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THE ASYMPTOTIC BEHAVIOR OF MONOTONE REGRESSION
ESTIMATES'

By F. T. WRIGHT

University of Missouri-Rolla

An estimator for a monotone regression function was proposed by Brunk.
He has shown that if the underlying regression function has positive slope at a
point, then, based on r observations, the difference of the regression function and
its estimate at that point has a nondegenerate limiting distribution if this difference
is multiplied by r'/°. To understand how the behavior of the regression function
at a point influences the asymptotic properties of the estimator at that point, we
have generalized Brunk’s result to points at which the regression function does
not have positive slope. If the first & — 1 derivatives of the regression function are
zero at a point and the ath derivative is positive there, then the norming constants
are of order r*/®o*?,

1. Introduction. The estimate proposed by Brunk (1958) for a nondecreasing regression
function is obtained by a “max-min” operation on sample means (cf. equation (1)) and in
some respects behaves like a sample mean. For instance, Hanson, Pledger and Wright (1973)
have shown that the estimator is consistent if the errors satisfy a first moment type of condition.
They have also shown that, based on r observations, the probability that the estimator differs
from the underlying regression function by more than some fixed amount is o(r~“*') if the
errors have finite absolute #th moments and that this probability converges to zero exponen-
tially if the errors have moment generating functions. However, the actual rate of convergence
of the estimator to the underlying regression function may be slower than that of a sample
mean to a population mean. In particular, Brunk (1970) has shown that, with norming
constants of order '/, the difference between the estimator and the true regression function,
at a fixed point, has a nondegenerate limiting distribution provided the true regression function
has positive slope at that point. Parsons (1978) has shown that the norming constants are of
order r'/? if the regression function is constant. The purpose of this note is to show how the
rate of growth of the regression function at a point influences the rate of convergence of the
estimator at that point. This will be accomplished by generalizing Brunk’s result to points at
which the regression function does not have a positive slope.

2. Asymptotic distribution of the estimator. For each x € I, an interval of real numbers,
let D(x) be a probability distribution with mean @(x). For each positive integer r, let x,1 < x
= ... =x, bepointsin / and let Y1, Y;o, - - -, Y, be independent random variables with Y,
distributed as D(x,z) for k = 1, 2, ..., r. The x,, are observation points and Y,; is the
observation at x,&. (For the result given here the number of distinct observation points must
grow at least like a positive constant times r.) Since it may be desirable to weight observations
at different points differently, we consider a function w defined on I with w(x) = wo > 0 for
all x € I and some wy. We assume that 6 is nondecreasing on I and consider an estimator
proposed by Brunk (1958). Based on the rth set of observations, the estimator is defined by
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(l) 0;()6) = maxx,ssxminxsx,,AVr([xrm xrt])7
WhCI'C AVr(B) = Z {i:x,,€B} w(xri) Yri/z {1:x,,€B} w(xri)’

This choice of §, is constant on (x,,—1, X,;) for j =2, - - ., r. However, examining the proofs we
see that the results given here are valid for any nondecreasing estimator which agrees with §,
at the observation points.

Let 6%(x) denote the variance of D(x) and set ¢(x) = w?(x)a*(x). For the estimator to be
consistent the observation points must satisfy certain regularity conditions. (See Brunk (1970)
and Hanson et al. (1973).) In some situations, the observation points are the realization of a
sequence (or more generally, a triangular array) of random variables and so we will state such
regularity conditions in terms of the empirical distribution functions of the observation points,

Fy(x) = card{k: x,x < x}/r.

To specify the rate of growth of the regression function at a point xo, we assume that for some
a and 4, both positive,

2) |8(x) = 0(x0)| = A|x — x0|*(1 + 0(1)) as x — xo.

(Of course, this and the fact that 8 is nondecreasing imply that 8(x) < (x0) < 8( y) for x < xo
< y)If a =1, then 8'(xo) = A > 0, which is the case considered by Brunk. If « is an integer
greater than one and 6*(x,) exists then % (xo) = -+ = 8“7V(xo) = 0 and 6'*'(x0)/a! = 4.
(This can be seen by writing a Taylor series expansion for §(x) (cf. Hardy (1952, page 278)).)

