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ON THE USE OF A STATISTIC BASED ON SEQUENTIAL RANKS
TO PROVE LIMIT THEOREMS FOR SIMPLE LINEAR RANK
STATISTICS

By Davip M. MasonN
University of Kentucky

A technique is introduced to prove limit theorems for simple linear rank
statistics by means of an approximating statistic based on sequential ranks.
This approximation is shown to be close enough to prove asymptotic normality
of simple linear rank statistics under the null hypothesis and to obtain a
bound on the rate of convergence to normality when the score function is
unbounded. In addition, a law of the iterated logarithm and an invariance
principle are given for simple linear rank statistics.

1. Introduction. Let X, ---, X, be independent random variables with common
continuous distribution function F. Let R,, equal to the rank of X, among X, ---, X,.
Ry, ---, R,, will be called the sequential ranks of X;, .-, X,,.

Consider a simple linear rank statistic of the following form:

(11) T.= 2’11=1 Cthn(Rm/(n + 1)))

where ¢, + -+, Cnn are known regression constants and J,(i/(n + 1)) fori =1, ..., n are
scores generated in the following manner:

(1.2) Ju(t/(n + 1)) = EJ(Un),

where U, is the ith order statistic of n independent uniform (0, 1) random variables
Ui, ..., U, We will assume

1
(1.3) J' J(u)du =0,
0
1
(1.4) 0< J' JHu)du = A < o,
0
and
(1-5) 27=1 Cin = O~
Consider now the following statistic based on the sequential ranks:
(16) Mn = Z?=1 (Cm - Ez—l,n)JL(Ru/(i + ]-))

where ¢,_1,, = Y2\ ¢;n/(i — 1), for z< i < n, and G,, = 0.

Observe that M, is a sum of independent random variables since Ry, ---, R.. are
independent. See Theorem 1.1 of Barndorff-Nielsen (1963) for a proof of this fact.

If M, can be shown to be sufficiently close to T}, the asymptotic properties of T', can be
derived from the asymptotic properties of the sum of independent random variables M,,.
Under various restrictions on / and on the regression constants, it will be shown that this
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approximation is close enough to prove the following: asymptotic normality of 7). under
the same conditions as Theorem V.1.6a of Hijek and Sidak (1967); a law of the iterated
logarithm and an invariance principle for T,; and to obtain a bound on the rate at which
T, converges to normality. It is also shown that M, is as efficient as T}, against regression
alternatives under the same conditions as Theorem V.1.2.4 of Hajek and Sidak (1967).

The idea of using M,, to approximate T, is latent in the proof of Theorem 2.1 of Sen and
Ghosh (1972). Also more recently Lombard (1979b) has motivated M, by observing that
M, = 31 E(S.|R.), where S, = Y1 cind (U)).

The usual method of obtaining asymptotic properties of T, is to approximate T, by the
projection T, = Y%, E(T,|X,). See Hajek (1968) for a discussion of this technique.
Recently, Jureckova and Puri (1975), Bergstrom and Puri (1977), Huskova (1977) and
Serfling (1977) have used the 7', approximation or variates of it to obtain bounds on the
rate at which T, converges to normality when ¢/ is bounded and in addition satisfies other
regularity conditions. Huskova (1977) in particular has obtained the optimum rate of
O(n™'?). To date, the projection technique has not succeeded in obtaining a rate for the
case when o/ is unbounded. Using the M, approximation we obtain close bounds on the
rate at which T, converges to normality when </ is unbounded. See Theorem 5.1 below.

Some remarks must be made about the use of M, as a test statistic. In sequential test
procedures, M, has an obvious advantage over T,. With the advent of each new observation,
only one new rank is computed in the recomputation of M, whereas if T, is used, all the
previous ranks must be recomputed. Lombard (1979a, 1979b) has recently investigated
properties of sequential testing procedures based on the statistic M,. For related work on
statistics based on sequential ranks, see Parent (1965), Reynolds (1975), Lombard (1977),
and Sen (1978).

