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In the classical theory of competing risks (as well as in many reliability
models and incomplete data problems) it is assumed that (A1) the risks (i.e., the
random variables of interest) are independent and that (A2) death does not result
from simultaneous causes. Employing our probabilistic solution to a related
problem in probability modelling, we obtain strongly consistent estimators for
the unobservable marginal distributions of interest. These estimators are analo-
gous to those of Kaplan and Meier [J. Amer. Statist. Assoc. (1958) 63] and are
appropriate when the assumptions of independence and no simultaneous causes
of death [(Al) and (A2), above] fail to hold. We show how our methods can be
used to unify and simplify the nonparametric approach toward estimation in the
competing risks model. As a consequence we obtain an elementary proof of the
strong consistency of the Kaplan-Meier estimator. Our results extend and simplify
the work of Peterson [J. Amer. Statist. Assoc. (1977) 72] and Desu and Narula
[The Theory and Applications of Reliability, I (I. Shimi and C. P. Tsokos, eds.)
(1977)].

Introduction and summary. Langberg, Proschan, and Quinzi (1978) [hereafter referred to
as LPQ (1978)] show that under certain mild conditions it is possible to establish a particular
equivalence between an arbitrary system of dependent components and a system of independent
components. The two systems are equivalent in the sense that they possess (1) the same
distribution for the time to system failure and (2) the same probabilities of occurrence of each
failure pattern. In the case of a series system, (more generally, any coherent system), a
particular failure pattern occurs when the failure of that set of components coincides with the
failure of the system. The LPQ (1978) result, as well as the methods developed in this paper,
apply in at least three contexts of interest—(1) engineering or reliability models, (2) competing
risks models and (3) various models involving incomplete data.

In the classical theory of competing risks it is assumed that the causes act independently
and that death does not result from simultaneous causes. In Section 3 we describe the
competing risks model. We examine the classical assumptions and introduce the Kaplan-Meier
(1958) (K-M) estimator. Employing the LPQ (1978) result, we obtain in Section 4 strongly
consistent estimators for the unobservable marginal distributions of interest in the competing
risks model. These estimators are analogous to those of Kaplan and Meier (1958) and are
appropriate when the assumptions of independence and no simultaneous causes of death fail
to hold. We show how our methods can be used to unify and simplify the nonparametric
approach toward estimation in the competing risks model. As a consequence we obtain an
elementary proof of the strong consistency of the Kaplan-Meier estimator. Our results extend
and simplify the work of Desu and Narula (1977) and Peterson (1975, 1977). Section 5 consists
of proofs.

2. From a dependent model to an independent one. In this section we state for future
reference, the equivalence result of LPQ (1978).
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Let .# denote the collection of nonempty subsets of {1, ---, r}. Let T represent the vector
of component life lengths of an r-component system (r = 2) with life length 7. Let H be the
vector of component life lengths in a series system of (2" — 1) components with life length H,
where the coordinates of H are indexed lexicographically by I € .%. For I € 4, failure pattern
I occurs in the system with life length 7 (alternatively, H) if £(T) [alternatively, £*(H)] is I,
where

if r=T,foreachi€land7# T, foreachi & I
otherwise;

Ia
T) = g,

and

1, if Hr< H; foreach J # I
EH) = 4 i

,  otherwise.
The two systems are equivalent in life length and failure patterns [H =1pT] if
Q.1 P(H>1*H)=1)= P(r>1,£T) =)

for each 1 = 0 and every I € % In general, for a life length S with distribution function K let
K(s) = P(S > s) denote the corresponding survival probability and let a(K) = sup {s: K(s) >
0}. LPQ (1978) prove the following:

THEOREM 2.1. Let 7 = min(T,, | =i = r) denote the life length of an r-component series
system, where T, represents the life length of component i, i = 1, - - -, r. Define F(1, I) = P(t >
LED =D Pr=t, &M =I1),I€S4Ft)=1-Yre,FtI),and F{t)=1— F().

Then the following statements hold.

(i) A necessary and sufficient condition for the existence of a set of independent random
variables { Hy, I € 5} which satisfy H=1p T, where H = min(H;, I € .9), is that the functions
F(-, I), I € 4 have no common discontinuities in the interval [0, a( F)).

