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ASYMPTOTICALLY OPTIMAL TESTS FOR HETEROSCEDASTICITY
IN THE GENERAL LINEAR MODEL

By THoMAs HAMMERSTROM
University of Michigan

Some plausible models for violations of homoscedasticity and linearity in
the general linear model have been proposed by Tukey and Anscombe. Bickel
has provided robust tests for such violations. In this paper Bickel’s tests are
shown to be asymptotically optimal as well.

1. Introduction. The first step in analyzing data from a regression or ANOVA
experiment is usually to fit a linear parametric model for the means of the observations,
assuming the errors are independent N(0, ¢°) variables. One then begins to check the
validity of the underlying assumptions of the model. Anscombe, Tukey and others have
discussed plausible forms of departure from the assumptions and have proposed ways of
using the residuals to investigate the validity of the assumptions. Bickel [5], in particular,
has proposed tests of the assumptions of homoscedasticity and linearity and examined the
robustness of these tests for various distributions of the errors. We will show that Bickel’s
tests have the additional property of being asymptotically uniformly most powerful.

2. Testing for heteroscedasticity. The first form of departure from the assump-
tions we will investigate is heteroscedasticity of the errors. In one of the most common
forms of this, o; increases approximately linearly with 7.. Here o; is the standard deviation
and 7; the expectation of the ith observation Y,.

Anscombe [2] has proposed an explicit parametric model for this situation. We have
independent observations Y3, ..., Y, with

2.1) Y, ~ N(r, d*ai(6))

where, for each n, the parameters (6, log ¢, 1, . .., 7,) lie in a compact subset of R"*2
We specifically assume = CB, C being a known n X p design matrix and that ¢®, 8 vary
independently of 8. Without loss of generality we can take C'C = I,,,. Let

r=ccr
1—_‘ = In)(n - F.
We further assume

SUPi<i<» | 7.| and |log o*| are bounded by M < oo,

1.
(A) lim, e 7. = lim, o Y. 7, exists;

. 1 . . .
lim,, .. - Y (r, — 7.)% exists and is positive.
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Finally we assume that a,(6) is twice continuously differentiable in 6, that

_ 0a,(0)
ai(0) =1, R T
and that
&ai(6)
°F = 0(1) as 6— 0.

Here we write A,(6) = O(6") as § — 0 to mean that for some € > 0, there exists M < o with

p{lfllla(l?lzlsi<oo,|0|<e}<M.

We want to test H: § = 0 (errors are homoscedastic) against one of the alternatives
K:0>00r K:0%0.

For this model, Bickel has proposed the following test statistic, modifying an estimate
suggested by Anscombe.

Lett=TY = L.S.E. for rand let r = Y — t =Ty = vector of residuals. Let ¢£. = (1/n)}t;
and T = (1/(n — p)) ¥, yut.. (We will always use dot and bar to denote these two different
averages for any n-vector.)

Let

1
Sri
-p
This s is just the standard estimate of o” used in least squares regression. The test statistic
is
1 -
; 2 r %(tl - t)
h =

1 17
sz[; Y vt — D — t)]
The tests will have critical functions y,

=1 if vah>z(1-a)
=0 otherwise

where 2(1 — a) = (1 — «) quantile of the standard normal variable.
We will show

THEOREM 1. Given the model of (2.1), suppose Assumption A holds. Then (p/n) —
0 is a sufficient condition for the tests with critical functions {y,.} to be locally asymptot-
ically UMP level « for H: 8 = 0 against K: § > 0.

The proof may be outlined as follows. We cons1der the special case in which all the
expectations, 7, are known and find an upper bound for the power function of any test of
H against K in this special case. We then compare this upper bound with the actual
asymptotic power function of the tests {y,}, as computed by Bickel and show that they
coincide. If the tests, {{.}, give the best possible asymptotic power even when the 7; are
known, a fortiori, they must give the best power when the 7; are unknown.

3. Proof of Theorem 1. Let y = (6, log 6. Suppose yo = (0, log 03) € {0} X IR and
that y, = {(6., log 0%)} is a sequence with ||yo — .|| = MA/n for some finite M. Let (Y},
..., Y») be distributed as in model (2.1) with 71, ..., 7, as specified constants and let
{Q ™} be the family of their joint distributions. In order to find an upper bound on the
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asymptotic power function of any test of H: § = 0 we will establish that the family {@!"
is uniformly locally asymptotically normal at every y, € {0} X IR, as defined in Definition
A.1 of the appendix, and then appeal to a theorem of LeCam and Cibisov, Theorem A in
the appendix.

