.2). 00

When O is a finite set, the necessary condition for weak consistency proved in Section
2 turns out to be sufficient for strong consistency. Under slightly weaker assumption on ¢;
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than those assumed in Theorem 1, it is also necessary for the strong consistency of the
least squares estimator. This is formally stated as Theorem 2. To compare the two
theorems, note that for finite © strong and weak consistency of g, are equivalent and that
the conclusion of Theorem 1 unlike that of Theorem 2 holds for any estimator.

THEOREM 2. Suppose the parameter space © is finite and model (1.1) is true. Then,
D, (8, 66) = Y1 (£.(6) — £:(65))* > o for all 8 # 6, implies 6, — 6, a.s. Conversely, if the
support of €, in (1.1) is neither bounded above nor bounded below, 6. — 6o a.s. implies
D,.(8, 6,) — = for all § # 6,.

ProOOF. Sufficiency. Since © is a finite set, we prove consistency by verifying (3.1) for
each 6 # 6,. Write

(3.4) Su(8) — Sn(f0) = —2 Y1 di(@)e; + Y71 dF(0),

where d,(8) = f(x;, ) — f(x., 6p). From D, (6, 6) = Y71 d%(§) —» » and Lemma 2, S,(0)
— S,(6) > = a.s. for all 8 5 6,, thus establishing the consistency of d,.

Necessity. If there exists a 6; with D,(6:, 6) = X i1 d¥6,) » ¢ < x, from the
completeness of the L*-space and Theorem 5.3.4 [8], there exists a random variable X with
EX =0, Var X = ¢ such that Y% di(6:) e, — X a.s. Therefore, S,(6:) — Sn(6o) —> —2X +
¢ a.s. To finish the proof, it remains to show P(—2X + ¢ < 0) > 0. Since c is not specified,
it suffices to prove that the support of X is not bounded above. Since the convolution of
one distribution with unbounded support and any other distribution has unbounded
support, Y7, d,(6)e; has unbounded support for any n and thus establishes the result by
letting n — . [

REMARK 1. Although the finiteness assumption on © is a mathematical defect, it is
not quite a restriction from the practical viewpoint. In actual computation we can only
search the minimum over a finite set, say, to the eighth decimal place. Theorem 2 suggests
that {x;}7-; should be chosen such that D,(6, ¢) is as large as possible for any 8 # ¢.
Although the choice may not be optimal, it does guarantee that enough “information” is
gathered to allow for the consistent estimation of the unknown parameter 8 as n — c.

REMARK 2. If the support of ; is bounded, then D, (6, 6p) —  as n — o may not be
necessary for the strong consistency of 4, as the following example shows. Let © = {6,, 6.},
f:(6o) = ai, f:(61) = a; + &, a;, 8; are known constants and ¢; are uniformly distributed over
[—1, 1]. If there exists an i with | §;| > 2, then 6, can be identified correctly from observing
.. This example also applies to Theorem 1.

REMARK 3. For the sufficiency part of Theorem 2, we need only assume that ¢; are
independent with Ee; = 0 and sup;~: Ee} < .

For finite O, one can verify condition (3.1) for each 8 # 6,. This is why the proof of
strong consistency in Theorem 4 is not difficult. When © is not discrete, it becomes
necessary, in verifying (3.1), to compare the random function S,(6) with infinitely many
other random functions S, (¢) in the neighborhood of 4 distinct from 6,. It is thus important
to establish results on the uniform convergence (with probability 1) of a sequence of
random functions. Under assumption (1.3), Jennrich (1969) obtained one such result in his
theorem 4. But when D, (6, 6,) diverges to infinity at a rate slower than n, his method of
proof fails. This is why we have to resort to the probability theory of Banach space valued
random variables. Two such results are given in the Appendix.

For compact O, the strong consistency of . will be established under the following
assumptions.
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AssumPTION A. (i) For any 6 > 0,

{T -1 supjo-gyi=s (£i(6) — fi(8o))*} """
inflg_g,=5 21=1 (£:(0) — f:(80))*

(3.5) lim supr—«

for some ¢ > 0,
(ii) f:(6) are Lipschitz functions on © and

|fi(6:) — fi(62) |
|6 — 62|

for some & > 0 and for all i, where M is independent of i and | 6; — 6| is the Euclidean
distance between 6; and 6.

