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FURTHER RESULTS ON INVARIANCE AND RANDOMIZATION IN
FRACTIONAL REPLICATION!

By H. PEsoTaN AND B. L. RAKTOE

University of Guelph and University of Petroleum and Minerals

The partitioning of the complete parametric vector from the experimen-
ter’s viewpoint for the general mixed factorial gives rise to the usual four
exhaustive cases, (i), (ii), (iii) and (iv). Cases (i) and (iv) may be viewed as
special cases of cases (ii) and (iii) respectively in connection with the problem
of spectrum invariance under the group of level permutations and the problem
of unbiased estimation under a uniform randomized design. Srivastava, Raktoe
and Pesotan (1976) resolved these problems for case (ii) and this paper does
the same for case (iii) so that the study is now complete.

1. Introduction. Ehrenfeld and Zacks (1961), Zacks (1963, 1964) and, Paik and Federer
(1970) have dealt with the problems of invariance and randomization for regular and
irregular fractions of the symmetrical factorial. Subsequently, Srivastava, Raktoe and
Pesotan (1976) generalized these results to arbitrary fractions from the general mixed
factorial. All of the above results considered one specific partitioning of the parametric
vector, the odd resolution case being a special case of this. In this paper we provide a more
general partitioning of the parametric vector which gives rise to four exhaustive cases.
Two of these cases are special cases of the other two. Since Srivastava, et al., (1976), solved
one of the cases the remaining case is dealt with in this paper, which includes the even
resolution case as a special case. Hence the problem of spectrum invariance under the
group of level permutations and the associated problem of unbiased estimation under
uniform randomization is completely resolved.

Section 2 presents the basic setting and the partitioning of the complete parametric
vector from the experimenter’s viewpoint. Expressions for BLUEs are provided in the
resulting four cases for the parametric vector of interest and of linear functions. In Section
3 the invariance and randomization theorems are recalled for the case which is resolved by
Srivastava, et al., (1976). These results are used in Section 4, to establish the two theorems
for the remaining case. Section 5 provides applications and an example on resolution IV
designs.

2. Partitioning of factorial effects from the experimenter’s viewpoint. In this
paper the notation of Srivastava, et al., (1976), and Raktoe, et al., (1978), will be adopted.
Consider the general s; X s; X ... X s, factorial, s; = 2, where the ith factor has s; levels
from the set S; = {0,1,2, ..,s;, — 1}. Let S = S; X Sz X ... X S, be the Cartesian product
of the sets S,. With a treatment (iy, i, ..., i) in S associate an observation y(iy, is, ..., im).
A factorial effect will be indicated AYA% .. A'» with at least one of the i, # 0, and i, € S,
(j=1,2, .., m). The mean will be denoted by A%43 ... A). Let Y, be the set of all
observations associated with the full replicate S and P, the set of effects (including the
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mean). Let X = X; ® X, ® ... ® X,, be the Kronecker product of real orthogonal matrices
X; of order s, with first column all 1/v’s. Then X is a real orthogonal matrix of order s=

JI%: s, with each first column entry equal to1/ Vs. It follows that the sum of the entries of
each column of X, and of X besides the first is equal to zero. Associate with the observation
vector Y, and the column vector P, of parameters the well-known linear model

(2.1) E(Y,) = XPy, Cov(Yo) = 6°I,.

From the experimenter’s viewpoint the complete parametric vector P, can be partitioned
as

(2.2) Py = (P1:P5:P3)

where P, is a t; X 1 vector to be estimated, P; is a £; X 1 vector not of interest and not
assumed to be known, and Ps is a #; X 1 vector of parameters assumed to be known (which,
without loss of generality, can be taken to be zero), suchthat 1 = ¢ <s,0<t.<s—1, and
0=t3;=s—t — t: = s — 1. Explicitly the following cases occur:

(D) i=st=t=0;

(i) £=0,¢t;7#0;

(iii) & # 0, t5 # O;
and

(iv) & #0,t3=0.