Fixing such a y, we need to find a sequence of statistics {U"™} = {(4, logé*)”} and a
positive definite matrix Y (yo) such that the densities, {g.}, of {Q ™} satisfy the equation

(3.1) a.(y™, ) = Ca( y‘"’)eXp{—g (U™ = Y'Y (yo) (U™ = y) + Zaly, Yo)}

with

(i) VR(U™ — y0) = N(O, ¥ (1)) in law under Q4;

(i) sup{|Z.(v, y0)|: ¥ = yoll = M/~n} — 0 in probability under Q% for all M < oo.

We find these {U™} by taking one step estimates for v, using the method of scoring.
Initial estimates for the method of scoring are obtained by solving the likelihood equations
under the assumption § = 0.

The calculations of both the likelihood equations and the Fisher information matrix
require the log likelihood function,

2
3.2) by = —= log & — z {(y i~ ™)

Za0) + log a,(ﬂ)}

where a,(6)™ = 1 — 6r, + O(6).
The gradient is given by the equations
o, _ 1 [alogaid)  (yi— 1) dal6)”
(3.3) a0 2 a0 o a0

al, B (y.— 7)?
s 7~ 3 D “Fall)

The Hessian is given by the equations

%o {62 log a.f) , (= )" azalwf]}

96° I @ Yz
32 ln ’T,) aat(0)~
(34) Malogo® Z 02 a0
&L, 1. (yi—7)?

a(log )2 32 ae

Notice that both (8a;(§)~'/36) and — (d log a.(§)/d6) are of the form —, + O(f).
Taking expectations under @ we have that the Fisher information matrix is

3 (34 0(9) S(r, + 09))
(35) Ly = [2 it 00 ]

Observe that the family (1/n)I.(y); n = 1, ... is equicontinuous in y for y in a Vn
neighborhood of {0} X R.
We now take as our initial estimates

90 = 0
F=13¥i—ny
0 = n i T) .
The one step estimates of the method of scoring are given by the equation

(3.6) Y= [IOZ"&} = [mgoa%} + I,'(6o, log 63)grad 1.(o, log 63).
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We will be able to establish the ULAN property for {@!} by taking a Taylor series
expansion for /,(y) about ¥ The two-term Taylor expansion of /,(y) is given by

1
b(y) = L(Y) + (y — ¥)" grad L.(y) + 3 (Y= VH.(Y)y—7)

1
(3.7) =L - g G =93 )G =) + Yy — ) —= grad L (7)
vn
n , 1
+t3 r—v [Z (o) + - H,.(y*)} y—9

where H, = Hessian of /, and y* is on the line segment from ¥y to v.
The matix Y, (o) is defined as lim(1/n)I,(yo). Using equation (3.5) we have

(3.8) Y (yo) = % lim | }

To establish part (i) of the ULAN condition we need to show va(y, — y0) — N(0, 3!
(Y0)) in law under Q.

To establish part (ii) we need only show that the supremum over the set of {y,} with
lv» — Yoll = M/~/n of the absolute value of each of the last two terms on the right-hand
side of (3.7) tends to zero in probability under @'”. We will accomplish this by showing
each of the terms consists of a product of factors bounded in probability with a factor
converging to zero in probability.

We begin by observing that for {y,} with ||y, — yo|| = M/vn, vn [[ Yo = ¥=I| is bounded
in probability under Q7.

Observe that the family (1/n)I,(-) is equicontinuous and nonsingular in a neighborhood
Of Yo.

We next prove two lemmas that show that the families (1/n)H,(y.) and (1/n)H,(Y.)
are equicontinuous with high probability under @' for nonrandom sequences {y.}, y» —
Yo, and for random sequences {¥,}, ¥» — Yo in probability under @ %. Specifically we prove

LEMMA 3.1. Each entry of the Hessian matrix, H,(y), of the log likelihood function

can be written as ¥, F(Y,, i, y) where F is continuous and the family
(| F(y5 70 ) | gn(¥y™, Yo): 1= i< n, 1< n}

is uniformly integrable with respect to Lebesque measures on IR".
Also, for any compact neighborhood, L, of yo, the family

(F(Y0 7o 30) [ TG € L)gul(y™, yo): 1< i< n, 1< n}

is uniformly integrable with respect to Lebesgue measure. Here I is the indicator function.