(3.6) A(f;) = supe,s, = M supjp-g,=5 | f:(6) — fi(6o) |

AssuMpPTION A’. For any 8 # 6, there exists an ry > 0 such that

(X1 supjg-s=r, (fi(¢) — ﬁ(go)‘)z}(m)/z
infly—oi=r, Bi=1 (£i($) — £i(60))?

(3.5)" i) lim supr—o

for some ¢ > 0,
(ii) £;(@) are Lipschitz functions on B(8,rs) = {¢ €O, |¢ — | <re} and

| fi(®) — fi(e')]
l¢— ¢
for all i, where M’ is independent of i but may depend on (6, ry).

(3.6) SUPg»g';0.0'€B(6,7,) = M’ supses,ry | fi(¢) — fi(6o) |

Assumption A’ is a local version of Assumption A and may be cumbersome to verify.
But (3.5) is weaker than (3.5) (see Example 3). To compare our assumptions and Jennrich’s
assumption (1.3), consider the linear model f;(§) = x/8 as in Section 1. Assumptions A or
A’ are reduced to

(max eigcnvalue of X, X, )97/

lim supr— — < ™ for some ¢ >0
Pn min eigenvalue of X, X, ’

while (1.3) implies the more stringent condition that

1 .. . s .
limy, e (; max and min eigenvalues of X ;Xn) exist and both are positive and finite.

In general, Assumptions A or A’ do not impose any condition on the growth rate of D, (6,
6) as n — o, However, when D, (0, 6;) grows to infinity at rate n as was assumed in
Jennrich (1969), our assumptions are not comparable to his. Denote any least squares
estimator defined in (1.2) by 6.

THEOREM 3. Under Assumptions A or A’, D,(0, 6,) = Y.7-1 (f:(6) — f:(80))? — o for all
0 # 0, implies 6, — 6, as.
Proor. We first give a proof under Assumption A. Write
Sn(6) — Sn(fo) = Dn(6, 60)(1 — 2 33~ di(0)e;/Dn (8, 6o)),

where d,(0) = f;(8) — f:(6,). From D, (6, 6,) — « and (3.5), inf4—g,|=s Dn(8, ) — o as
n — o for any 8 > 0. Therefore from Lemma 1, it suffices for the strong consistency of é.
to prove

3.7 Sups—g1=s | i=1 di(0)e. |/infig—g,1=s Dn(8, o) — 0 as.
for any small § > 0. In view of (3.5), (3.7) is implied by
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(3.8 SUP|9~g5|=8 | Dyi=1 di(0)e€:|/{Di=1 SUP|g—,|=s d}(6)}%92 5 0 as.

for some ¢ > 0. To apply Corollary A in the appendix, take the compact set S = {§ € 6,
|@ — 65| = 8} and the Lipschitz function g; to be d;. By choosing 8 smaller than the § in
(3.6), the d; functions satisfy condition (8) in the Appendix. Therefore Corollary A implies
(3.8).

As for Assumption A’, the set {§ € ©, |6 — 6| = 8} is compact for any 8 > 0. From
Lemma 1 and the finite covering property of compact set, it suffices to prove that, for any
8 # 6, there exists an ry, > 0 such that

(3.9 lim, e inf|¢_0|sr, (Sn((;b) — Sn(6)) = > ass.

By using the same argument outlined above, one can easily show that (3.9) holds under
Assumption A’. This completes the proof. [

Remark 3 after Theorem 2 is also applicable to Theorem 3.

ExaMmpPLE 3. Consider the power curve model y, = (¢t + ) + e, t =1, 2, ..., where d

is a known constant and the parameter space is a compact subset of R'. Then D, (6, 6,) =

" ((t+ 0)% ~ (¢t + 60)%)* — o as n — o for all 8 5 6, iff d = %. Therefore for d < % no

weakly consistent estimator exists. But for d = %%, both Assumptions A and A’ are satisfied.