2. A moment-inequality relating M, to T,. First we will introduce some additional
notation and observations that will be used throughout the remainder of this paper. Let

(2.1) =Y (gn—Gn)? for i=1,-.-,n.
When i = n we denote CZ = C2,.
(2.2) A=Y, Jii/(n + 1))/n, o2=Var T, and s2= VarM,.

Observe that 02 =nCiA%L/(n — 1), s2 = Y73 (¢n — G-1,,)*A}, and by Theorem V.1.3.a of
Hajek and Sidak (1967) A2 — n—»» A. For 1 <j<n,let

(2.3) Ty = Yi-1 (€ = Gu) ) (Ry/(j + 1)),
and

(2.4) M, = i1 (Cin — Corp) iR/ (T + 1),
(2.5) S =Tny = Tnj-1 — (My — My ;1)
and .

(2.6) Win = Ju(Rin/(n + 1)) = Jp-1(Ryn-1/1).
Observe thatfor2=<j=<n

2.7 O = 2151 (e — Gi-1n) W, as.

For each j = 1, % will denote the o-field generated by R,, - - -, R,,. By Lemma 2.1 of Sen
and Ghosh (1972)

(2.8) {{Ty, %), 1 =j=< n} is a martingale.

With the above notation we will prove the following moment inequality for M, — T,.
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THEOREM 2.1. For each integer k > 0, there exists a constant C(k) > 0 dependent
onlyon k such that foralll1<j<n

E(Tn - Mn - (Tnj - Mnj))Zk = nk_lc(k) Z7=/+1 ?fl,nE'W%:e

ProoF. Pick 1 =; < n. Note
Z;l=j+1 (;bm = Tn - Mn - (Tnj - Mnj)‘

Now since {(Tn — M., %); 1 < i < n} is a martingale and E¢,, = 0, the moment
inequality for martingales of Dharmdikari et al. (1968) gives

E(Tn - Mn - (Tnj - Mnj))Zk = nk_lA (k) Z?=j+l Ed)?rlf’

where A (k) > 0 is a constant dependent only on k.

LeEmMA 2.1, Let Wy, ..., W, be random variables such that for each set of positive
integers S = {l, -+, l,} where m = n E(W!, ..., W) = x5 for all permutations
iy, ~++,im0f 1, --+, n taken m at a time.

Also let ci, ---, c. be constants such that¥;-, ¢, = 0. Set ¢, = Y11 c;W,. For every
integer k > 0, there exists a constant B(k) > 0 dependent only on k such thatE¢? =
B(k)CZEW? where C2 = Y2, ¢

Proor. Pick k& > 0. Let S be any set of integers {l;, -++, ln} suchthat 1</, =< ... <
l» and Y%, I, = 2k. Let &= the class of all such S where 1 =< m < 2k and set .%, = be the
subclass of #where 1 = m =< 2k A\ n. Now

2
E‘i’rzzk = 2/1+'~+/,.=2k < ; k

et oo, BE(Wh, e, Wi
jl’.”’h>01 (W4 )

= Yse %\ l le,"',Lm distinct C1}y **+, Ci* 1S.
1) e b m

Cram. Forall S={l, ..., 1.} €%

(29) IZ!I,'” Jiy distinct cfll M cfnmll = m‘C?zk

Proor. Ifl, = 2 then the left side of (2.9) is
= H;n=l (z’:=1 Ictll/) = maxlSjsn Ic,lzk—Znglm = Crzzk_zm Crztm = C?zk
If I, = 1 proceed as in Lemma 2.1 of Jure¢kova and Puri (1975), to show (2.9) = m!C%*. O

Hence, E¢% < Yseo, ) 2k ! ) m!C¥ |ns| = ((2k))? card £C#* max |ns|. Note that
1’ e b m

each |ns| = EW?* and card #depends only on k. Let B (k) = ((2k)!)2 card ¥ 0
To complete the proof of Theorem 2.1, we use observation (2.7) and note that
Wy, - -+, W, satisfy the conditions of Lemma 2.1. Hence

E¢i < B(k)C?1 . EW.
Now set C(k) = A(k)B(k). O

REMARK 2.1. See Lemma 2.5 of Huskova (1977) for an inequality very similar to the
inequality of Lemma 2.1. The inequality of Huskova (1977) is not sufficient for our

purposes.