ProoF. By equations (3.4), F is one of the three functions

8 log a:(0) N (Y, — )% 8%a:(0) ™" (Y: — 7.)% 0a,(0) " (Y, —7)?
36° P & | d ¢ 7

These are clearly continuous, by the assumptions on a, and hence are uniformly
continuous and bounded on compact sets.

If y = (6, log o®) is within a compact neighborhood, L, of yo = (0, log ¢3), then sup, <.
F(y, 7, v) is dominated by a bounded factor times (y, — 7,)? plus a bounded term.

a.(0).
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The boundedness of the coefficients follows from the form of a;(d) and the fact that sup;
| 7| < oo.

Since g, is the product of N(r,, o®a:(6)) densities it follows, again using sup; | 7.| < e,
that

(3.9) lim, . SUP» SUP1=<i<n J . J' sup,ez F(y,, 7, Y)qn(y"™, vo)dy = 0.
|yt|>a

Since | F(y,, 7is ¥2) | I(¥n € L) < supser | F(y,, 7 v) | the second uniform integrability result
asserted in the statement of the lemma holds.

To prove the first uniform integrability result, one can repeat the same argument with
{3} replaced by {y.}. Since {y.} is a deterministic sequence the indicator factor, I(y.» €
L), = 1 for n large enough. 0O

For the next lemma we again let {y.} be any nonrandom sequence with y, = yo and
{¥»} be any random sequence with, — yo in Q" probability.

0

LEMMA 3.2. The quantities | (1/n)Ho(ya) — (1/n)Ha(yo) |, | (1/n)Ha(yr) — (1/n)Hn(y0) |

both converge to zero in probability under@% .

ProoF. Each entry in H, can be written as Y, F(Y,, 7, ) with F uniformly continuous
on compacts.

Let € > 0 be given. Let L = unit ball in R? with center y,. By Lemma 3.1 we can choose
a compact K C IR so that

(i) sup, Eq, |F(Y,, 7, ) | I(Y. & K) <€

(i) sup, Eq, | F(Y,, 7, v) | IY; 2 K, v.€E L) <e

Choose 8 > 0 so that Y, € K and || y. — vol < 8, imply
€L and |F(Y, 7, y.) — F(Y, 7, 0)| <€

Finally, choose N so that n > N implies ||y, — vol| < 8, @ (172 — vol <8 >1-e Then
the entry of interest in | (1/n)H.(¥.) — (1/n)Hx(yo) | can be written as

1 . A
I_l Z F(Y,, 1.,%) — F(Y,, 7, ¥o)

1 .
= r—t ZYteKlF(Yu Ty ¥n) — F(Y, 74y Yo) |

1
(3.10) + n S| F(Y;, i, ¥n) | I(Y. & K)I(¥x L)

1
+ ;ZlF(Y" Tuy YO)lI(Y, ¢ K)

1 .
+ ~ ZIF(Y, 7 ) (Y, & BOI(7n € L)-

The first term on the right-hand side of (3.10) is less than e with probability greater
than @ (|¥» — vl <8 >1—e

The second term on the right is greater than e with probability less than QW{. &
L) <e

By conditions (i) and (ii) the third and fourth terms on the right have expectations less
than e. By Markov’s inequality they are greater than a with probability less than €/a, in
particular they are greater than Je with probability less than Ve .

Thus all the terms on the right-hand side of (3.10) can be made arbitrarily small with
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arbitrarily high probability. Since there are only three distinct entries in the matrix, all of
the entries can be made small with high probability.

The proof with y, in place of ¥, is even easier because {y,} is a nonrandom sequence. [J

We now point out that H,.(yo) is a sum of independent terms whose variances are
bounded so the law of large numbers for nonidentically distributed random variables,
Theorems 5.1.1 and 5.1.2 of Chung [7], implies |(1/n)Hn(yo) + (1/n)I.(yo)| — 0 in
probability under @;". By definition | (1/n)I(yo) — 3 (o) | — O.

Next we remark that from Theorem 4.2 in Chapter 2 of Roussas [15] we know that

%n grad L(yo) = N(O, ¥ (v0))
(n)

in law under @;'. Then we may observe that

1 1 "1
\/_Y-L grad 1,.(y,) = Tr-z grad Z,(yo) + */Y_L(% - Yo) J; o H,(tyo + (1 — t)y0)dt.