(it) The random variables {H;, I € #} in (i) have corresponding survival probabilities
(G1(+), I € %} which are uniquely determined on the interval [0, a( F)] as follows:

2.2) Gi(t) = [Ja=t [F_'(a)/F(a‘)]exp[ - J' (dF€(-, I)/F)], 0=<t=a(F),
0

where F€(-, I) is the continuous part of F(-, I), the product is over the set of discontinuities {a}
of F(-, I), I € 4, and the product over an empty set is defined as unity.

REMARK 2.2. Formula (2.2) is defined in LPQ (1978) for ¢ in the half-open interval [0,
a( F)). The present formulation is, however, equivalent.

REMARK 2.3, LPQ (1978) show that if the original system is such that P(7, = T;) = 0 for
i#jand P(r = 1T,) > 0,1 =i=<r, then the original system is equivalent in life length and
failure patterns to a system involving the same number r of independent random variables
{({H,l=i=<r}.

REMARK 2.4. Suppose that the original vector T in Theorem 2.1 is itself a vector of
independent random variables and the functions F(-, I), I € .% have no common discon-
tinuities. Then it is not difficult to show that T itself is a unique solution to the equation
H=pT.

3. The independent competing risks model: The Kaplan-Meier estimator. Let there be a
finite number of causes of death labelled 1, - . - , r. We associate with each cause j a nonnegative
random variable 7;, j= 1, - ., r. The random variable 7, represents the age at death if cause
J were the only cause present in the environment. In a reliability setting 7, denotes the life
length of component j in a series system of » components. In an incomplete or censored data
problem, one of the random variables 7, represents the time at which an individual becomes
“unobservable” for a reason other than death, while the remaining variables typically represent
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various causes of death. The complete collection of random variables T4, ---, 7, is not
observed. Instead, only two quantities are observed: the age at death given by T = min(7},

, T.) and the cause of death, labeled £, given by I € £ such that {(7) = I. When death
results from exactly one of the r possible causes, as is usually assumed, then £ is the index i for
which 7 = T;. The biomedical researcher is interested in making inferences about unobservable
quantities (viz., the random variables 71, - - -, T,) by using data from observable quantities—
in this case, the lifetime 7 and the cause of death £ In particular, he seeks to estimate the
marginal survival probability corresponding to a given cause (or combination of causes)
operating alone without competition from the other causes. That is, he wishes to estimate the
2" — 1 survival probabilities

M,(t) = Plmin(T}, jE J) > t], JE 4.

In analyzing competing risk data, various authors typically assume one or more of the
following:

(Al) Ty, - -+, T, are mutually independent.

(A2) Death does not result from simultaneous causes. [Consequently, P(T, = T;) = 0 for i

#J1
(A3) The distributions of T}, - - -, T, have no common discontinuities.
(A4) The joint distribution of T4, -- -, T, is absolutely continuous.

For many years there have been several approaches to problems of estimation in competing
risk theory which employ, in varying degrees, the above assumptions. For example, the
assumption of independence (Al) was until recently almost universally made even though it
is obviously inappropriate in many problems. Moreover, assumptions (A2) through (A4) need
not hold in certain situations of interest. For example, in engineering systems where system
failure can occur as a result of the simultaneous failure of two (or more) components,
assumptions (A2) and (A4) do not hold. Assuming (Al), (A2) and (A3), Peterson (1975, 1977)
shows how the Kaplan-Meier estimator may be expressed as a function of the empirical
counterparts of the functions F(-, I'), I € 4 in Theorem 2.1. He thus indicates a way to obtain
strong consistency of the estimator when T is a vector of random variables. In this paper we
show how Theorem 2.1 can be used to estimate the marginal distributions of interest in a
unified way without making any of the assumptions (A2), (A3), or (A4). Moreover, we are
able to drop the assumption of independence (A1) and find necessary and sufficient conditions
for the existence of consistent estimators for the marginal distributions of interest. Peterson
(1975) also considers the case of dependent risks. In Section 4 we show how our methods
extend and simplify those of Peterson.