3. The asymptotic mean square equivalence of T, and M,. The moment ine-
quality of Section 2 allows us now to give conditions under which 7, and M, are
asymptotically mean square equivalent.
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THEOREM 3.1. If
(31) maXi<i<n c?ﬂ/cﬁ = 0(1)
then E((T, — M,)/6,)*— 0 as n — o,

ProoF. It is enough to show (A) E((T, — M,,)/C,)* - n— 0. First assume that </ has
a bounded first derivative, then it is easy to show that there exists a constant C > 0 such

that EW?, <Cn*foralln=1.
Now pick any € > 0 and no such that for all n = no

CYrannj i<e
Application of Theorem 2.1 now gives for all n > n,
E((Tn — M,)/Co)* = 72 i1 EWR)/Ch + Jmngsr Ci1n EWE,/Ch
Note that
CrLi, =Yl ek = (j— 1) maxiciza Chn.
Hence, the above is
< (maxi=i=n €in/Cr) Y121 JEWE, + €.

Thus, by (3.1) limsup,_.. E (T, — M,)/C,)* < € for all € > 0, which implies (4).
To prove the general case, we need only apply the following lemma in the obvious
manner.

LEmMA 3.1.  For each € > 0, there exists a function a(u) with bounded first derivative
such that

(3.2) E((Tn — Tan)/Ca)* < €

and

3.3) E(M, — M,,)/C) <€ for all n=2
where

Tan = Yim1 Cin(@n(Rin/(n + 1)) — @),
Man = Zt"l-=2 (cm - CTl'—l,n)(ai(leii/(i +1)) - 5)9
and

E=J' a(u)du.
0

Proor. Since the polynomials are dense. in L*(0, 1), for each € > 0, we can pick a
polynomial a(u) such that

j (J () — a(u))’du < €/4.
0

Now observe that for all n = 2
Y1 (u(i/(n + 1)) — (@:(i/(n + 1)) — @))*/(n — 1)
=0, (Juli/(n + 1)) = an(i/(n + 1)))?*/(n — 1)

SLJ (J () — a(u)du < /2.
n-—1 o
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Hence (3.2) < € and (3.3) is
= Yl (i — Gi1,0)%€/ (2C7) < €.
For the last inequality, we use the fact that

Cr=Y2i (i — 1)(cin — Ci1n)® = % Tiea (Cin — Cio1n)™. o

REMARK 3.1. Under the conditions of Theorem 3.1, s2/0% —,_. 1.
The asymptotic normality of T, follows now as an easy corollary of Theorem 3.1.

COROLLARY 3.1. (Theorem V.1.6.a of Hajek and Sidak). Under the conditions of

Theorem 3.1,
Tn/an —>d N(O, ].)

PRrROOF. Just apply the Lindeberg-Feller Theorem (Theorem 7.2.1 of Chung (1974)) to
M, /s, and then Theorem 3.1 and Remark 3.1. 0O

REMARK 3.2. It is not too hard to show that Corollary 3.1 remains true for scores
given by

(3.4) Ju(i/(n + 1)) =J(@/(n + 1)) for i=1,---,n,
when o is expressible as a finite sum of square integrable monotone functions, or

/n

(3.5) Ju(i/(n+1))=n f J(u)du for i=1,.--,n

(i~1)/n
when J is square integrable. (See pages 164-165 of Hajek and Sidak (1967).)
COROLLARY 3.2. (Distribution of M, under regression alternatives). Under the same

conditions as Theorem V.1.2.4 of Hdjek and Siddk (1967) M, is asymptotically normal
with the same mean and variance as T,.

ProOF. Look at the proof of Theorem V.1.2.4 of Hajek and Sidak. Note that our 7,
corresponds to Hajek and Sidak’s S¢. Now apply Theorem 3.1 to show that (M, —S%)
/0, —p 0 as n — . The rest is exactly the same as in Hajek and Sidak.

REMARK 3.3. Under the assumptions of Theorem V.1.2.4 of Hajek and Sidak, M, and
T. have the same Pitman efficiency.

