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THE ORDER OF THE NORMAL APPROXIMATION FOR A
STUDENTIZED U-STATISTIC

By HERMAN CALLAERT AND NOEL VERAVERBEKE

Limburgs Universitair Centrum, Belgium

Let Uy be a one sample U-statistic with kernel A of degree two, such that
Eh(X,, X;) = % and Var E[h( Xy, X2)| X1] > 0. It is shown that for a studentized
U-statistic sup.| P(N"2S¥' (Un — #) < x) — ®(x) | = O(N""?) as N — o, where
NS,k =4N(N — (N — 2) 23N, [(N = 1) 3, A(X,, X,) — Un]? is the
jackknife estimator of Var Uy. The condition needed to obtain this order bound
is the existence of the 4.5th absolute moment of the kernel h. As in Helmers’
Ph.D. thesis on linear combinations of order statistics, the analogous result for a
studentized sum of i.i.d. random variables arises as a special case.

1. Introduction. Let X;, X, ..., Xy, N = 2, be i.i.d. random variables with common
distribution function F. Let A(x, y) be a real-valued function, symmetric in its arguments, and
with Eh( X1, Xz) = 9. Define a U-statistic by

-1
N
UN = <2> 21<z<j<N h(Xn AX})

and suppose that g(X1) = E[h( X1, Xz) — & | X1] has a positive variance oZ. Then it is known
that the distribution function (df) of (Var Un)™"? (Un — ©) converges, for N — o, to the
standard normal df @ if Er*(X:, Xz) < o (Hoeffding (1948)). Further, the rate of this
convergence to normality has been found to be O(N ") if E| h(X1, Xz)|* < oo (Callaert and
Janssen (1978)) or, more sharply, if E| g(X,) |* < « and E| A(Xi1, Xz) | < o (Helmers and van
Zwet [6]). Further, if the variance of Uy is unknown, let us denote the jackknife estimator of
Var Uy by N™'S% (for information on jackknifing variances in general, see, e.g., Miller (1968)).
Then the df of the studentized U-statistic N*Sy'(Uy — 9) tends asymptotically to @ if
ER*(X1, X2) < o (Arvesen (1969)). In the present paper the rate of convergence to normality
is studied for this studentized U-statistic. Our study is inspired by part of the Ph.D. thesis of
Helmers (1978) where an analogous result is found for linear combinations of order statistics.

2. Preliminary results. For ease of notation we will write from now on Y., Y.<; and
B for YN, Yi<igen and Yicicj<niixk j<x. We also systematically consider the
U-statistic centered at its mean . Further, let

Uy =3io E(Un = 8 X) = (2/N) Zi% g(X)
be the projection of the U-statistic, and let

(Un =) = Un = (;V) Sio [h(X, X)) = = g(X) = g(X)] = (2’ ) Zo 9( X X)

be its orthogonal complement. Note that Uy is a sum of i.i.d random variables with zero mean
and that (Uy — #) — Uy is a sum of uncorrelated random variables with Eg( X1, X;) = 0 and
also E[@(X1, Xz2)| X1] = 0. For the variance one has

Var Uy = Var Uy + Var (Ux — Un)

QY] 462 !
=—]‘:,—g+(1;> Ee¥( Xy, Xe).
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The following lemmas will be used frequently.

LEMMA 1. Let
-1
N
Uy = <2) ZKJ h(X., X;)

be a U-statistic with Eh(X,, X;) = §. Then, for any r = 1, v, = E|h(X1, X2) — | < o0 implies
that E|g(X1)|” < vr and E| (X1, X2)|" < 37v,.

PrROOF. Since g(X,) = E[h(X1, X2) — #| Xi1], an application of Jensen’s inequality for
conditional expectations yields E| g(X1)|" < »,. Further, using E| }¥1 Z,|"< N"' iy E| Z: |
for = 1, one obtains for g(Xi, Xz) = A(X1, X2) — & — g(X1) — g(Xz) that E| (X1, X2)|" <
3%,.