. 1 . N .
As just remarked — grad l.(yo) converges in law under (' Clearly \/r_z(y(, — Y0) 18

vn
bounded in probability under . By Lemma 3.2, the integral converges in probability to
1

=Y, (y0) under Q. We can therefore conclude that { 7
n

grad ln(%)} is bounded in

probability under Q7.

From equation (3.6) we get

1
VR = o) = V(30 — yo) + 7= erad Lo (o).
n

We just saw that {% grad ln(ifo)} was bounded in Q' probability, as was \/;(?0 -
n

Yo). By the equicontinuity of {nI,'(-)}, {nI,'(}0)} is also bounded in probability under
Q' and hence vVn(¥. — o) is likewise.
The last preliminary calculation we need for establishment of the ULAN condition is
that
1 .
—= grad /,(¥.) — 0 in probability
Jn
under Q.
To see this we observe

1 1 1 !
3.11 — d (¥, =— dL.(Y) + — ¥ — ¥ H, (Y.t + (1 + £)Y0)dt
(3.11) 7 grad 1,(¥») 7 grad £,(¥o) 7 '(Y Yo) fo (87 Yo

"1
= Vn(§. - o) f o [H.(¥nt + (1 — 8)70) + L.(0)1dt
0

(3.12) VG = %0) = VR(§n — o) + V(ya — 50)

and both terms on the right-hand side of (3.12) are bounded in @ probability. It follows
from Lemma 3.2 and the equicontinuity of (1/n)I,(-) that the integral in (3.11) tends to
zero in @7 probability. Thus

grad l.(¥.) — 0 in probability under Q.

S
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With this result, we have demonstrated that both of the last two terms on the right-hand
side of equation (3.7) tend to zero in @ probability when ||y, — yo|| =M/ Vn. Thus, part
(ii) of the ULAN condition holds.

Finally, to show part (i) we observe that

1 ) 1 R "1
E g'rad lﬂ(Yn) = Tr-l, grad ln(YO) + ‘/;;(Yn - YO) J; ; Hn(Yt)dt

where y; =ty + (1 — £)y0 so

: __[[1 RS 1 .
(3.13) ﬁ(n—w)— UO an(w)dt] [ \/r-tgrad 1n(0) \/I_Lgradln(yn)].

Using the convergences established above and Theorem 2.4.2 of Roussas, the right-hand
side of (3.13) converges in law under @7 to N(0, ¥ (vo) ™), as required by part (i) of the
ULAN condition.

We therefore have that the sequence {Q!”} is ULAN at any v, € {0} X IR and, by
Theorem A in the appendix

supy lim sup, sup{B.(y, ¥¥) — [1 - @(z(l —a) — —%) ]: 0<f<Mn's=0
o0 (Yo

for any asymptotically level « tests {y;}.
But Bickel [5], Theorem 1.1, shows that, provided p/n — 0, the asymptotic power
function is

1/2
By, ¥n) =1— ‘D<Z(1 -—0)—-v 48 [%Z (ri — 'F)z] ) + 0(1)

so the tests {{.} are surely asymptotically level a. To complete the proof it suffices to
show

1 1/2
[; Y (ri— ‘F)Q} = [6"(v0)]”* > 0.

But from equation (3.8) for ¥ (Jo) we see thato''(§¢) = lim, (1/n) ¥ (r; — 7.)%. Since
p/n—0,(1/n) ¥ (r.—1)* = (/n) ¥ (1: =1)* — 0.
Hence we have completed the proof of Theorem 1. O

4. The case of nonnormal errors. Bickel has also showed how the test statistic in
Section 2 may be modified so as to achieve desirable robustness properties when the errors
are merely symmetrically distributed about zero. Qur model now is

(4.1) Y.=1+e¢, l=i<n

with €, being independent with density

1 x
0al®) (oa,w))'

We retain the same assumptions about the vector of means, 7, and the functlon a;(f) as in
Section 2. The density f(x) is assumed to be known and to satisfy

(A.1) f(—x) = f(x), i.e., f is symmetric about 0
(A.2) log f(x) exists, i.e., f is positive everywhere
(A.3) f'(x), f"(x), f” (x) exist and limy ;| fx) =
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) o ()

J’ r <J—C) f(x)dx < o and f x? (E) <—J£> flx)dx < o for any fixed 6 > 0
f\o f 4

(Ab) F (%) = %’ F (— 1) = i where F(x)

and are all = M < w for all x,

>

(A4) "% (x)

2

= J’ flw)du, i.e. the scale of fis chosen so that the interquartile range is 1.