COROLLARY 3.3. (An invariance principle for T,). For each n = 1, let V,, and W, be
random functions on [0, 1] defined as follows:
Valt) = 3 (Mpp + (M pe1 — M) (t82 — 822) /(52 0e1 — S22))
Wa(t) = 8. (Tok + (Tnpe1 — Trr) (tsn — 52)/ (Shpe1 — Sor))

whenever s, =< ts: < 84 for kB = 0, ..., n - 1

and
Valt) =s7'Mwe  and ~ Wa(t) = s3' T

if s2, = ts2 = s%,.1; where
S?,k = Var M,,k and Mno = Tno =0.

Under the conditions of Theorem 3.1, V, = W and W, = W, where W is a standard
Wiener process on [0, 1].



LINEAR RANK STATISTICS 429

Proor. Itis easy to show that under the conditions of Theorem 3.1 that the V,, process
satisfies the conditions of Theorem 2.1 of Prokhorov (1956) to give V, = W.

Observe that suposi=i| Va(£) — Wa(t)| < s, 'maxXi<kn| Mur — Tnr|- Now since My — T,
k=1, ..., nis a martingale, for any € > 0

(3.6) P (suposi=1| Va(t) — Wa(t)| > €) < € 72s:.°E (T — M,)>.
Theorem 3.1 implies that (3.6) — 0, hence W,, = W. 0O

REMARK 3.4. See Theorem 1.2 of Sen and Ghosh (1972) for a related invariance
principle proven under conditions similar to those of Theorem 5.1 below.

4. A strong moment inequality for M,, — T,. In this section, we add an additional
smoothness condition on </, which will allow the inequality of Section 2 to be strengthened
so that a law of the iterated logarithm can be obtained for 7. Later in Section 5, this
inequality will be an essential tool in deriving a bound on the rate that T, converges to
normality.

THEOREM 4.1. Suppose oJ is absolutely continuous inside (0, 1) and
(4.1) | ()] < K (u(l — u))~%*

for all u € (0, 1) where K > 0 and 0 < § < %, then for some constant C (k) > 0 dependent
onlyon k, K and §

(4.2) E(T. — M)* < n*7'C(k) Ttz CP1n(i + 147272
for alln = 2.

ProoF. We need only show (A)EW?3* = O((i + 1)*"**72) and then apply Theorem 2.1.
The following two lemmas prove (A).

LEMMA 4.1. Under the conditions on J in Theorem 4.1 there exists a constant K’ >
0 such that foralln=2and1<j=n-1
|Ju((j+ 1/ (n+ 1)) = Ju(j/(n+ 1)) | = K'(n+ D7'[(J+ D(n+ 1 —j)/(n+ 1)’

Proor. Pick any 1 =j=<n — 1, n = 2. Note that there exists a K; > 0 such that
K@l — )™ < Kij(u™?* + (1 — u)™¥?*)
for all u € (0, 1). Hence,
|Ja((j+ 1)/ (n+ 1)) = Ju(j/(n + 1))|

Ujsin

Ujin
= |EJ' J'(u)du| < KIEJ W™ 4+ (1 — u)¥*)du

Upn Upn
= Ku(% = 8)'E[(1 = Uppr) V2 = (1= Up) /2 = (Upr) 2 4 (Un) /2],
which since
EUwn) 7 = [Iim I/ (L+ 6 = ),
equals
43) Ki(—87[((n—j)/(n—j+8-"%)—1)

Mlinerss i/ G+ 8 = %) + G/ + 8 = %) — 1) Ty i/ + 8 = %)),
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Now it is easy to show that there exists a K5 > 0 such that forall1 <=2 <n — 1 and
n=2
[Mi-ns1-x 8/ + 8 — %) < Ks((n + 1 — k)/(n + 1))7/**,
which implies that expression (4.3) is
=S KK[(1/(n=j+8=%)((n+1 -j)/(n+1))7/*

+ (/G + 8 = %) (j/(n+1))7/**]