Note that, by Holder’s inequality, ». < » also assures the existence of mixed moments, such
as E| g°(X1)¢'(X1, Xz) | and E| ¢°(X1, X2)@'( X1, X2) | whenever s + <.

LEMMA 2. Let

Uy = (;V) S h( X,y X))

be a U-statistic with Eh(X1, Xz) = & and v, = E| h(X1, Xz) — ®|” < o for r = 1. Then E| Un
—&|"< Cv,N~* where Cisaconstant,s=r— 1 for | <r<2,ands= r/2 forr=2.

PrOOF. Since
2 AN
Un—# =25 g(X) + (2) L 9(Xi> Xp),

one has
Q) E|Uv—9"<2VE2NT' I g(X)|" + 27 E[NT(N = )7 B Tk (X X) |7

We first consider the case 1 <r=<2.
Application of a theorem of von Bahr and Esseén (1965) yields

) E|2N7'YN, g(X)|" <2 E|g(X1)|" N'™".
Further

E|NTYE (N = 1) S o(Xi, X)I'< N7V XX EN = D)7 2 jmi 9( Xy X))
4
=N TLEE((N = 1) Zm (X, X) |7 X0)]
where, given X;, Y= @(X:, X,) is a sum of i.i.d random variables with zero mean. Hence,
using again the von Bahr and Esseén theorem, one has

E[E(|(N = 1) ¥m o(X, X)|" X)]
5)
< 2N - D" E|lp(X, Xo)I"< 2'N'7" E|p(X1, X2)|".

Applying Lemma 1 and combining (2), (3), (4) and (5), the lemma is proved for 1 <r =< 2.
If r = 2, a result by Chung (1951) together with (4) yield

©6) E|2N7' SN, g(X)| < CE|g(X)| N> < C». N~
and
0] EINYN =17 I Tm@( X, X)|"< G, N7

Hence, from (2), (6) and (7), the lemma holds for r = 2.
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LEMMA 3. Let

Un= (f; ) Sencxx)

bea U-stattstzc with Eh( X1, X;) = & and such that g(Xl) = E[h(X1, X2) — 9| X1] has a positive
variance o. If E| g(X,)|> <  and E| h( X1, Xz) | < oo then, for N — o,

®) sup:| P(N'2 705 (Uy — 9) < x) — ®(x)| = O(N?).

ProoF. The lemma relies on the proof of the theorem in Callaert and Janssen (1978), where,
putting ¢ = 0, it is shown that for vs = E|h(X1, X2)|® < o, sup.| P(NYR2 0z Un < x) —
D(x)| < Crsoz®N~2 for N = 2 and C an absolute constant. Recently Helmers and van Zwet
[6] were able to refine the condition »3 < ® by imposing E| g(X,) |* <  and E|h(X:, X3)|?
< 0,

It should be noted that (8) also applies if 20,N ~'/* is replaced by (Var Uy)"? giving the
exact standardization. In this paper, however, we will use the fact that a standardization by the
variance of the projection of the U-statistic also yields the right order bound, as written in (8).

3. Main result.

THEOREM. Let

Ux = (;V) Yo h(X,, X))

be a U-statistic with Eh(X., X;) = & and such that o3 > 0. If E| h(X,, Xz) |** < oo then for N

supx| P(NV2Si(Uy — 9) < x) — D(x)| = O(N~2),
where
9 Sh=4N-D(N=2)2 SN [(N—= 1) S, h(X,, X,) — UnT>

Before proceeding to the proof we give some comments on the variance estimator. Note that
N~'S% is nothing but the jackknife estimator of Var Uy, i.e., S% is the sample variance of the
pseudo -values” §, = NUy — (N — 1)Uk, with Uly_, the statistic based upon X, .o, X,
Xi+1, ..., Xn. As shown in (A9) of the appendix ES% = 402 + 4(N 2)™! E¢*(X1, Xz) and
hence, S ~ is not an unbiased estimator of N Var Un. However S% does have the following
desirable properties:

(i) for any sample size, S¥ is nonnegative,

(it) for U—statlstlcs with vamshmg orthogonal complement, S% equals 4N - D' YR,
[g(X)— N2 g( Xk)] in compliance with the classical theory for i.i.d. random vanables
Note that, 1f Un=2N"" Y g(X.), then N*2S3! (Un — 9) becomes the well-known z-statistic
for which our theorem sharpens the moment conditions of Chung’s result (1946).

Another way for arriving at (9) consists in considering (8) of Lemma 3 and notmg that
40% N7'is the variance of 2N YN, g(X.). Hence one might start with 4N — 1)™' ¥V, [g(X,)
— N7' ¥ g(X»)]? as an estimator for 40%. However, the kernel h(x, y) is the only function
one really knows since, the underlying distribution F being unavailable, the function g(x)
cannot be computed explicitly. Therefore, based upon the fact that g(x) + &= [ h(x, y) dF(y)
and replacmg F by the empmcal distribution function Fy, one arrives at precisely the same
expression for S¥ as given in (9).

Essentially, S% has the structure 402 + Ty + Ry where Ty equals 1/N times a sum of i.i.d
random variables with zero mean and involving no higher than second moments of the kernel
h, and Ry is a quantity which is O(N~"?/In N) except on a set of probability O(N~'/2). As will
be seen from the proof of the theorem, any other proposal for % which has the just mentioned
structure and which does not violate the imposed 4.5th moment condition, will lead to the
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right order bound for the studentized U-statistic. In this context, we constructed several other
estimators for N Var Uy or for 402 in order to reduce or even to eliminate the bias of our
proposal. All of them resulted in variance estimators which for finite sample sizes could be
negative with positive probability. We illustrate this by just one example: the U-statistic
estimator of 402 = [[[[ h(x, WLhx, 2) — h(z, w)] dF(x) dF(y) dF(z) dF(u) leads to the
following proposal (the kernel can easily be symmetrized)

* — 4 N . . . e -
SN = N(N — 1)(N — 2)(N — 3) Zz=1 Zj#t Ek#t,j Zm;‘l,],k h(Xn X;)[h(Xl, Xk) h(Xk, Xm)]

which is an unbiased estimator for 46 but with the undesirable property mentioned above.

4. Proof of the theorem. The main idea of the proof consists in writing
NY2(Un—9) _ NY¥(Un—9)
SN 20g

20, SN

and using a stochastic expansion for 20,3 .

From (A8) and the fact that (1 + x)™2 =1 — % x +O(x?) as x — 0, it follows that
20,8y = 1 — %0z°Tn + Ry, where Ry = O(N™?/In N) except on a set with probability
O(N7'/?) as N — . Indeed, Ry = —%0z> Ry + O(Tn + Ry)? which is O(N~'/2/In N) because
of (A10) and (A11). Hence, except on a set with probability O(N"/?) as N — oo, we may work
with Wy = NY227 671Uy — 9)(1 — %o72Ty) instead of S¥'N(Uy — 9) since

P[| N2 6 (Un — )Ry | = N7/%]
< P[|Rn| = N"V*/In N] + P[|NV2 7%, (Uy — )| = In N]
< O(N7 V%) + 2[1 — ®(In N)] as N — , using Lemma 3.