THEOREM 1. Suppose that 0 is nondecreasing and satisfies (2); that w and ¢ are continuous
at xo € I and that ¢ is bounded on I; that for r = 1, 2, .., {Y,;}i-1 are independent random
variables with Y,; distributed as D(x;) for 1 = 1, 2, -+, r and that 325 w(en)(Yr —
00xr))/ (S5 m d(xr))V2 S N0, 1) for all 1 < j(r) < k(r) < r with k(r) — j(r) — ; and that
there is a distribution function F, which is continuously differentiable in a neighborhood of x, with
F’(x0) > 0, for which sup. | F,(x) — F(x)| = o(r /®**Y). Then

3 {(a + D)(F'(x0)r)* (0 (x0)A4) "}V (B:(x0) — b(x0))

converges in distribution to the slope at zero of the greatest convex minorant of W(t) + |t|**
where W is the two-sided Wiener-Levy process with variance one per unit time.

>

Proor. While the proof is a modification of the arguments given in Brunk (1970) and
Prakasa Rao (1969), we give some of the details to show how the various quantities influence
the rate of convergence of 8,(xo) to 8(x,). Since F’(x) > 0 on an open interval containing xo,
we may choose, for an arbitrary ¢ and for r sufficiently large, positive numbers o;(r) and
ay(r) for which

F(xo) — F(xo — au(r)) = F(xo + au(r)) — F(xo) = 2¢cr~/@a*D,

Set

‘

. .
r = MaX(s:xg—a (r)<x,g=xo} NI (¢: x=<x,,<xg+a, (1)} AVr([xrs, -xrt])‘

LEMMA. Assuming the hypotheses of the theorem,
lim_, o lim sup,_. P{f,(x0) # 8%} = 0.
Proor. For r sufficiently large, there exist positive numbers 8;(r) and B,(r) for which

F(xo) = F(xo — Bu(r)) = F(xo + Bu(r)) — F(xo) = cr /?**P_ We first argue that P{f,(xo) #
07} is bounded by the sum of

@ P{miny=x,Av,((xo = Bi(r), y]) < maxy=sy—a,in AVr([ y, x0 = Bi(P)])}
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and
) P{max, <, Av-([ y, Xo + Bu(r))) > Miyzxo+a,n AV-([Xo + Bu(r), Y1)}

To see this, first take complements and note that for x,s < xo and yo = xo+ au(r), Av([Xrs, Xo
+ B.(r))) = Av.([xo + Bu(r), yo]) implies (by the averaging property of means) that Av,([xs,
xo + Bu(7))) = Av,([xrs, yo]). So

0r(x0) = maxx,ssxominxosx”<x0+au(r)AVr([xrsy xrl])o

Using the fact that the maximum and minimum may be reversed in computing these estimates
(cf. Brunk (1955)) and an argument like the one just completed, one can show that the
intersection of the complements of the events in (4) and (5) is contained in {8.(x0) = 6*}. So
we now need to show that these two probabilities behave as specified. The proofs are similar
and so we only give the argument for (4). Expression (4) is bounded above the sum of

(6) P{min,=,Av-((xo = Bi(r), y]) < 8(x0 = Bi(r))}
and
Q) P{maxy=xo—a,(n AVr([ y, Xo = Bi(r)]) > b (x0 = Bi(r))}.

We first consider expression (6). Let &;(r) = card{j : xo — Bi(r) < x,, = xo} and observe
that 8,(r) = cr®*/®«*Y(1 + o(1)). (In the proofs given here, o(1) denotes a sequence indexed by
r which may depend on ¢, w and F but for each c it converges to zero as r — ®.) Since 6(-) is
nondecreasing, (6) is bounded by P{max,=,Av¥((xo — B:(r), y]) > &} where Av? is defined
like Av, except w(x,) Y, is replaced by —w(x,.)(Y; — 0(x,:)) and &, is

-1
(J w(x) dFr(X)> J w(x){0(x) = 0(xo — Bu(r))} dF(x).
(x9—B;(r),xg] (xg—=B,(r),xq]
Because w is continuous at xo and B;(r) — 0 as r —

& = c /(1 + (1)) {0(x) — 0(x0 — Bi(r))} dF.(x).