Assumption (A.5) can always be satisfied. Notice that for normal errors, f'/H(x) = —x
so that (A.4) fails. Thus, the model in Section 2 is not a special case of the model in this
section. Also, the double exponential density violates assumption (A.3). I do not know
whether an analogue of Theorem 2 below holds for double exponential errors. However,
both the logistic and the Cauchy densities are easily seen to satisfy these assumptions.

We are thus considering distributions {P,} for {Y™ = (Yy, ..., Y,)} that satisfy the
model of line (4.1) and assumptions (A.1)-(A.5) and also

1
(A.6) |Vnl| < M; sup. SUPi=i=n | 7| = M; |logo|=M; lim > Y 7, exists;

.1 . .
lim = ¥ (r, — 7.)% exists and is greater than zero.
n

Assumption (A.6) is the same as Assumption (A) of the previous section.

Let b(x) = x(f'(x)/f(x) + 1. If the means, {r.}, and the scale factor, o, were all known
it would follow from results in, e.g., Hijek and Sidak [10] that the optimal test would be

based on the statistic
Yi— 7
le< T)(TL_'T-)
n o

1 , 1/2 1 Y, -, 21/2
o] e (o(57) )]

where b. = (1/n) ¥ b((Y, — 1.)/0).

Bickel has suggested using the test statistic obtained from this expression by replacing
the {r.} and the o by suitable robust estimates. We would like to prove his conjecture that
this will lead to an asymptotically UMP test.

Since we are no longer assuming that the ¢, are normal, the least squares estimates are
no longer the appropriate estimates for 7,. Instead we assume that we have robust
estimates, S, for Br, 1 < k < p, with

(A.7) Yh-1 (Br — Br)* = Op (p).

For example, Huber’s M estimates can be used for the {£,}, as Yohai and Maronna (19)
show in their Theorem 2.2.

Let t = CB be the estimate of 7 corresponding to the estimate, §, of 8. Letr =Y — t be
the vector of residuals. Assume we have

(A.8) s is a v consistent estimate of .
Finally we assume

(A.9) p/\/;—>0 aspand n— oo,
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Our proposed test statistics are now

1 ri
;Z b (;) t—t)

1 , 1/2 1 r 291/2
e o T ()]

where b. = (1/n) Y b(r./s) and our proposed tests have critical functions v,
Ya=1 if VYnh>2z(1-a

(4.2) h=

=0 otherwise.

We will prove

THEOREM 2. Given the model of line (4.1), assume that (A.1) — (A.9) hold. Then the
tests with critical functions {y.} are locally asymptotically UMP level a for H: § = 0
against K: 8 > 0.

5. Proof of Theorem 2. We prove Theorem 2 in the same way we proved Theorem
1. We establish that when the expectations, 7,, are given constants the family of distribu-
tions of (Yy, --., Y,) are uniformly locally asymptotically normal at any (6,, log 6o) =
(0, log o). Consequently, any test of H: § = 0 has asymptotic power function with an upper
bound given by the theorem of Le Cam and Cibisov. Since Bickel’s proposed test achieves
this upper bound even without knowledge of the 7, his test is asymptotically uniformly
most powerful.

As in Section 3, let y = (6, log o) and let {@™} be the family of distributions of
(Yy, ---, Y,) with 7, ..., 7, as specified constants.

To prove Theorem 2 we first establish that (@} is ULAN at every point of the line
0 = 0 with the quadratic form Y (y) = the limit of n™' X Fisher information matrix at v,
that is,

T (rhH. = /o
(5.1) ¥ (y) =lim,A L"/” 1/0}
where A = —[ xb’(x) f(x) dx.
Assumption (A.6) guarantees that ¥ (y) is nonsingular.
Once we have verified this, we may conclude that the asymptotic power of any sequence
{¢r} of asymptotically level « tests for H against K in the model with the distributions
{Q!”} obey the bound given by Theorem A of the appendix. That is,

(5.2) By, ¥i)=1-® (2(1 - a) ___«/f_b') + o(1)
o (v

where [67(y)] = X7 (y).