Let T;= (T, +++, Tn),i=1, ..+, n, represent a random sample from the joint distribution
of the nonnegative random variables 71, - - -, T,. Denote the marginal distributions (survival
probabilities) of Ty, «--, T, by My(M,),i=1, ---, r. For each I € .4, let M(t) = P(1 < 1),
where 7; = min(T,, i € I'). Assume (Al), (A2), and (A3). Then the cause of death £&(T) = i if
and only if 7, < T, foreach j i, 1 =i, j<r. Foreachi= 1, - .-, n only 7, and £ are observed,
where 7, = min(T, - - -, T») and § = j whenever 7, = T},. Consider the case r = 2 and suppose
we seek to estimate the marginal survival probability M,(t) = P(T: > 1). Let 0 = 1) < 7y <

+ = 7(» denote the ordered values of the observations 71, - -+, 7,. Then the Kaplan-Meier
product-limit estimator (hereafter referred to simply as the K-M estimator) of M (¢) is

G.D) M) =TI [(n = D)/(n— i + D],

where the product is over the ranks i of those ordered observations 7(;, 1 < i < n, such that
Tw) =t < 7(» and 7, corresponds to a death from cause 1 [r,) = Ty, for some j]. If 7(,
corresponds to a death from cause 1, then M(¢) is defined to be zero for ¢t > 7(,). Otherwise,
M (t) is undefined for ¢ > 7(,. [In the original formulation by Kaplan and Meier (1958), T}
corresponded to the time until death, while T’ represented the time at which a loss occurred. ]

Peterson (1975) considers the following straightforward extension of (3. 1) for the survival
probabilities M ;(t), J € #. The (extended) K-M estimator M ; is given by

(3-2) M) =L [(n = /(n = i + D],
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where now the product is over the ranks i of those ordered observations ;) such that 74 < ¢
< 7 and 7, corresponds to a death from at least one cause j € J. Conventions analogous to
those used in defining (3.1) also hold in (3.2) when ¢ > 7).

Assuming independence (Al), no simultaneous causes of death (A2), and disjoint sets of
discontinuities for the marginal distributions (A3), Peterson (1977) indicates a way to obtain
strong consistency of the K-M estimator (3.1). Breslow and Crowley (1974) and Meier (1975)
show that the estimator is asymptotically normal and, as a process in ¢, converges to a normal
process. More recently, Aalen (1976) shows that the bivariate vector of K-M estimators (1 —
M (t1), 1 — M(t2)) is asymptotically bivariate normal, and that, regarded as a bivariate
process in ¢; and ¢, converges to a normal process. Estimators analogous to (3.1) and (3.2) are
proposed in the next section by using formula (2.2) of Theorem 2.1. Such extensions will apply
in situations where the assumptions of independence (Al) and in simultaneous causes of death
(A2) fail to hold.

4. The dependent case. In this section, unless otherwise indicated, we drop the assumption
(A1) of independent risks. By replacing F(f) and F(z, i) in (2.2) with their empirical counter-
parts, we can estimate the distributions Gy, associated with the unobservable variables Hy, I
€ 4. However, the distributions G differ, in general, from the marginal distributions M; which
we seek to estimate. But suppose for a moment that T, - .., T, are, in fact, independent and
that

(A3) The functions F(-, I), I € .4, in Theorem 2.1 have no common discontinuities. In this
case a simple relationship holds between the functions M; and the survival functions Gr in
(2.2). For by Remark 2.4, G;= M,,i =1, - -, r. Consequently,

4.1 M(t) = [Tier Mo(t) = [Ler G2)

for every ¢ € [0, o F)]. In the case r = 2, if we replace the functions F(f) and F(z, 1) on the
right in (2.2) by their empirical counterparts, then the resulting statistic is the K-M estimator
(3.1) of P(Ty > t). In view of (4.1), if r is an arbitrary integer greater than 2, a reasonable
estimator for M ;(¢) ought to be [] Gi(¢), where the product is over i € I and G, is the function
resulting from (2.2) by replacing the functions F and F(-, /) with their empirical counterparts,
i=1, ..., r Again, it is easy to show that the resulting statistic is, in fact, the (generalized) K-
M estimator (3.2) for M ((¢). Thus, in the case of independent risks, (2.2) leads directly to well-
known estimators possessing several optimal properties. It is therefore reasonable to expect
that (2.2) also plays a role in the estimation problem when the risks are mutually dependent.
This is, indeed the case.