Writing Wy as

-1
Zo/ [% S g(X) + (2’ ) Sees 9(Xe Xj)] [1 —gor 3 I X, )]
and working this out, we obtain the following decomposition:

1/2

20,

(10) Wy =

U:, + Zn + Zne + Zns,

where

2 - 1 -1
Uy =5 g(X) + (’;’ ) Siss {q,(x,, X) =g o7 T [gOXfX) + g(Xj)f(Xi)]}

1 1
Zm =% oz N~ Tk (g(X0) f(X:) — E[g(X) f(XD)]} — 3 o’ N2 E[g(X) f(X1)]

1 -1
Zne=—1g s N 1/2@,) Loy (X, K f(X) + f(X))]

Zns = _li 0 (N —2)N~ e le(X)[< l) Eltlm P(Xe, Xm)]'

We now show that, for i = 1, 2, 3, Zy, = O(N %) except on a set with probability
O(N™'?) as N — oo, The first term of Zy; and also Zx. can be considered as N~'/* times a U-
statistic with kernel having zero mean and finite absolute moment of order %. Hence the
Markov inequality together with Lemma 2 provide the desired order bound for Zy; and Zn;.

We point out that Zy; and Zy. are the only terms which require the full 4.5th moment
condition. A straightforward computation (see (A12)) shows that E(Z33) = O(N %) which is
sufficient for our purpose.
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The quantity U¥, in (10) is easily seen to be a U-statistic with kernel

1 ,N—1
8(X) + g(X) + (X, X)) =3 o ~— [8(X)f(X) + g(X) f(X:)]
having zero mean. Since its projection is 2N* ¥, g(X;), the first term in (10) is a properly
normalized U-statistic, to which Lemma 3 can be applied. Note that by the independence of
g(X;) and f(X;), no higher moment than Eh* is required here.
A classical argument finally yields

sup:| P(N2SN'(Un — 9) < x) — ®(x)| < sup:| P(NV?27'0,' U} < x)
—®(x)|+ O(N2) = O(N*)as N — .

5. Remark. From the proof of the theorem and the computations in the appendix, it is
seen that one arrives at the desired result by almost exclusively using decompositions and
order bounds of quantities which have the structure of a U-statistic. We therefore conjecture
that the theorem, formulated in this paper for a one sample U-statistic of degree two, is also
valid for multisample U-statistics of arbitrary order. As a hint we refer to the method of proof
for the Berry-Esseén theorem of general U-statistics as worked out in the Ph.D. thesis of
Janssen (1978). The computations, however, might be rather involved.

APPENDIX

We draw special attention to the second term in (1) which shows that for the orthogonal
complement of a U-statistic
2

(Al) E[(g) i< p(Xi, Xj):l = O(Nfz) as N — oo,

Also note that if k is any integrable function such that E| k¢ | < o, then for any i
(A2) E[k(X:)o(X1, X2)] =0,

either by E{k(X:)E[@(X1, X2)| X1]} = 0 or by independence and Ep(X:, X2) = 0.
We now construct a decomposition of S%. Remarking that N' ¥, [(N — 1)7! ¥jmi (h( X,
X;) — #)] = Uy — &, we can write (9) as

_ 8
S (N-D(N-2)

S

s {Yics (h(Xi, X)) — O)
(A3)
+ SN S (X1, Xr) — O)(R(Xi, Xm) — 3)} — 4N(N — 1)(N — 2)*(Un — 9)".
Noting that (X, X;) — ¢ = g(X:) + g(X;) + o(X;, X;), we arrive at
Yio (h(Xi, Xj) = 97 = (N = 1) Tii g%(X) + Yi<) [28(X0) g (X))
(A4)
+2[g(X) + g(X)]e(X:, X)) + ¢°(Xi, X))
B (h(Xe, Xe) = D)X, X) = 0 = DD gy o
(AS) + (N —2) s 3g(X0)g(X)) + [g(Xi) + g(X)]e(Xi, X))}

+ YN T o( X, Xe)o(Xi, Xn) + 2 B0 g(Xi) Xk 9( Xk, Xm)
4 8
(Un — 0)2 = e N gZ(X,') + szj g(X)g(X))

4 2
+ MN=IY X< o(Xi, X))
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(A6) Yi< [8(X) + g(X)]p(X., X))

L1 g(X) YL, @( Xk, Xm).