(x0=B1(r),x0]

Also Bi(r) = c(F'(x0))"'r V@**V(1 + o(1)) and

J’ {8(x) — 8(xo — Bu(r))}dF(x)
(xg—By(r),x0]

X0

= F'(x0)(1 + o()A(Bu(r)* " (1 + o(1)) — J (0(x0) — 0(x)) dx}

xg—By(r)

= F'(x0)A(a/(a + D)(Bu(r))**' (1 + o(1)).
Integrating by parts,

= 2(6(x0) — 6(xo = Bu(r)))sup: | Fr(x) — F(x)|

J (0(x0) — 0(x))d(Fr(x) — F(x))
(x9—B;(r),xq]

= 2Aca(Fl(x0))—ar—(a+1}/(2a+1)o(l)

and so for r sufficiently large, & = Aoc*r~*/®**V(1 + o(1)) where 4, is a positive constant
depending on 4, a and F’(xo) but not c. Since w(x) = wy, (6) is bounded by

P{max.;l(,)S,S,S,j/j > W()A()Car_a/(2a+1)(l + 0(1))}

where S,; is, for each r, the sum of j independent random variables with zero means and
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bounded variances. Applying the Hdjek-Rényi inequality (cf. Bauer (1972) page 178), one sees
that (6) behaves as specified. A similar argument for (7) completes the proof of the lemma.

We now return to the proof of the theorem. Consider the rth set of observations. Let y be
the total number of these observations in (xo — a;(r), xo + au(r); let yr1 < yro < -+« < y;\ be
the distinct observation points in (xo —a:(r), xo + au(r)) (of course, y and A depend on r); let
n(r, k) be the number of cbservations at y,x (i.e., n(r, k) = card{ j: x,, = y,+}); and let X, be
the mean of the observations at y,x. Sett,o =0 and, fork=1,2, ..., A,

trr = 2CD 2?:1 w(_yrl)n(r7 l)/('}’wr)

where w, = Yo w(yron(r, 1))y = w(xo)(1 + o(1)), D = 2(6(x0)B)™* and B = {(a +
1)(F’(%0))*/(A06%%(x0))} /®**?. Define a process on [0, 2¢D] by U.(0) = 0,

Ur(trs) = 2¢D i1 w(yro)n(r, DXt/ (ywr)

and U,(-) is linear between the points t,.. For some of the arguments that follow it is useful
to note that

U(t) = 2¢D 331 hru(@)w( yr)n(r, DX /(ywr)

where h,(t) = 0 for t < tr—1, hu(t) = (t — tr—1)(trt — tri—1) " for ty1 < t < tyyand hp(2) = 1
for ¢t > t,,. Using the algorithm based on the cumulative sum diagram discussed in Brunk
(1956), 8 is bounded above (below) by the slope from the left of the greatest convex minorant
of the graph of U,(¢) evaluated at the point ¢ = t,,(»)(t = try(r)-1), WheTe yrj(n-1 < X0 = yrjir)-
We denote the slope from the left at x of the greatest convex minorant of the graph of X(s) for
s € S by slogcom(x){(s, X(s)) : s € S} and note that

slogcom(#riim-1){(2, Ur(t) — 0(x0)t) : t € [0,2¢D]} = 07 — 0(x0)
= slogcom(tir ) {(#, Ur(2) — 8(x0)t) : t € [0, 2¢D]}.

We obtain the limiting distribution of r*/®**YB(6} — 6(xo)) by showing that r*/***VB
times the lower bound in (8) and r*/®**" B times the upper bound in (8) have the same limiting
distribution. The two arguments are similar and so we only give the latter. With M,(¢) =
E(U(¢)) for t € [0, 2¢D], we examine

Wi(t) = r*/@=V B(UL(1) — My(1)).

This process is centered at its mean and since y = 4cr**?** V(1 + o(1)), its covariance function
is for s < t with t,1r-1 < § =< tri(r),

tun-1(1 + 0(1)) + O(maxg(trr — trr-1)) = s + O(maxe(tr — tri-1)).

But because F(-) is continuous in a neighborhood of xo and because of the hypothesized rate
of convergence of F,(+) to F(-), maxe(tre — tk-1) = o(l). Clearly the finite-dimensional
distributions converge to those of the Wiener process on [0, 2cD]. The sequence { W,} is
shown to be tight by considering the modulus of continuity. The argument is an easy
adaptation of those found on pages 59 and 10 of Billingsley (1968). (Note that trx(r) — trir) =
8 implies that, for r sufficiently large, k(r) — I(r) — 1 < (¢D)™'8y.)