THEOREM 4.1.  [Peterson (1975)]. Let T, - - -, T, be nonnegative random variables satisfying
(A2) and (A3) [but not necessarily (Al)]. Let 2 be a partition of {1, - - -, r} and define G;, 1 =
i <r, asin (2.2). Then for each t € [0, o F)],

(4.2a) Mi(t) =[lies G(t)  foreachI € 2
if and only if .
(4.2b) Pr>t&T)CI)= f M (x) dMi(x)  for each I € 2,

where I’ denotes the complement of I € 4.

Peterson (1975) uses an operator defined on a space of distribution functions to prove an
equivalent version of Theorem 4.1. Employing Theorem 2.1, we give a proof which is
considerably simpler. The following notation and lemma are useful in interpreting (4.2a, b).

Let {T:, 1 =i=<r} and {T¥, | =i=r} be two collections of random variables. For each
function f of the random variables 77, - - -, T;, let f* denote the value of the same function of
T%, ---, T} . For each set I belonging to a partition Zof {1, .- -, r}, define Fut, I)= P(r>
t, &(T) € I). On the right in (2.2), replace F(t, I) by F,(t, I) and call the resulting expression
Gr, »(2).
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The following simple lemma is useful in proving Theorem 4.1:

LEMMA 4.2.  Assume the hypothesis of Theorem 4.1. Let T, - - -, T, be independent random
variables such that 7¥ and t; have the same distribution (i.e., Mf = M) for each I € P. Then
(4.2a) is equivalent to

(4.3a) G¥»=Gr» foreach I€E 2,
and (4.2b) is equivalent to
(4.3b) Fy(t, )=F% (t,I) foreach I€ 2.

PrOOF. By (A2) and (A3), we have that M; and M, have no common discontinuities and
P(r1=14) =0 foreach I, J € ?, I # J. Since M; = M, we deduce that P(r¥ = r*) = 0 for
each I, J € 2, I # J. It follows from Remark 2.3 that if 2 has exactly k members,2 <k <r,
then each of the collections {r;, I € 2} and {7}, I € 2} has at most k occurring failure
patterns. By Remark 2.4,

(4.4) M¥* = G (= M)).
By (2.2) and the fact that F (¢, I) = Yier F(1, i),
(45) (_;[,30= HlEI G,.

A simple calculation shows that
(4.6) Fsa, 1= J M#(x) dM[(x).
t

The conclusion follows from (4.4), (4.5), and (4.6). O
We now give the following elementary proof of Theorem 4.1.

ProOF OF THEOREM 4.1. By Lemma 4.2, it is enough to show that (4.3a) holds if and only
if (4.3b) holds.
Suppose first that (4.3b) holds. Since

F(1)y=Yieo F»(t, I) and  F*(t) = Yies F*(t, I),

it follows from (2.2) that G; » = Gf ».
Conversely, suppose that (4.3a) holds. It follows from (2.2) that F = [] Gr»and F* = ]
G » where each product is over / € 2 Since

F?(LI):f (F/GLﬂ)dGI-”/’
t
and
F;(z,1)=f (F*/Gt») dGt»
t

for each I € 2, relation (4.3b) holds. O

One drawback of Peterson’s formulation is that the assumption of no simultaneous causes
of death (A2) does not hold, e.g., in an engineering system where system failure can occur as
a result of the simultaneous failure of two or more components. In Theorem 4.4 below we give
necessary and sufficient conditions for a functional relation to exist between the functions Gy
in (2.2) and the functions M; which we seek to estimate without assuming (A2). Our only
assumption is that the functions F(-, I), I € .4, have no common discontinuities in [0, a( F)]
[Assumption (A3)’]. Assumption (A3) implies (A3)’, but the converse does not hold.

Another disadvantage in Peterson’s (1975) approach is that in order to establish a relation
between the function M, for an individual subset J of {1, ..., r} and the functions G;, I €
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#, in (2.2), he requires that (4.2b) hold simultaneously for each set I in a partition 2 of
{1, - .., r} which contains J. In general, it is not difficult to construct joint distributions which
satisfy none of the conditions in (4.2b) yet for which ar least one relationship exists between the
function M, and the survival probabilities Gy, I € 4.

