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ON THE COMPLETENESS OF THE CLASS OF FIXED SIZE SAMPLING
STRATEGIES

By H. STENGER AND S. GABLER

University of Mannheim

A sampling strategy consists of a sampling design and an estimator. Of
special importance are strategies combining simple random sampling with the
sample mean as an estimator. We consider this class of strategies and the smaller
class of strategies with simple random sampling of (almost) fixed sample size.

The convexity of the underlying loss function does not imply the completeness
of the smaller class. However the strict convexity of the loss function together
with the convexity of its second derivative, is sufficient for this completeness.

1. Introduction. Consider the class 7 of all sampling strategies (p, eo) where p denotes a
simple random sampling procedure and e, the sample mean. The restriction to .7 can be
justified by a modification of the minimax principle (see Wesler 1959). The only condition
needed is the convexity of the loss function (see Stenger 1979a). If the usual quadratic loss
function is adopted, the subclass 7, of all strategies, '(p, &) where p is of fixed size or nearly
50, in a sense to be defined, is complete in 7 (see Ramakrishnan 1969). We are interested in
general conditions sufficient for the completeness of Zoin J.

2. General definitions and notations. Consider a finite population consisting of N distin-
guishable units labelled i = 1, 2, - -., N. With each i is associated an unknown variate value
x,. X is the set of all possible parameters x = (x1, X2, -+ + Xn).

S is the set of all samples, i.e., the set of all nonempty subsets of {1, 2, - - - N'}. The size n(s)
of a sample s € S is the number of elements in s.

A function p on S is said to be a sampling design if

p)=0 forall s € S,

Ysesp(s) = 1.
We denote

Ysesn(s) p(s)

as the average sample size of p.

A function e: S X X — R depending on x € X only through x; (i € s) is called an estimator.
Of special importance as an estimator is the sample mean

1
e (s, X) = — Yies Xi.
0( ) n (S) Z\ze i

A strategy consists of a design p and an estimator e. If x € X is the true parameter and a is

our estimate, a loss L(x, a) arises. The risk function R is defined as

R(x; p, €) = Yses [L(X, e(s, X)) + cn(s)]p(s).

In this formula c is a positive constant denoting the cost of drawing one element from {1, 2,
- N}.

Received December 1979.

AMS 1970 subject classifications. Primary 62 D 05; secondary 62 C 07.

Key words and phrases. Finite population, simple random sampling and symmetric estimation, complete
classes, fixed size sampling strategies, loss functions.

229

@/:]
t
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @,g, )2

The Annals of Statistics. RIN®RY
WWW.jstor.org



230 H. STENGER AND S. GABLER

The strategy (p’, €') is better than the strategy (p, ej if
R(x;p, €)= R(x,p,e) forall xe X

with strict inequality for at least one x € X.
Let C and G be classes of strategies with Co C C. Co is said to be complete in C if for each
strategy (p, e) € C N Co there exists a strategy (p’, €') € C, which is better than (p, e).
3. Simple random sampling of almost fixed size. Form = 1,2, ... N we define
1
N
m

=0 for s € S with n(s) # m.

pm(s) = for s € S with n(s) = m,

Then p,, is a sampling design.

A sampling design p is called symmetric if it is a probability mixture of pi, p2, - -- pn.
Symmetry of p is therefore equivalent to the existence of a probability vector a =
(a1, @z, - -+ an) with

p) =Y~ aip(s) forallse€S.
The sampling design p = Y’ a;p, has the average sample size
Zfi] iai.
We associate with a the probability vector a* = (a¥, -- - a¥) by defining
af =1-Qjoy—[Tjyl)  fori=[} o],
= Yjoy = [Zjoy] fori=[¥jo] + 1,
=0 otherwise,

where [z] denotes the largest integer not exceeding z. It is easy to see that the symmetric
sampling design p* = Ya} p; has the same average sample size Y, ia, as p, and that p*(s) > 0,
p*(s’) > 0 implies | n(s) — n(s") | = L. If Yia, is an integer, m, we have p* = p,. Otherwise, p*
is a probability mixture of piy.q,; and pryia+1. When the sampling design p* is used, the sample
size n(s) does not vary more than is necessary to realize the average sample size Yo, of p.

We denote a symmetric sampling design p as simple random sampling of almost fixed size
if p* = p.