Therefore the least squares estimator 6, is strongly consistent. Note that, except for the
linear case d = 1, Jennrich’s condition (1.3) is not applicable here.

ExampLE 4. Considery; = it %+ ¢,t=1,2, ..., with parameters § = (8,, 6;) and the
true parameter 8, = (6{”, 65”) lies in the interior of the parameter space © = [0, a] X [0,
b], a, b < . It can be verified that D,(8, §’) is of the same order as n 2™ +1 when
min(@:, 65) # % and as log n when min(6,, %) = ', where 8 = (6,, 6), 8’ = (01, 02) and 8
# @’. Therefore, no weakly consistent estimator exists when 6 > %. For 85” < %, it is not
hard to verify that Assumption A’ is satisfied but not Assumption A. Therefore, 6, is
strongly consistent. The really interesting (or disappointing) case is 85 = %, for which
condition (3.5)’ is not satisfied. By choosing 8 = (6,, %) with 6;  6{”, the denominator of
(3.5)" is of the order log n while the numerator is of the order n***°. Theorem 3 does not
guarantee the strong consistency of 8,,. But if #{” is a known constant, then Assumption A’
is still satisfied and the strong consistency of §, follows. Again, condition (1.3) is not
satisfied except for min(6., 3) = 0.

The next theorem provides a very general condition under which n~! S,(4,) converges
to o2 a.s. for any strongly consistent estimator 4, of 6. In the linear case, the estimator of
o? is strongly consistent without any condition on the consistency of §, or on {f;}. See
Schmidt (1976).

THEOREM 4. Supposc_a the sequence of ﬁ{nctions {f:(8)}:1 are equicontinuous in 4.
Then, for any estimator 6, — 6y a.s., n”* S,(4,) — o” as.

A proof can be easily obtained by writing #7'(S.(f,) — S.(6)) as in (3.4) and is thus
omitted.

4. Asymptotic normality. The asymptotic normality of §, was proved by Jennrich
(1969, page 639) under assumptions on the first and second order derivatives of f, (§) which
are similar to condition (1.3). Similar results were also obtained by Malinvaud (1970b) for
more complicated models. Under much weaker growth rate conditions than Assumption
(c) of [19], we derive the asymptotic normality result in this section. The basic idea is
again to use Corollary A. For each 6 € O, let
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0= (i), ro-|ZD] ko
J .
J

36,36,

Jk

AssuMPTION B.

(i) £/(6) and f/ () exist for all 6 near 6o; the true parameter 6, is in the interior of © and
there exist 7, 1 o such that 1/7, ¥,7-1 fi(6) fi(8)T converges to a positive definite matrix
Y, as n — oo; ‘

(ll) maXi<i<n fz(ﬁo T(Z =1 fz(ﬁo)fz(go T)_ fz(oo -0 as n-— w;

(i) Y. 7-1 f1(61) fi(61) (Y21 fi(o) fi(80)T) ! converges to the identity matrix uniformly as
n—ooand |6 — 6| — 0

(iv) there exists a § > 0 such that

. 1., F:(0)’
4.1) lim sup,—o 1'—,, Y Sup|g—g,|=<s <m <
for all j, &;
(v) if, for a pair (J, k),

i afi(0)
s} supw—"oP‘*(aof a0k)

then there exists an M independent of ¢ such that

2.
3*f.(s) 9 ﬂ(t) /| — t| = M supges

3s;0Sr atjal‘k
for all i, where S= {# € O, |6 — 6| < 8} and & is the same as in (4.1).
For 7, satisfying lim,,«7»-1/7, = 1, from Lemma 3 at the end of the section, the above
assumption (ii) is implied by (i). Assumptions (iv) and (v) are needed for the application
of Corollary A.

(6)
39 100},

(4~2) Sups#t; s,teS

THEOREM 5. Let 6, be a strongly consistent least squares estimator of 6, under model
(1.1). Under Assumption B

4.3) V7l = 80) =2, NO, 6*§7).