EXAMPLE4.3.  Let the discrete random vector (7}, T>) have a joint probability distribution
as given in Table 4.1. A simple calculation verifies that G given by (2.2) equals /75, but G,
5% M,. Furthermore, neither of the conditions (4.2b) is satisfied. Thus, Theorem 4.1 above is
not applicable in this simple example. We will show, however, that our generalization of
Theorem 4.1 (Theorem 4.4 below) does apply here. Before we state Theorem 4.4, we introduce
the following notation. Let ;= { J € #:J n I # ¢} and F(t, #1) = P(1 > 1, &T) € 4;). Thus,
F(t, #1) =Y P(r>1,&T)=J)=Y F(t,J), where each sum is over J € .#;. For each function
G, let D(G) [C(G)] denote the set of discontinuities (continuities) of G. For simplicity of
notation let D[ F(-, I)] = D(I) and let C[ F(-, I)] = C(I) for I € 4.

TABLE 4.1
Distribution of (T, Ty)
T\T, 2 4 6
1 1/24 1/8 1/12
3 1/12 1/16 0
5 1/6 1/6 1/6

Theorem 4.4 below resembles Theorem 4.1 in that we find necessary and sufficient
conditions for a relationship to exist between the functions M 1, I € 4, and the survival
probabilities Gy, I € %, given by (2.2). It generalizes Theorem 4.1 in the following ways. First,
the assumption (A2) of no simultaneous causes of death is dropped. Secondly, we assume a
weaker version of assumption (A3), namely the assumption (A3)’ that the functions F(-, I), I
€ 4, have no common discontinuities.

TuEOREM 4.4. Let Ty, -- -, T, be nonnegative random variables satisfying (A3). Let I €
4. Then for each t € [0, a( F)],

4.7 M (1) = [ve 5,Gs(0)

if and only if the following two conditions hold:

(4.8) Mi(@)/Mi(@™) = F(a)/F(@), a€ D(F(-,51)
=1, otherwise

and

(48b) P(71'2t|7‘1=t)=P(’r1'>t|"r]>t),

where G is given by (2.2).
The proof of Theorem 4.4 is given in Section 5.

REMARK 4.5. Suppose that the random variables r; = min(7,, i € I), I € 4, have
absolutely continuous distributions. Let m;(t)[ M(¢)] and my, 1 (t) M1 1-(1)] denote respectively
the density (distribution) function and conditional density (distribution) function of r; and of
77 given 71 > t. Then condition (4.8b) is equivalent to

mnr(t)/Mnr(t) = mi(t)/ Mi(2).

In other words, the conditional failure rate function of 7; given 7p > t is equal to the
(unconditional) failure rate function of ;. Stated differently, the random variables 7; and ;-
are independent “along the diagonal r; = 7,””. Desu and Narula (1977) arrive at a condition
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similar to (4.8b) in the special case when the assumption of absolute continuity (A4) [and
hence also (A2)] holds.

Note that conditions (4.8a, b), in contrast to (4.2b), apply to only one subset I € £at a time.
Consequently, we can proceed in Example 4.3 as follows. It is easy to verify that conditions
(4.8a, b) hold. Since G(; 2 = 1, it follows from Theorem 4.4 that M; = G,.

We have previously remarked that the assumption (A2) of no simultaneous causes of death
is unrealistic in certain models of interest. An important family of multivariate distributions
for which assumption (A2) fails is the family of multivariate exponential (MVE) distributions
of Marshall and Olkin (1967). We illustrate with an example.

ExaMPLE 4.6. For simplicity, suppose that the random vector (T}, T:) has the Marshall-
Olkin bivariate exponential distribution with survival probability:

P(Tl >, T, > t2) = exp[_)\ltl - >\2t2 — )\12 max(tl, tz)],

for #1, 2= 0 and Ay, A2, A2 > 0. Since the marginal distributions M, and M are continuous,
condition (4.8a) trivially holds. Condition (4.8b) with I = {1} states that

P(To=t|Tv=t)=P(T>>t|T. >1).

An easy computation shows that these conditional probabilities are each equal to exp(—A2?).
Thus, Theorem 4.4 may be applied when the joint distribution belongs to the family of
Marshall-Olkin MVE distributions, whereas Theorem 4.1 cannot be applied here since (A2)
fails.

In Section 3 we assumed that the risks were mutually independent (Al) and that the
functions F(-, I), I € 4, had no common discontinuities (A3)’. Under these assumptions the
basic formula (2.2) yielded the K-M estimators for the marginal distribution M; (r = 2) and
the functions M;, I € 4, (r = 2). In a similar fashion formula (2.2) (via Theorem 4.4) can be
used to determine strongly consistent estimators for the functions My, I € .4, in the important
practical cases when independence fails to hold and simultaneous causes of death are allowed.