By the degree of a factorial effect AYA% ... Alx is meant the number of nonzero
exponents among the iy, iy, ..., i». This concept may be connected up with the concept of
a resolution of a design. A design or a fractional factorial arrangement (FFA) is a
collection of treatment combinations from S. A design is said to be of resolution R if all
factorial effects up to degree k& are estimable, where % is the greatest integer less than
R/2, under the assumption that all factorial effects of degree R-k and higher are zero. The
designs of resolution R have been divided into two types in the literature, namely

(a) R = 2r, known as designs of even resolution, and

(b) R = 2r + 1, known as designs of odd resolution.

It follows that an even resolution design is a special case of (iii) and an odd resolution
design is a special case of (ii) above.

The observation vector of an FFA will be denoted by Y and the model for ¥ and a given
parametric vector P is read off from the full model (2.1). Specifically the models for the
observation vector Y in the above four cases are

(i) E(Y) =X(Y, P)Py, Cov(Y)=0"l,

(i) E(Y) =X(Y, P,)P,, Cov(Y)=o"I,

(i) E(Y) = X(Y, P)P, + X(Y, P,)P,, Cov(Y) = ¢°I,, where P, and P; do not
exhaust Py, and

(iv) E(Y)=X(Y, P)P, + X(Y, P,)P,, Cov(Y) = o’I,, where P; and P; exhaust P,.
In the above four equations the observation vector Y is assumed to be coming from an
FFA with n treatment combinations, that is, | Y| = n.

Consider the partition of P, given in ¢2.2) and let

M, =M,;(Y) =X (Y, P)X(Y, P),

wherei=1,2,3andj=1,2, 3, and let M}, (Y) be a generalized inverse of M,,. In particular
note that M;;(Y) is the information matrix of the observation vector Y relative to the
parametric vector P;. For an unbiased design the best linear unbiased estimates (BLUEs)
for P, in the above four cases are obtained by

(i) =P =[X'(Y, P)X(Y, P)]"'X(Y, P) Y;

(ii) P,=Mi' X(Y,P)Y;

(iii) Py =[Mu — MiuMuMo 7' [X'(Y, P)) — M M2uX'(Y, P;)]Y;

(iv) P, is identical to (iii), with the understanding that P; and P, exhaust P,.
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Instead of pursuing the BLUES of P; in these four cases, the BLUEs of linear functions
of P; may be considered. If p'P; is a linear function of P; then it is estimable if and only if
u’ is in the row space of the underlying design matrix which is different in each of the four
cases. The BLUEs of p'P; can be obtained by standard formulae via the normal equations.
These are as follows in the four cases

() WP =P = w(X'(Y, P)X(Y, Py)) X'(Y, P,)Y;

(i) wP = MuX'(Y, P)Y;

(ii)) Py = p'[Mn — MioMaM " [X'(Y, P1) — MeM2X'(Y, P5)] Y;

(iv) same as in (iii), with the understanding that P, and P, exhaust P,.

3. Invariance and randomization theorems for cases (i) and (ii). In the sequel
the following concepts from Srivastava, et al., (1976), will be needed. A set of effects will
be called admissible if only if whenever A?A% ... A belongs to the set and i; # 0 (1 <j
=m)thenAYAY. .. A-IAAY%] ... A% belongs to the set for all I # 0 in S;. Since P,, the set
of all effects, is admissible, it follows that if P is an admissible set of effects that so is
P,— P.

Let &, be the symmetric group of all permutations on S, and let { be the direct product
of these groups. Then @ = {w:w = (w1, wy, ..., W), w, € Q,}. If Y is any observation vector
corresponding to an FFA and w in Q is any level permutation then « (Y') will denote the
observation vector obtained from Y wherein each component y(&i, k2, ..., k») in Y is
replaced by y(wi(k&1), w2(k2), ..., wm(kn)).

In Srivastava, et al., (1976), case (ii) has been resolved with respect to spectrum
invariance and unbiased estimation of a linear function using a uniform randomized design.
Specifically, these authors proved the following two theorems which will be used subse-
quently.