= K:_K: [((n +1 _j)/(n—j+8 —»B)((n+1 —j)/(n + 1))—3/2+5

(4.4)
+ (J/(J + 8 = %) (j/(n + 1))~¥*],

Note that &/(k + 8 — %) =1/(1 + (8§ — %)/k) = (% + 8) ' for 1 < k < n. Hence, (4.4) is
= KiKo(% + 8) (n + D7 —j/(n + 1) + (j/(n + 1))/,
It is easy to see that there exists a constant K, > 0 such that
(1 — ) ™28 4 =324 < Ko(u(1 — u)) ™42+

for all u € (0, 1). Now let K’ = K1 K,Ks(% + 8)~L. O

LEMMA 4.2. Under the conditions on J in Theorem 4.1 for every integer k > 0 there
exists a constant D (k) > 0 dependent only on k and J such that for all n = 2

EW#* < D(k)(n + 1)+2+2,

Proor. Pick k& = 1. Note that
45)  E(Wih|Za1) = n7'(n = Rip-1)[Ja(Rin-r/(n + 1) = Jues(Rinea/m) 1*
+ 17 Ry [ Jn(Ripet + 1)/ (0 + 1)) — 1 (Rynr /0) .
Now by application of the identity: forl=i<n—1
Juerlifn) = n"Nn — ),/ (n + 1)) + n YN (G + 1)/ (n + 1)),

we get expression (4.5)

= (1 = Rin-1/n)(R1pn-1/m)[(R1n-1/n)* " + (1 — Rypi/n)**71].

[n((Rins + 1)/ (0 + 1) = Ja(Rint/ (n + 1)]*

= (1 = Rin-1/n)(Rin-1/M)[Jul(Rip-1 + 1)/(n + 1)) = Ju(Ryp-1/(n + 1))%.
Thus,
(4.6) EWL=(n-1)7' 35 (1= i/n)@/n)[da(@ + 1)/ (n + 1) = a6/ (n + 1)*.
which by Lemma 4.1 is
4.7) =K'(n+ 1D T [ = i/(n + 1))/ (n + 1)]T*2**/(n — 1)

for some K’ > 0.
By an integral approximation expression (4.7)

< D(k)(n + 1)F2%2
for some D(k) >0foralln=2. 0O
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COROLLARY 4.1. Suppose J satisfies the conditions on J in Theorem 4.1 and if
(48) maxls,-sncf,,/C?. = O(l/n),
then E((T, — M,)/0,)* = O(n™%).

Proor. It is sufficient to show E((T, — M,)/C,)? = O(n"?). By Theorem 4.1
E((Tn — M,)/C,)* = C(1) Ty CLin(i + 1)7%7Y/C,
which since
CLi,=Yick
and by condition (4.8) is
=CY¥ i+ 1)%/n
for some constant C > 0 dependent only on </ and condition (4.8). A simple integral
approximation completes the proof. [

REMARK 4.1.  Under the conditions of Corollary 4.1, |0./s, — 1| = O(n™%).

COROLLARY 4.2. (A law of the iterated logarithm for T,). Under the conditions of
Corollary 4.1, when the ci, are of the form ci,=c,—cfori=1,-..,nand ¢ = Y%, c¢;/n,

lim sup,_.T,/v202ininc: =1 as.

Proor. Using the maximal inequality for martingales over appropriately chosen blocks
of T, — M, it can be demonstrated using standard techniques that

T./0. = M,/o, + 0(1) a.s.

Now Theorem 6 on page 115 of Petrov (1975) can be shown to imply lim sup,_ ..M,/
V20ilnlno:i=1 as. 0O

REMARK 4.2. Sen and Ghosh (1972) prove essentially this same result, though they
add one more condition on the regression constants. Their proof consists of a lengthy
verification of the conditions of a martingale law of the iterated logarithm of Strassen
(1967). For laws of the iterated logarithms for 7T, under other conditions, see Mason (1978).