The ULAN property is verified by modifying the proof in Section 3 where necessary to
account for the fact that the tails of the density f(x) fall off less rapidly than those of the
normal density. This will manifest itself in our choosing different initial estimates for the
method of scoring, in different forms for the gradient of the log likelihood and the Fisher
information matrix and in a different proof of the analogue of Lemma 3.1.

For the first part of the proof we fix a yo = (0, log o) € {0} X IR and show that {Q@{™}}
are ULAN at v,. To do so we need to find a sequence of statistics {U™} = {(§, logs )™}
and a positive definite matrix ¥ (yo) such that the densities, g., of {Q™} satisfy the
equation (3.1).

We find these {U™)} by taking one step estimates for y, using the method of scoring.
Again we obtain our initial estimates for the method of scoring by solving the likelihood
equation for o under the assumption that 8 = 0.
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For the calculation of the maximum likelihood estimate for o and of the Fisher
information matrix we will need the log likelihood function, Z,(y) = log q.(y", vy) and its
gradient and Hessian.

The log likelihood is given by

(5.3) l.(y) = —nlog o — Y log ai(d) + ¥ log f (3:“10?).

Its gradient is given by

n _ $h (yi - n) 3 log ai(6)

(5.4) -50— - oa,(6) a6
ol, _ Yi— T
dlogo Lt (oal(9)>'

The Hessian matrix is given by
o (1) ) (o5 5o () (L)
(5.5) Wfiﬁ; =3 ({m_( ;)) ( - 07)") g l"i: 6
s 2 (5 (o)

Notice that (9 log a,(6)) /06 = 7; + O(6) as § — 0.
Taking expectations under @' we find that the Fisher information matrix is

alog ai(0)\’ Zalog ai(6)
Z a0 a0
5.6 L(y)=A
(5.6) Y Z6log a;(0) n
a6
where A = —[ xb’(x)f(x)dx. Here we have used assumption (A.3) to integrate

J [x(f'/f)(x) + 1]f(x)dx by parts and conclude that Eb(Y, — 7;)/sa.(6)) = 0.
Since (3 log a,(6))/96 = 7; + O(6) we find

_ Al Z[F+00)] T+ 00)]
(5.7) Ly)=A [2 [r 4 06)] . ]

Observe also that {(1/n)I.(y)} is an equicontinuous family of functions of y for y in a
n'”? neighborhood of a fixed vy, in {0} X IR, provided the {r,} satisfy assumption (A.6).

We now select initial estimates for the method of scoring. We take 8, = 0;6, =
interquartile range of (Y, — 7,}.

Next we define the one-step estimates by the equation
(5.8) ¥= [ 0 ] = [ o ] + I."(6o, log 60)grad 1.(6,, log &)

’ log 0 log 6 nATe e )

To establish that {Q{} is ULAN at y, we need to show that the initial estimates, Yo,
are locally Vn consistent and that the conclusions of Lemma 3.1 still hold with error
densities satisfying assumptions (A.1) to (A.5).

The first of these claims follows from showing that

Vn (6o — 0n(1 + 6,7.))

converges in law under @ to a normal distribution with mean zero. Since 6, is the
interquartile range of the {e;}, this is a straight-forward consequence of a theorem of Weiss
[18] on the joint distribution of the order statistics of nonidentically distributed samples.
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LeEMmMA 5.1.  Each entry of the Hessian matrix, H,(y), of log g.(Y™, y) can be written
as Y, F(Y,, 1, vy) where F is continuous and the family {|F(y, 7, ) |q.(y"™, yo); 1 =i <
n, 1 < n} is uniformly integrable with respect to Lebesgue measure on IR" for any
determinate sequence {y.} with vy, — ¥o.

Also for any compact neighborhood, L, of y,, and any random sequence ¥, converging
to yo in QY probability, the family

{IF(y 7, ¥a) | I(¥2 € L)gu(y"™, y0); 1< i< n, 1 < n}

is uniformly integrable with respect to Lebesgue measure.