THEOREM 3.1. For each level permutation w in Q, an admissible vector P,, and, any
observation vector Y, there exists an orthogonal matrix U (P, w) such that

X(Y, PY)U (P, w) = X(w(Y), Py).
Further,

1

_ Y 040 0
mzweﬂU(Pl’w)_O’ lfPl?é(AlAzu.Am)

=1, ifPi= (A%} . A})

where 0 is the zero matrix and 1 is the one by one identity matrix.

Note that this theorem implies that all matrices in the set of information matrices
{X'(w(Y), P) X(w(Y), P1):w € Q} have the same characteristic roots.

THEOREM 3.2. Let Y be a given observation vector and consider the class of observa-
tion vectors w(Y) generated by w in Q. Select a permutation n in Q with probability
(TT%21 s.1)7 If p is @ column vector such that p’ =\, X (w(Y), Py) for each w in Q, where
P is an admissible vector, then Eq(w' P3) = w'P., where P9 is a solution to the equation
n(Y) =X(n(Y), P)P.

In case (i), the assumption of P; being admissible is not necessary since in this case P,
= P, and the complete vector P, is already admissible. Hence case (i) may be viewed as a
special case of (ii) so that both theorems are applicable in this case. The reader should
note that in case (i) the design matrix has the dimension n X s for the invariance theorem
and in the randomization theorem the linear function is a function of the total parametric
vector, while in case (ii) the design matrix is a n X | P;| matrix and the linear function is a
function of a subset of the parameters.
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4. Invariance and randomization theorems for cases (iii) and (iv). Let Y be an
observation vector corresponding to a given FFA and w(Y') for w in £ be the corresponding
observation vector for the permuted design. Assume that P, and P> are admissible vectors
of effects. Then we have the following theorem for case (iii):

THEOREM 4.1. There exists an orthogonal matrix U such that
X(Y,P)U=X(u(Y), P),
where P’ = [ P{:P3].

ProoF. By Theorem 3.1, there exist orthogonal matrices U, (Pi, w) and Uz(P;, w) such
that X(Y, P;) U:(P,, w) = X(w(Y), P,), i = 1, 2. Let U be the block diagonal matrix

v-[H]

Then, clearly X (Y, P) U = X(w(Y), P) thereby establishing the result.

Now consider the entire class of observation vectors generated by the action of {2 on the
n X 1 observation vector Y corresponding to a given FFA. Let the total parametric vector
P, be partitioned as in (2.2) and let p be a |Pi| X 1 column vector such that

’ — ’ ’ Pl
nPl—[nIOJ[PQ]-

Then a necessary and sufficient condition for the estimability of u'P,; is that the vector
[p'| O’] be in the row space of the design matrix [ X (w(Y), P1) | X (w(Y, P>)]. For each w
in Q, define

A(w(Y)) = Mi(w(Y)) = Miz(w(Y)) M3 (0 (Y)) M2 (0(Y)).
It is known that the estimability of u'P; is then equivalent to the condition that p’ is in the
row space of the matrix A(Y). The following lemmas will be useful in establishing the
randomization theorem for case (iii).

LEMMA 4.1.

1
H (s~/) Zweﬂ "IA_(Q)(Y))A((,)(Y))PI = ’l’P],

where for each w in Q, the vector [p'| Q'] lies in the row space of the design matrix
[X((Y), P) | X(w(Y), P2)].

Proor. From the facts noted above, it follows that for each w in , the vector p’ lies in
the row space of A(w(Y)). Hence p’' = A, A(w(Y)) for each w in . Substituting A,
A(w(Y)) for p’ in the expression given in the lemma, since AA™A = A, the lemma follows.

LeEMMA 4.2. If P, and P, are admissible vectors, then
5 e AT(@(Y)[Mis((Y)) = Miz(e(¥) Mz (e (¥ ) Mas ((¥))] = 0,

where 0 is the zero matrix.