5. A bound on the rate that T, converges to normality. In this section, we will
use various martingale inequalities along with the moment inequality of Section 4 to
obtain a bound on the rate that 7, converges to normality when o is unbounded. We
remark here that Theorem 4.1 alone cannot prove Theorem 5.1, since the moment bound
increases along with k&, rather than decreases. °

THEOREM 5.1. If J is absolutely continuous inside (0, 1) such that
(5.1) | ()| < K(u(l — u))™%2+
for some 0 < 6<% and K> 0 and all u € (0, 1), and
(5.2) maxi<<, ci/C% < c/n

for some ¢ >0 and all n = 1, then for all 0 < §* < §

D, = SUP-—w<s<wo | P(Tn < x06,) — ®(x) | = O(n77).
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ProoF. Pick any 0 < 8* < 8. We will first show that
(5.3) SUP-w<z<w | P(Tr = x8,) — ®(x)| = O(Inn n™%").
Forany0=a=1,let
An(@) = Trne) — Majnay, where [x] = greatest integer < x.

Pick 0 < a < 1 then the left side of expression (5.3) is

(5.4) =< SUP-—w<x<w | P(Tn < x8,) — P(M,, + An(a) < xs,) |

(5.5) + SUP—wcr<w | P(My, + An(a) < xs,) — ®(x)].

A trivial argument shows that for all 4 > 0 expression (5.4) is

(5.6) =< SUP-—w<i<w | P(M, + An(@) = (x + h)sp) — P(M, + An(a) < xs,) |
(5.7) + P(]A.(1) — An(a) | /s> h).

It is easy to show that (5.6) < 2(5.5) + A v2/w. Hence (5.3) = 3(5.5) + (5.7) + hAv2/m.
The proof will be completed by showing (I) there exists a ¢ > 0 and an 0 < a < 1 such
that for h=clnnn™% (5.7 = O(n™®), and (II) for all 0 < a < 1 (5.5) = O(n"%).

Proor oF (I). We will show that for every A > 0, there existsac>0and 0 <a <1
such that for all n sufficiently large
(5.8) P(|A(1) — An(@) | /Sizm=n > ¢ Inn n7%) < n7

Pick A > 0. Let 2, =Y7; E(¢%|%-1)/s% for =m =< n. Pick 0 < a <1 and let 7, = min{m:
241 — tha = 0% n = m = [n°]} and equal to = if the set is empty. Let

Xl = ((Tn,[n“]+z — 4Lnfne] — (Mn,[n“]+z - n,[n“]))/sn
fori=0,..-,n—[n],% = Fisngi=0, --- ,n—[n®] and

S o = \Jo=i=n—{n] %

It is easy to see that {((X;, #}):i =0, ---, n — [n°]} is a martingale. Setrs = 7, —
[n%]. Also it is not difficult to show that ; is optional relative to {#; :i =0, ---,n —
[n°], 3.

Now by page 324 of Chung (1974), {((X.r*, Fir*) :i =0, - -+, n — [n]} is a martingale.
Observe that the left side of (5.8) is

(5.9) = P(| X.* ntnminay | > ¢ Inn 0™, 75 = n — [n°])
(5.10) + P(| Xpepnay| > ¢ Inn n™%, 15 <n — [n)).
Note that expression (5.9)

(5.11) = P(sup{|n” X.*r.|:0<i=<n — [n°]} = c Inn).

At this point, we need a lemma.

LEMMA 5.1. Under the conditions of Theorem 4.1, there exists constant C > 0 such
thatforalln=2and2=m=n

(512) |Tnm - Tn,m—l - (Mnm - Mn,m—l)l = C C,lmﬁ a.s.

Proor. Note that by (2.7), the left side of (5.12)
= |32 (e = Cn1,0) (T(Rim/ (m + 1)) — I 1(Rim—1/m)) |
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Now (5.2) implies | ¢,n — Em-1,.| = B n™? C, for some constant B > 0 independent of i, m
and n. Hence, the left side of (5.12) is
(5.13) =n""2 B Co X' |In(Rin/ (M + 1)) = Jnr(Rim—1/m) |.
Application of the same identity used in Lemma 4.2 gives (5.13)
=n2BC, Y2 |dnli + 1) /(m + 1)) — Jnu(i/(m + 1))| as.

Lemma 4.1, along with an integral approximation, completes the proof. O
Now by picking 0 < a < 1 sufficiently close to 1, it is not hard to show, using Lemma
5.1, that for all n sufficiently large

sup{|n® (X:*n — Xe*ne-n) ;1 =i=n—[n°]} =1 as.
Also it is a routine matter to verify that
Z?;l[na] E(Tl%‘(Xf;"/\i - Xf;"/\(i—l))zl 97:;"/\(;'—1)) = nw(tfa —tha) = 1.