M N¥ (N -1
M N*(N —1)

Inserting (A4), (AS) and (A6) into (A3) and introducing the function g(x) = [ g(»)e(x, y)
dF (y), we obtain

S¥ = 4ol
1 )
+ 5 i [4(8 (X)) = o) + 82(X))] (Tn)
- 4@) Yi<s 8(X)g(X)) (Rn1)
(A7) +4<g’> i< [(8(X) + g(X)p(Xi, X)) — £(X) — £(X)] (Rnz2)
8 _ -1
v P |:g(Xi) <N2 1) Y (X, Xm)] (Rws)
4 _ -1
+m N, |:<N2 1) Z}Jém (X, Xo)p( X, Xm)] (Rn4)
4AN(N-D[ (N 2
_(IV%Z)"’)[(Z) Li<i (X, X,)] (Rns)
aNn [N\ -
t—? <2> Yoy 9 (X, X)) (Rne)
or
(A8) S% =402+ Tn + Ry

where Ty = N ™' ¥L; f(X,) with f(X,) = 4(g*(X.) — 02) + 8g(X;) and Ry =Y, Rw;. Since
Eg(X1) = Eg(X1) = Ep(X1, Xz2) = 0 and using the independence and (A2) we arrive at

4
(A9) ES% =40% + ) E ¢*(Xi1, Xz).

We now show that
(A10) P(|Rn|= N7"2/In N) = O(N?) as N — 0,

imposing a no higher than fourth moment condition on the kernel 4. First remark that E(Rn,)
=0fori=1,2,3,4 We then apply (Al) to Ry: and Rn: directly and to Ry; after writing

64 IN-1\" ’
E(R%s) swzfil {EgQ(Xi)E[< 5 ) Sim (X, Xm)] .
To Rns we perform the same operation and, remarking that the summands in Y42, are
uncorrelated with mean zero, also find
E(R%:) = O(N % as N — .

That E| Rys| = O(N™?) is immediate from (A1) whereas E(R%s) < I6N% (N — 2)"*Eg*( Xy,
Xz) = O(N?). Hence, using Markov’s inequality we arrive at the desired order bound for Ry.
That

(ATD) P(T¥=N""%In N)= O(N"*)as N>
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relies on the fact that T consists of a sum of ii.d. random variables with Ef(X1) = 0. Using
(6) in the proof of Lemma 2 with » = 2 + 2¢ and 0 < € < %, one finds that E| Tn |*** <
C’N~'"< Hence, from Markov’s inequality for T% we obtain P(T% = N Y?/In N) <
C”"N~V2=<%In N)'*<. Note that, with 0 < e < %, the existence of E| h(X:, Xz)|*® suffices for
our proof. Finally we give a sketch of the proof that

(AL2) EZ%s = O(N?).
Write E(Z%s) = Y6 0z°(N — 2)2 N~ E(X, B,). Then, by independence,

-1 2
N EB}=YN, Ef"’(X,-)E[(Nz_ 1) o (X, Xm)] = 0N

using (Al). Further

zu<uE(Bqu)=(N > ‘) Suco ELFOX) T2, 9(Xay Xn) f(X0) B2 9K, X))

k<m

where

E[f(X)( Xz, X3) f(Xe)( X1, Xa)] = E[f(X)p(Xi, XO)]E[f(Xe)p (X, X3)] =0
by independence and (A2). And also

E[f(X)9(Xe, Xs) f(X2) (X3, X4)] = E[ f(X)]E[p(Xz, Xs)f( X )p(Xs, X4)] =0

since Ef(X1) = 0. Hence Yu<v E(BuB,) = O(N7").
Note that the nonzero terms, which necessarily are of the form E[ f( X1)p(Xz, X3) f(X2)p( X1,
X3)], do not involve moments of order higher than Eh* using Holder’s inequality and the

independence present.
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