4. A completeness theorem. Let us define
I = {(p, @) : p symmetric},
Jo={(p, @):p* =p}.
If
L(x, a) = Lox)(¥ — a)’

. . . _ 1 . .
with 1, strictly positive and x = i Y1 x, it can be shown (see Ramakrishnan 1969) that 7,

is complete in . For the quadratic loss function above, simple random sampling of almost
fixed size should therefore be used if e, has been accepted as an estimator and if only
symmetric designs are acceptable.

One might suppose that the same result holds for all loss functions L(x, a) convex in a. The
following example shows that this is not the case. For x € X = R*, let

L(x,a)=|x —a].



FIXED SIZE SAMPLING STRATEGIES 231

Then we have for x = (—¢, —¢, €, €) with e > 0

R(x; p1, @) =€ + c,

€
R(X; p2, @) = 3 + 2c,

R(x; ps, e) =§ + 3¢,

R(x; ps, &) = 4c.
The class Z, is given by
(Ap+(=A)p1:0=A=Li=123}
Consider the symmetric design p = % (p2 + p4). Clearly, p & Jo and

R(x; p, &) < R(x; Ap. + (1 = A\) pis1, €) fori=1,2
if € > 6c, and
R(x; p, e0) < R(X; Asps + (1 — As)ps, €0)
if € < 6¢. Thus, 95 is not complete in J.
We now give conditions sufficient for the completeness of o in 7.

THEOREM. Let L(x, a) be strictly convex in a € I, I an open interval. Let the second partial
derivative 8°L(x, a)/da” of the loss function L exist for a € I. Suppose further that this derivative
is convex and that X C I~. Then 7, is complete in .

REMARK 1. Let X be any subset of RY and
L(x, a) = 1o x)(x — a)* kEN
with 1, strictly positive. Clearly, L(x, a) is strictly convex and

°L(x, a)

7 1o (x) 2k(2k — 1) (x — a)**?

is convex. Then the theorem implies the completeness of Jp in J.

REMARK 2. Let X be any subset of RY = {x € R": x, > 0}. For this case Stenger (1979b)
proposed to use the loss function

L(x, @) = 1o(x) <f_ —1-log f_)
x X
with 1o(x) strictly positive. As

TLED o

is positive and convex in a the completeness of J; in 7 follows.
Furthermore, we have for all x € X and A # 1
R(x; p, @) < R(x; p, Aeo }
if p is any symmetric design (see Stenger (1979b)). I, therefore is complete even in the class

T = {(p, Aey) : p symmetric, A > 0}.

5. Proof of the theorem. We denote the real sequence ki, hs, . .., hy as strictly convex if
fork=2,...,N—1

20y < hp—1 + hrsr.
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LEMMA 1. Let hy, ho, ..., hn be a strictly convex sequence and a = (a1, oz, -++ an) a
probability vector. Then :

€)) SVajhi =¥V af .
Equality holds if and only if a = a*.

PRrROOF OF LEMMA 1.  a* = a clearly implies equality in (1). If a* # «, we have ay < 1 and
io=[¥Vjul€ (1,2, --- N—1}. As hy, hs, ..., hy is a strictly convex sequence, we derive
©)) he > hig + (Buger — R )i — o)

for i # io, i + 1. Multiplication of both sides of (2) by «; and the subsequent summation over
i yields
Zfl a, hj > lev at hy.

LemMA 2. Let (a, b) be an open interval and f: (a, b) — R a strictly convex function with f”

convex. Then
1
N
i

is a strictly convex sequence for all x,, x2, ..., xy with x; € (a, b) and for all integers N = 3
unless X1 = xg = +++ = Xn.

ﬁ = 23:n(s)=z f(eO(s, X)), i= 1, 2, oo, N

The proof of lemma 2 is given by Gabler (1979).
We now prove the theorem. For p = ¥{ a; p; and x € X with x; = x, = « - . = xy we clearly
have
R(x; p, e0) = R(x; p*, eo).

If x € X implies x; = x; = - - - = xy, the theorem is true as the strategy (p1, €2) € o is better
than any other strategy in . Now let x be an element of X for which x; = x; = .-+ = xn is
not true and let L be a loss function satisfying the conditions of our theorem. From Lemma
2 it follows that

1
li = Zs:n(s)=l L(X, eo(S, X)), i= l’ 2’ Tt N
N
i
is a strictly convex sequence. We conclude therefore
Yal, > arl,
for p = ¥V a,p; with p*  p. The last inequality yields
R(x; p, @) > R(x, p*, eo)

and the theorem is proved.
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