Next we show that f,(¢) = r*/**Y B(M,(t) — 6(x0)t) converges uniformly to |cD — |**!
— (cD)**". Since

t = 2¢D Yia1 hu()w(yrIn(r, D/ (ywr),
f+(t-x) can be rewritten as
©) 2BeDr*/ =V Sy w( yra)n(r, O(r) — 0(x0))/ (W),

Furthermore, f.(¢) is nonincreasing for ¢ < t,,(»-1 and nondecreasing for ¢ = ;1. Since
P2 o,(r) = 2¢/F’(x0), try—1 (and consequently t, () converges to ¢D as r — . Fix t €
(0, trj(r)—l] and set k(r) = max{k e < t}. T_henf,(t,k(,)) Zﬁ([) Zfr(trk(r)+1) and both Lrk(r)
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and t(n+1 converge to ¢ as r — . So 219 n(r, I)/r*¥@«*V — 2¢/D which implies that
F'(xo)rl/(2“+1)(y,k(r) — X0 + ai(r)) — 2t/D. AlSOfr(l‘rk(r)) is

271 BDrler /e (] 4 (1Y) (0(x) — 6(x0)) dF.(x)

(xo—ay(r),¥rp(r]

and

"Yrk(r)
platl)/@a+1) J’ (0(x) — 0(x0))F'(x) dx

xg—oy(r)
= AF'(xo)(a + )7 (1 + o(1)r* YV {(ay(r) = (yrain = Xo + aur(M)** = (ar(r))***}
= (F'(x0))"*(2/D)* ' A(a + D7T'(1 + o(1))((c¢D = t)**" = (¢D)*).

(The sequence o(1) in the last two expressions and the remainder of the proof may depend on
¢ but for fixed ¢ they converge uniformly for ¢ € [0, 2¢D].) Using (2) and the fact that max;n(r,
1)/r®*/@«*D — 0, one can show that max | fi(t+) — fi(tre+1)| = 0 and so both f,(tx(») and
Sfr(trrry+1) are of the form ((¢cD — £)*™* — (cD)**')(1 + o(1)). The argument given above
shows that f;(t.(r)—1) and () ) converge to (—cD)**". Considering separately the summands
in expression (9) which have index / < j(r) and / = j(r), one can also show that f.(t-+(-) = (¢
= ¢cD)**'(1 + o(1)) — (e¢D)***(1 + o(1)) for tre(r) < t < trary+1 and k(r) = j(r). The desired
uniform convergence follows since the limit function is uniformly continuous and the o(1)
functions above converge uniformly.

Since constant functions do not influence the slope, making the change of variable s = ¢
— ¢D, the expression r*/®**" B slogcom(t,;(r ){(t, U-(t) — 8(x0)t) : t € [0, 2¢D]} becomes

(10) slogcom(t,, -y —cD){(s, X:(s)) : s € [—cD, c¢D]}

|a+1

where X,(s) converges weakly to W.(s) + |s and W.(s) is the two-sided Wiener-Levy
process on [—cD, ¢D] with variance 1 per unit time. Next we show that (10) converges weakly
to slogcom(0){(s, W.(s) + |s|*""):s € [—cD, c¢D]}. The proof is like that given at the
beginning of Section 6 of Prakasa Rao (1969), but since the point at which the slope is being
evaluated depends on r we apply Theorem 5.5 of Billingsley (1968). The set E, in the
hypotheses of that theorem, is contained in the set of sample paths for which the convex
minorant of W.(s) + | s|**" does not have a unique slope at s = 0.

The proof is completed by showing that the probability that the slope of the convex
minorant of We(s) + |s|*** on [—cD, cD] is different from the slope of the convex minorant
of W(s) + | s]|*"* on (—oo, ) converges to zero as ¢ — . This is the analogue of Lemma 6.2
of Prakasa Rao (1969) and the proof is like his, except we must show that P{ W(s) = |s|**! for
some s > cD} — 0 as ¢ — . One could follow his proof or note that this follows from W(s)/
s— 0 a.s. as s — oo (cf. Breiman (1968, page 265)).

3. Comments. There are a couple of comments that need to be made concerning the result
of Theorem 1. In the case of random observation points, F, will not converge to the appropriate
F at the specified rate if 0 < a < %. However, the observation points can be chosen
deterministically so that sup. | F.(x) — F(x)| = O(r™") which is o(r~/®**"). The assumption
concerning the asymptotic normality of the sums of the variables V,; = W(x,.)( Y, — 0(x.1))
requires, in general, some sort of uniformity condition. For instance, one could assume that
¢ is bounded away from zero and that the E| ¥,;|**? are uniformly bounded for some & > 0.
Finally, this result has been obtained independently by Leurgans (1978) for uniformly spaced
observations, a constant weight function w, and « an integer.
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