The key tool we shall use in establishing consistent estimators for the marginal distributions
of interest is given in Theorem 4.7 below. First we introduce some notation. As above, T =
(T1, ---, T;) is a vector of nonnegative random variables, r = min(7}, | < j < r) represents
the life length of an individual exposed to r risks of death and ¢ represents the cause of death,
where £ = J if and only if r = T, for each j € J and 1 # T; for each j & J, J € #. For each I
€ fand Borel set 4, F(A, I) = P(r € 4, £ = I) taking liberties with the notation for F(-, I).
There exists, by Theorem 2.1, a collection {H;, I € #} of independent random variables such
that H==1p T, where H = min(H;, I € .#). Moreover, the probablllty Gi(t*) = P(Hr=t) may
be obtained from (2.2). Now let T; = (Ty,, -+, T)i=1,2,-..,bea sequence of nonnegative
random vectors (representing a sequence of individuals) and let 7, &, Fu(+, 1), Fi, D(I, i), C(I,
i), H1i, H,, and Gy, be the analogues of 7, £, F(-, I), F, D(I), C(I), Hr, H, and Gy above. Let
FC( F?) denote the continuous (discontinuous) part of F.

THEOREM 4.7.  Suppose the following conditions hold:

(i) For I # J, the pair { F(-, I), F(-, J)} as well as each pair { F.(-, I), Fi(-, J)},i=1, 2,
-, have no common discontinuities.

(ii)) For € Fand 0 < t < o F),

lim,—. F.({[0, t] n C(I)}, I) = FE([0, t], I).
(iii) For I € 4,
limy o SUpo=¢=a( 7y | Fu(([0, 1] N D)), I) — FP([0, ¢], I) | = 0.
(iv) im0 SUPo=r=ac ) | Fult) — F(1)| = 0.
Then for I € Fand 0 < t < o F),
4.9) limnow Gra(t%) = G1(t*).
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The proof of Theorem 4.7 is given in Section 5.

Consider now the estimation problem posed above. Let T, = (T, --+, Tn), i=1, ---, n,
be independent and identically distributed as T = (T4, ---, T,). Replace F(-, I) and F by
their empirical counterparts, F,(-, I) and £, respectively, on the right in (2.2), where

F"(t? I) = n_l Z?’"l X{TlSta gi = 1}7
E)=n?Yu x{r=1},

and x(A4) is th_e indicator function of the set 4. The resulting expression, call it 51,,,, is an
estimator for G;. Assume that T satisfies (4.8a, b). Then (4.7) holds. A natural estimator for
M (¢) in this case, then, is

(4.10) M1 (t) = [Lse 5, Ganlt).
Such an estimator will be strongly consistent if for every J € 4,
4.11) Gint*)— Gs(t) as.

To show that this is a simple consequence of Theorem 4.7, it suffices to verify conditions (i)
through (iv). Condition (i) holds trivially. Condition (ii) follows from the Strong Law of Large
Numbers. Condition (iv) is a consequence of the Glivenko-Cantelli theorem. Condition (iii)
follows from (iv) and the continuity of FC([0, t], I).

REMARK 4.8. Let0 =10 <711 < ..+ < 7(n) denote the ordered values of 71, + -+, 7,. In
analogy with the Kaplan-Meier estimator (3.2), the estimator (4.10) may be expressed as
follows:

@.12) M) =L [(n — /(n — i + D],

where the product is over the ranks i of those ordered observations 7(), 1 =i =< n, such that
Tw =t < T(n and 7, corresponds to a death from the simultaneous causes j € J, J € .4;. If for
some i, 7(ny = T}, for each j € J, J € S, then (4.12) is defined to be zero for t > 7(,). Otherwise,
(4.12) is undefined for ¢ > 7(,).

In view of Remark 4.8 and the preceding argument, we have proven:

THEOREM 4.9. In the competing risks model of Section 3, assume only that the functions
F(., 1), I € 4, have no common discontinuities, and the joint distribution of (T, - - -, T;) satisfies
(4.8a, b). Then the estimator (4.12) is strongly consistent for M.