Proor. The entries of H, are of the form Y F(Y,, 7, y) with F being one of the three

functions
p (Y= 7\ (Yi= 7\ (2log ai6)\* _, (Yi— v (& log ai6)
oa;(0) oa,(6) a0 oa;(0) a6* ’
b Yi - Ti Y,' - T a lOg ai(())
oa:(0) )\ oai(6) a0 ’
b’ Yi—7n\[Yi— 7
oai(0) )\ oa.(8) )

By our assumptions on a;(f) and fthese are all continuous and hence uniformly continuous
and bounded on compact sets. By assumption (A.4) b'(x) = x(f'/f) (x) + (f'/f)(x) is

bounded. Hence, if y = (6, log o) is within a compact neighborhood, L, of y, = (0, log o)
then

SuprEL IF(yl’ Tiy Y)I
is dominated by
Ye—Ti\[Yi— T,
K | ———
S“"’GL{ 1 1 v () e
for some constants K;, Ks < .
We have

2

Yi— T,
b (om«») '}

f supyer |F (i 7, ¥)|gn(y, vo)dy
|y, |>a

A fYi T TN\ [YiT T Yi— Ti .
b (oai(0)>(aai(0)> ‘ *Supye | b (oai(0)> }

Yi— T YiT T
f(T) dyi'Hj,‘L J'f( p )dyj-

Since we both know that for any fixed 0 > 0, [ (x/06)b’(x/0) f(x)dx and [ b(x/0) f(x)dx are
both finite and since sup|t,| < =, the right-hand side tends to zero as a — .
The proof of the lemma now concludes exactly as that of Lemma 3.1

=K { SUp, ey,

|3,>a

F(yi, 7, VII(¥ € L) = supyer | F (yi, 70, ¥)|

and for the deterministic sequence {y.}, y. € L for all sufficiently large n. 0O

Lemma 3.2 now holds for the model of this chapter as well since only the truth of
Lemma 3.1 was used in the proof of Lemma 3.2.

Likewise, the same proof used in Section 3 now implieS\/; (Y~ — Yo) converges in law to
N(0, Y (¥0)™) under @ and that the suprema over |y. — yo|| = M/¥n of the absolute

Yo
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values of the last two terms of the Taylor expansion (3.7) of the log likelihood Z.(y) both
tend to zero under Q'?. Consequently {™ } is ULAN at .

By the theorem of Le Cam and Cibigsov we now know that for any sequence, {3}, of
asymptotically level a tests, the asymptotic power function obeys the relation

—?g——) + o(1).

(5.9) By, ¥X)=1-® (z(l —a) —
o (yo)

To complete the proof of Theorem 3 it is now only necessary to show that the proposed
tests {{»} have asymptotic power function achieving the upper bound of (5.9), which will
imply that they are asymptotically UMP level a.

But by Theorem 3.1 of Bickel, the asymptotic power function of the {,} is given by

1/2
Buly,dn) =1 - @ (2(1 —a) —n'% [%Z (r. — 'F)z] [J' bz(x)f(x)dx] + 0(1)>-

Incidentally, the first three bounds of assumption (A.4) are only used at this point in the
proof. Theorem 2 will now follow if we show that
1

(5.10) = l (r, — 7)? f bz(x)f(x)dx + 0(1)
o (y) n

If we compute the inverse of ) (yo) from equation (3.14) we find

1 1 el ,
011("0‘) = Y (rn—r1) [ f xb’(x) f(x)dx].
But (1/n) ¥ (. — 7)2 — (1/n) T (r. — 7.)* = 0 if (p%/n) = 0. —f xb’'(x) f(x)dx =
f 5%(x) f(x)dx follows by substituting the definition of b(x) and integrating by parts.
Thus equation (5.10) is verified and Theorem 2 is established.

APPENDIX

The following definitions and theorems of Héjek, Le Cam, and Cibisov were needed in
this paper. We reproduce the statements of the essential results here.

Let X™ = (X;, ---, X,) be a sequence of random variables or random vectors with
P! being the distribution of X”. The parameter 5 € 6 C IR*.

DEFINITION A.l. {P{”} is uniformly locally asymptotically normal (ULAN) at 1, if
there exist

(1) statistics U™ (possibly depending on 1o);

(2) coefficients c,(x™);

(3) a positive definite matrix Y, (1o);

(4) constants 8, | 0, such that, with respect to some measure u™, P has the density

8,2 '
Po(x™, ) = calx™)exp [ -5 U™ =)' T (o) (U™ — ) + Z.(n, "10)]

with

(i) 82" (U™ — 59) > N(0 ¥ "*(no)) in law under P;
(i) sup {|Z.(n, no)|:|m — mo| = M$,} — 0 in probability under P for all M < oo,

Consider the case of €O CR*, k=1 and 9o = (10, - - - , Mxo)’ Interior 6. We wish to
test H: m = Mo against K: m > Ni1o.