ProoF. Since §, — 6 a.s., with almost every w in the sample space ,(w) eventually
takes its values in a convex compact neighborhood of 6, which is interior to O. It is thus
legitimate to expand S, () in the neighborhood of .. Note that the first two derivatives of
S.(6) are

(4.4) S5(0) = Yi-1 (fi8) — fi6o) — &) fi(0),
and
(4.5) n(0) = Yr1 FUOFHO)T — Yot [1(0)e. + Yia (fulB) — filB0)) [ (6).

From the mean-value theorem, there exists a A ,€[0, 1] such that

(4.6) 32(00) = —Z?=1 f{(eo)e,-
= S51(0,) + Sx(6%)(60 — 6,),
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where 8% = (1 — X\.)0, + A6 is measurable from Lemma 3 of [19]. Since d, is in the
interior of © eventually, S;(d.) = 0. Now, (4.6) can be rewritten as

"y fiB0)ei = Za(Ti1 £i(00)Fi(B0)7) (B — 6o),
where
| Z = o1 FUOD FHO2)T (T F160)F100))
— Vi1 fPO%)e(Tir Fi(60)f1(B0)T) !
+ Y00 (fiB) — f60)) f (0% (Tir FH(Bo) fiB0))".

We want to show Z, — I a.s. The first term of Z, converges to I a.s. because of 8 — 6 a.s.
and condition (iii) of Assumption B. The third term converges to zero a.s. because of 6
—> 6 a.s., conditions (i), (iii), (iv) and Cauchy-Schwarz inequality. To prove that the second
term of Z, converges to 0 a.s., from condition (i) of Assumption B and 6, — 6, as,, it
suffices to prove that, with probability 1,

1
(4.7) - Y1 fi(0) ee—> 0 as n— o

uniformly on S = {6 € O, |6 — 6| < §} defined in (4.2). The (j, k) entry of the random
matrix in (4.7) is

3%,
(4.8) Tinsupges Y 80{;2 € \ — 0 as. as n— .
, . #1.0)|’
(1) Zz=1 Supges W

from a theorem of It6 and Nisio (1968), there exists a C(S) valued random variable n such
that

&fi(6)

Supses | Ri=1 WEL —n(6) \ — 0 as. as n-— o,
Since 7, — o, this implies (4.8).
. P10 |”
@ $E. supses 5%% -

from condition (iv) of Assumption B, (4.8) is implied by the following

Yo 710) Y71 supses )\ —0as as n— o
= 90,005 . 86,00, '

(4.9) Supges, €;

which is guaranteed by Corollary A because of condition (v) of Assumption B.
To finish the proof, it remains to show that

(Tr1 f1(80) Fi(86)T) ™2 (T2-1 fi(Bo)ei) ¢, N(O, 0°I),

which follows from Proposition 2.2 of Huber (1973) under condition (ii) of Assumption B.
O

The strongly consistent estimator of Example 3 is also asymptotically normal since
Assumption B is satisfied. However, condition (i) of Assumption B is not satisfied by
Example 4. This again demonstrates the difficulty of the asymptotic theory when
D,.(8, 6,) goes to infinity at a rate different from n.
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To conclude this section, we give

LeEMMA 3. Let (x,)}-1 be n p X 1 vectors such that there exist T, 1 © and limu e Th-1/
= 1 with ;' Y21 x;x] converging to a positive definite matrix X
Then

(4.10) maxi<i=n X7 (Y1 2:x7) ' 2,—>0 as n—> .

PROOF. Since 7, ' ¥y x:ixf — Y, (4.10) is implied by max;<i<, (1/7,)x7 { ' x:— 0
which is in turn implied by

xTx;

(4.11) maxi<i<n -0 as n— o,

Tn

From tr(r;' Yi; x:xf) = 7' Yoy xFx; — C = tr § > 0, for any € > 0 there exists an N
such that

Tn—1

1
— 7=1x,~Tx,~—C15€ forall n=N.

Tn

—1|=<e
Tn

Now from

1 1
— maxy=i=n X7 %; < — MaXnsizn {(C+ &)t — (C— €)Ti_1}

Tn n
< MAaxn=i=n {C——Ti (1 - ——-—Ti_l) + 2¢ —T’}
Tn T Tn
= (C + 2)e

(4.11) follows easily since 7, 1 .0

For the linear model considered in Section 1, Huber (1973) has proved that the
asymptotic normality of the least squares estimator is equivalent to the Lindberg type
condition maxi<;<, x7 (Y1 x:xF)™" x; — 0. Such a condition is automatically satisfied
under the assumptions on (x;);~; in Lemma 3.