All the conditions are now satisfied for the application of the exponential inequality for
martingales on page 69 of Meyer (1972). Thus, for all n sufficiently large, (5.9) =<

exp(c Inn)/(c Inn + 1)+ which for ¢ > 0 sufficiently large is < n™.

Now observe that (5.10) < P(r% < n — [n°]) = P(r. < n), which since t2, — t{. is
nondecreasing, equals

(514) P(tﬁ _ t[2,,n] > n_ZS‘).
LEMMA 5.2. Under the conditions of Theorem 5.1 for every k > 0, there exists a
C(k) > 0 such that
E(E(¢2n| Fn-1)/C2)* = C(k) m™® n*

foralln=2,2=m=n.

PRroOF. The steps to prove this inequality are briefly sketched on page 349 of Sen and
Ghosh (1972). For a more detailed proof, see Mason (1978b). O
Observe that

(5.15) E(t: = t*ne)® = 0" Y iuine E(E((P?nl%—l))k/sik.

It is not difficult to show, using Lemma 5.2, that (5.15) < n™ D(k) Yt 2 for
some constant D (k) > 0 independent of n. An integral approximation gives (5.15) < B(k)
n~2a*e=l f651 some constant B(k) > 0. So, by Markov’s inequality, expression (5.14) is

(5.16) < B(k) n2k(5'—8a)+a—l‘

Now pick 0 < a < 1 sufficiently close to 1 so that §* — da < 0 and £ sufficiently large so
that (5.16) < n™. This completes the proof of (I).

Proor oF (II). Let fi»(¢) = E exp(it(cin — Ci—1,n)Ji(Rii/(i + 1))/s,) fori=2, ..., n. By
the Esseen lemma (see Lemma 2 on page 227 of Chung (1974)) for each b > 0, (5.5) is

bn'
(5.17) = % j | E exp(it(M,, + An(a))/s,) — exp(—t2/2) |t dt + 24(bn®)~/ (27°) /2
A A

Observe that the first term of (5.17) is

bn®
(5.18) = % j |E exp(it(M,, + An(@))/sx) — E exp(it My/s,)| t™'dt
0
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on®

(5.19) + g f | E exp(it M./s,) — exp(—t?/2)| t"'dt.

T

0
Since R,i = [n®] + 1, -- -, n are independent of Ria,..., Rinej(ne), (5.18) is
9 bn'
= j | T r4tn0) Fin(8) (E €Xp(it Tognor/$n) — E exp(it Mupne/sn) | ¢7'dt
)
2 bn'

(5.20) = p f | TLe1+tn91 fin O (E ((Tgne) — Mngna) /52)%)/*dt.

0

2
Now by Corollary 4.1, for some C > 0 independent of n, (5.20) < p f(’)’"SIH}'=1+[,,a]
fin(t)|Cn 7. n'*"V/2dt, which is

2en= [ N
(5.21) = | TI7=1+1n fin(2) | 2.
0

™

To complete the proof, we need the following lemma.
LEMMA 5.3. Let Yjn = (Cjn — Ci-1n)Jj(R;/(J+ 1)) /snfor2<j=n. Foreach0<a=<1,
let
Lan(8) = Y}a14na) E |y [, L.n(8) = Ln(3),
and
din = Y-tstne) E | yjnl”.

Under the conditions of Theorem 5.1, there exist constants ap > 0, ¢co > 0 and do > 0
independent of n such that

(5.22) | T =14tne) fin(8) | < exp(—codint®)
when |t| = (doLan(8))™V? and
(5.23) | [I7=2 fin(t) — exp(—t%/2)| < aoL.(8)|t[**?exp(—cot?)

when |t| = (doL.(8))~"%.

2
Proor. Note that | exp(it) — 1 — it +t§ =< |t|**®B,; for all ¢ where B; = 2'"%/((1 +

2

. t
26)(2 + 28)). To prove (5.22), we note that the above inequality implies { cos £ — 1 + 3

= Bs|¢|**®. The proof is thus a straightforward modification of the proof of Lemma 4 on
page 229 of Chung (1974).