PrOOF. Since P; and P; are admissible vectors then so is the vector P;. By theorem 4.1,
there exist orthogonal matrices U(P;, w) such that X(w(Y), P,) = X(Y, P,) U(P,, w) for i
= 1, 2, 3. Substituting these equations in the expression given in the lemma it follows that

Zweﬂ A (0(Y)[ M (w(Y)) — Mi2(0(Y)) Ma(w (Y ) Mz (w0 (Y))]

=3 o U'lw, P)LU(w, Py),
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where L = [M(Y) — Mi2(Y) M3(Y) M1 (Y)]™ [Mi3(Y) — Mi2(Y) M2 (Y) Mas(Y)] is
a fixed matrix independent of w in . The proof may now be completed by using the same
argument as that given for Lemma 4.2 of Srivastava, et al., (1976).

Select a permutation 7 in £ with probability ([ (s))™". Then we have the following
theorem:

THEOREM 4.2. Let PY ,be a solution to the equation n(Y) = X(¢(Y), P) P, where P’
= [P}| P}] and P,, P; are admissible vectors of effects. Then Eq(p'PY, ;) = WPy, where

Eo(WP?,,) Y. o Ec(WP .|w(Y),

1
Tl (sh)

G is the probability distribution of the random variable w(Y), and p is a | P1| X 1 column
vector such that [’ | O’] lies in the row space of the design matrix [ X (w(Y), P1) | X(w(Y),
P,)] for each w in Q.

Proor. Now

1
Eq(wPy ,) = szen EG(M'P?, o|w(Y))

1
II (sih)
= Mi2(0(Y))Ma(w(Y)) Mo (0 (Y )Py + A™(w(Y)) (M3 (w(Y))
= Mi2(w(Y))Mz2(w(Y)) Mo (0 (Y))Ps].

PIA T (@(Y)A(@(Y))P1 + A™(0(Y)) (M2 (w(Y))

By a property of generalized inverse the second term in the above expression is the zero
matrix for each w in ©. By Lemma 4.2 the sum of the third term in the above expression
is the zero matrix and by Lemma 4.1 the sum of the first term is p'P;, completing the
proof.

In case (iv) since #; = 0, the vector P; does not appear at all so that P; and P; exhaust
P,. Hence this case may be viewed as a special case of case (iii) in the sense that the third
term in the randomization Theorem 4.2 does not appear, and, thus both the theorems of
this section apply in this case.

5. Applications and an example. In the paper by Srivastava, et al., (1976), it is
indicated that the results obtained for case (ii) (and hence also on the trivial case (i)) have
wide applications in odd resolution problems, where the interest lies on the vector P,
rather than on linear functions. The full column rank condition of the design matrix of an
initial design implies the preservation of rank under the group of level permutations.
Similar observations can also be made on even resolution designs belonging to case (iii)
(and hence also to the special case (iv)). Srivastava, et al., (1976), presented an explicit
example of the use of the results on a class of determinant optimal resolution III designs
of the 2* factorial. Here we shall present an example of a class of resolution IV designs of
the 2° factorial. Let the initial resolution IV design be D; = {(100), (010), (001), (011), (101),
(110)}. Under the action of the group of level permutations £, a class of 4 designs is
produced. The initial design is already listed and the others are D, = {(000), (110), (101),
(111), (001), (010)}, D; = {(110), (000), (011), (001), (111), (100)}, and D, = {(000), (011),
(101), (111), (100), (010)}. In the terminology of Pesotan, et al., (1975), the design D; is an
unfaithful design and therefore produces fewer than 8 = 2! X 2! X 2! designs under . The
above class of four designs are such that the information matrices have the same spectrum.
In order for the results to be unbiased by P; (if the assumption of negligibility is in doubt)
a uniform randomized design may be selected. Another approach which may be adopted
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is to introduce a cost function on the designs and pick one which minimizes the cost. The
initial design used above is a minimal full column rank design (e.g., see Margolin (1969))
and since the action of Q preserves the rank all the four designs are of full column rank.
One could have imposed an optimality criterion on the spectrum of the information matrix
(e.g., d-optimality) and starting out with an initial optimal design produce a class of
optimal designs on which a cost function can be imposed to select a minimum cost optimal
design.
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