For any sequence {y} of critical functions of tests of H against K, the asymptotic power
functions are defined as 8(n, y») = Eyn(X™).
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DEFINITION A.2. The sequence of tests {{,} is asymptotically level a for H if
supalim sup,sup {8, ¥»): ;1 = no and || = M;,} < a.

THEOREM A. If {P{”} is ULAN at o € Interior © then

supadim suprsup {8 (9, ¥») — [1 — 91 - - S;IL—W>]:

N0 < Mm <N + M&n, I’q - 'qol = M8n} =0
where (67(10)) = Y. (no)~" for all sequences of asymptotically level a tests for H, {{,}.

Definition A.1 is essentially due to Hajek [9], Assumption A, page 144. Theorem A was
stated by Le Cam [12], Proposition 2, page 155, for all sequences of asymptotically level
a similar tests but the proof he gave in fact made no use of similarity. The theorem in the
i.i.d. case is both stated and proved without mention of similarity by Cibigov [7], Theorem
9.1, page 40.

REFERENCES

[1] ANDREWS, D. A, et al. (1972). Robust Estimates of Location: Survey and Advances. Princeton
Univ. Press.
[2] ANSCOMBE, F. J. (1961). Examination of residuals. In Proc. 4th Berkeley Symp. Math. Statist.
Prob. I 1-36. Univ. California Press, Berkeley.
[3] ANSCOMBE, F. J. AND TUKEY, J. W. (1963). Analysis of residuals. Technometrics 5 141-160.
[4] BICKEL, P. J. (1975). One step Huber estimates in the linear model. J. Amer. Statist. Assoc. 70
428-434.
[56] BICKEL, P. J. (1978). Using residuals robustly I: Tests for heteroscedasticity, nonlinearity and
nonadditivity. Ann. Statist. 6 266-291.
[6] CHuUNG, K. L. (1974). A Course in Probability Theory. Academic, New York.
[7] CiBisov, D. M. (1973). Asymptotic expansions for Neyman’s C(a) test. In Proc. Second Japan-
USSR Symp. Probability. Springer Lecture Notes in Math. 330.
[8] HAJEK, J. (1970). Local asymptotic minimax and admissibility in estimation. Proc. 6th Berkeley
Symp. Math. Statist. Prob. 1. Univ. California, Berkeley.
[9] HAJEK, J. (1970). Limiting properties of likelihoods and inference. In Symposium on the
Foundations of Statistical Inference. (V. Godambe, ed.). Univ. Waterloo, Waterloo.
[10] HAJEK, J. AND SIDAK, Z. (1967). Theory of Rank Tests. Academic, New York.
[11] HUBER, P. J. (1973). Robust regression. Ann. Statist. 1 799-821.
[12] LE Cawm, L. (1956). On the asymptotic theory of estimation and testing hypotheses. In Proc. 3rd
Berkeley Symp. Math. Statist. Prob. 1 129-158. Univ. California, Berkeley.
[13] LE Cam, L. (1960). Locally Asymptotically Normal Families of Distributions. Univ. California,
Berkeley.
[14] LE Cawm, L. (1968). Theorie Asymptotique de la Decision Statistique. Univ. Montreal, Montreal.
[15] Roussas, G. (1972). Contiguity of Probability Measures: Some Applications in Statistics.
Cambridge Univ., Cambridge.
[16] WaLD, A. (1941). Asymptotically most powerful tests of statistical hypotheses. Ann. Math.
Statist. 12 1-19. ‘
[17] WALD, A. (1943). Tests of statistical hypotheses concerning several parameters when the number
of observations is large. Trans. Amer. Math. Soc. 54 426-482.
[18] WEiss, L. (1969). The asymptotic distribution of quantiles from mixed samples. Sankhya Ser. A
31 313-318.
[19] Yonar, V. AND MARONNA, R. (1979). Asymptotic behavior of M-estimates for the linear model.
Ann. Statist. T 258-268.

DEPARTMENT OF STATISTICS
UNIVERSITY OF MICHIGAN
1447 MasoN HALL

419 SOUTH STATE ST.

ANN ARBOR, MI 48109