To prove (5.23), note that the above inequality implies |£,j(t) — 1 + E |y |*t*/2| =
Bs|t**®E | ym|**®, which implies that for each ¢ there exists a complex number § where
|8] = 1 such that

fin(8) = 1 = E|yn|t?/2 + 0Bs|t|"**E | y;n ">

The proof now proceeds by steps analogous to the proofs of Lemmas 3 and 5 on pages 228-
229 of Chung (1974). O

To finish the proof of (II), note that the conditions on J and the regression constants
imply that there exists b > 0 such that dyLa.(8) < b™'n"? for all 0 < a < 1. Hence, by
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Lemma 5.3 and the fact that dZ, — 1, expression (5.21) is

2cn”® ! 2 42 -8
= exp(—codant®)dt = O(n™°).
T
0

Also by Lemma 5.3 expression (5.19)

2 bn’
= J | TI7-2 fin(t) — exp(—¢*/2)|t~"dt
0
2a, on’
=2 L. f [£]*+% exp(—cot?)dt = O(n™?) 0
T
0

To complete the proof of Theorem 5.1, we use Remark 4.1 along with the inequalities
on page 114 of Petrov (1975) to show D, = O(Inn n~?"), which implies that D, = O(n™%")
forall0<d8*<4. O

REMARK 5.1. Observe that when 8 > %, Y s E|yi | = O(n™/?). Theorem 5.1 gives, in
this case, D, = O(n~%) for all % < 8* < §. So if the rate for T, is the same as the
corresponding rate for sums of independent random variables, our rate misses the optimum
Berry-Esseén rate of O(n~"?). If J is the inverse of the standard normal distribution or
has a bounded derivative, then condition (5.1) holds for all 0 < § < %. Theorem 5.1
then gives D, = O (n % for all 0 < § < %. This rate is comparable to the result of Jureckova
and Puri (1975) for bounded </ with bounded first derivative though not to Huskova (1977),
who obtains the optimum rate O(n™"?) under the additional assumption that
[ (J"(w))*du < .

REMARK 5.2. Theorem 5.1 remains true if the scores are replaced by (3.4) or (3.5).

6. Some remarks on the rate in the non-i.i.d. Case. Nathan (1975) has shown
that D, = O(Inn/n®) where 0 < § < %, when T, is the Chernoff-Savage (1958) two-sample
statistic, if it is assumed that |J'(z)| = K(u(l — u))"**® and some slightly modified
assumptions of Pyke and Shorack (1968). Essential to his proof in a strong embedding of
the empirical process due to Miiller (1970). Presumably, using the more recent embedding
due to Komlés, et al., (1975), his rate can be improved to give the rate of Theorem 5.1
under the bounding condition (5.1). See page 104 of Nathan (1975) for further discussion
of this point. He considers the two-sample problem, so thus does not require the X.’s to be
identically distributed. He does need some added smoothness assumptions on the distri-
butions.

Jureckova and Puri (1975) and Huskova (1977) were able to find rates at which T,
converges to normality under local regression alternatives when ¢/ is bounded. The M,
technique does not appear amenable to finding a rate in this case. To use the Jureckova
and Puri technique would require a weak convergence result for the simple linear rank
statistic process under the assumptions of Theorem 5.1. See Jureckova (1973) for the
definition of this process. A result of this kind does not exist at present under the
assumptions of Theorem 5.1. Even when JJ is bounded the proof of such a weak convergence
result is a long and involved affair. On the other hand, Huskova’s method relies heavily on
the assumption that / has a bounded derivative and on the fact that the projection is still
a sum of independent random variables when Xj, - . . , X, are not i.i.d. M, is not necessarily
a sum of independent random variables in the non-i.i.d. case. Finally, we mention that if
|’ (w)| = K(u(l — u))7?, it is possible to obtain a O (n %) rate for all 0 < § < % using an a.s.
linearity result of Ghosh and Sen (1972). See their Theorem 3.1.
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