APPENDIX

A strong law of large numbers in C(S). As shown in the main text, the most difficult
step in the proof of consistency and normality involves the uniform convergence of a
sequence of C(S)-valued random variables where C(S) is the space of continuous functions
on a compact metric space S with the supremum norm. Since the desired results can not
be found in the literature, we list them in the following Lemma A and Corollary A. Lemma
A and its proof were provided by Professor Jim Kuelbs in response to some discussions

regarding the material of the paper.
Let (S, d) be a compact metric space and C(S) the Banach space of real-valued

continuous functions on S with the supremum norm
[| % |lc = supses|x(s)|.

For a d-continuous metric p on S let N(S, p, €) denote the minimal number of p-balls of
radius less than or equal to € which cover S, and set

H(S, p, €) =log N(S, p, €).
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We let
[ x(s) — x(t) |

Lip(p) = {x € C(S): A(x) = supsx: T

<},

and for x € Lip(p) we define
lxll, = Ax) + [x(a) |

where a is some fixed point in S.

LEMMA A. Let (S, d) denote a compact metric space and suppose p is a d-continuous
metric on S with

8
(1) J’ HY(S,p,u) du<o  for some §&>0.
0
Let f: [0, ©) — [0, ») be increasing with
@) J fiuwydu<ow  forsome c>0

and for {gi:j =1} C C(S) set _
@) Dn =31l
Then, for {g;} C Lip(p) with

" Az(g;)
(4) 2} 1 fZ(D) w,
and {¢: j = 1} independent with Ee; = 0 and sup; E (¢}) < », we have
®) limp e || X7-1 8€/f(Dr) ||l = 0

whenever D,, — .

Proor. Since (1) holds the identity mapping v from Lip(p) into C(S) is a type 2
mapping (see Zinn (1977), proof of Corollary 1). Hence we have A < o such that for all n

6) E|Xi+ -+ + Xao = A X1 E| X2,

whenever Xi, ..., X, are independent Lip(p) valued random variables with mean zero.
To prove (5) note that by Kronecker’s lemma we need only prove

(7 =1 €&/f(D;)
converges with probability one in C(S). Now by It6-Nisio (1968), (7) converges with
probability one since it converges in mean square, i.e., by (6)
E| 35-n €i&i/f(D)) |2 = A ¥5-n Ell€g;llz /f*(Dy)
<A Sup;=1 E(fj) Z/ =m (A(g;) + Ig](a) |)2/f2(D )

A
<24 sup=1 E () | X-n | &ll% /(D) + ¥j-m fz((Dg]))}
L J
i Dj — D;
= 24 sup;=1 E (€7) Zln m—;@TD_]l-.— Li=m fz((ng))jl

= 24 supj=; E(ef) 2— dt + z,L,,, A (g) /(D))
fA(t)
-JD,,_,
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which converges to zero as n, m —  because of (2), (4). Thus the proof is complete. [

A special case of Lemma A has been repeatedly used in the main text. Let S be a
compact subset of R? and p(s, £) be the Euclidean metric in R?. Then (1) is satisfied.
Condition (2) is satisfied for f(s) = x*9/% Let {g;} be Lipschitz functions on S satisfying:
there exists a constant M independent of j such that

|&i(s) — &) |

Ts—¢] = M sups| gi(s) | < o,

(8) SUPswt

where |s — t| is the Euclidean distance between s and ¢. Then (4) is satisfied and the
conclusion of Lemma A holds. This is stated as

COROLLARY A. Let S be a compact subset of R? and gj(x) Lipschitz functions
satisfying (8). Then for the independent random variables {¢;} with E ¢, = 0 and
sup;E (¢?) < o, we have, for any ¢ >0, .

lim,—» supses | -1 &/(s)e;|/DS+* = 0 as.

|2—> o asn—> .

where D, = Y}_1 supses | &i(s)
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