REMARK 4.10. To show consistency of the K-M estimator in the independent case,
Peterson (1977) must rely on a property of an operator defined on a space of discrete
distribution functions (which he states without proof). If we assume that the risks are
independent and that assumption (A3)” holds, then by applying Theorem 4.7 above, as we did
in the dependent case, we have a proof of the consistency of the K-M estimator which is
considerably more elementary. '

5. Proofs. Before we give a proof of Theorem 4.4, we state two lemmas which are proven
in LPQ (1978).

LEMMA 5.1.  For every probability measure Q (with a possible atom at ) such that Q(07)
= 1, and every t = 0, the following holds:

.1 0@ = CXP[— f (d0°/ 0)+Mla=c [Q°(@)/ Q(a_)]],

where the product is over the set {a} of discontinuities of Q, and the product over an empty set is
defined to be 1.
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LEMMA 5.2. Let { Gy, I € ¥} be a collection of survival probabilities satisfying (2.2). Then
foreach I € #andt € [0, a F)),

Gi(1)/ Gi(t™) = F()/ F(t™),  t€ D(F(-, I))

=1 otherwise.

ProOF OF THEOREM 4.4. Suppose (4.8a, b) holds. By (4.8a),
5.2) D(F(-, #1)) = D(M;), I € 4.
For every Borel set B C [0, a( F)), F(B, #;) = P(t € B, {T) € 1)
=P(r1€E B, 1< 7r)

=f P(rr = u|mr = u) dM(u)
B

= f P(rr > u| 711> u) dM1(u) [by 4.8 b]
B

= f [ F(u)/ M1(u)] dM 1(w).
B

Thus, for every Borel set B C [0, a( F)),
(53 F(B, #1) = J { F(u)/ M1(w)} dM1(u).

B
Relations (5.2) and (5.3) together imply that
dF°u, #1)/dM§ = F(u)/ M1(u).
It follows by (4.8a) and by Lemma 5.1, that
[lses; Go(t) = [la x{a € DLE(-, #D] 0 [0, 1)] F(a)/ F(a")]

~exp{— f dFu, ﬂ;)/F(u)}
= [lo x{a € D(M1) 0 [0, t}[ M 1(a)/ M 1(a")]
~exp{— j dM?(u)/M,(u)} = M ().
0
Conversely, suppose (4.7) holds. By (2.2) and by Lemma 5.1,

[le x{a € D F(-, #D] n [0, t]}[F(fl)/F(a')]eXP{—f dF(u, fz)/F(u)}
(5.4) 0

t

= [l x[a € D(M1) n [0, t])[Mz(a)/Mz(a’)]CXP{— J' dMIC(u)/MI(u)} :

0

Letting ] denote the product over sets J € .#;, we have

Mi(a)/Mi(a™) =T1 [Gs(@)]/II[Gs(a)]
[Il F@)/F(a™)]l, a€D(F(-,J))
1 otherwise

F(a)/F@ ), a€D(F(-, %))
1 otherwise.

Irn

Irn

Thus, (4.8a) holds. Equation (4.8b) follows from (5.4) by cancellation. 0O
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Before we prove Theorem 4.7, we present two explanatory remarks and introduce some
notation.

REMARK 5.3.  Assumptions (i) and (ii) of Theorem 4.7 together imply that for I € .4,
lim, .o SUPosr=a(r) | Fo({t}, I) — F({t}, I)| = 0.
Remark 5.4. Remark 5.3 implies that
D(I) C Uy Ni=w DU, k) forall 1€ 5.

Let
] Bla(0) = Yaenn x{a € D(I, n) n [0, a( F)) N [0, 1)} -In[ F(a)/ Faa™)],
Bl(1) = Yuenwy x{a € [0, a( F)) 0 [0, 1)} -In[ F(a)/ F(a™)],
Bi(t) = Yeenum x{a € CU) N [0, a( Fn)) N [0, )} -In[ Fu(a)/ Fu(a™)]
- j x{u € C, n) n [0, a( Fr)} dFn(u, f)/F,,(u),
{0, &)
and

Bi(1) = —f x{u € C(I) 0 [0, a( F))} dF (u, I)/ F(u).
[0, &)

Note that for0<t< o F),I€E S andn=1,2, -..:
Gra(t*) = exp(Bia(t) + Bin(1)},
Gi(t*) = exp{Bi(1) + BL(1)},
[res Grn(tt) = Fa(t™),
[ies Gi(t*) = F(t).

Since F(1*) = limp—o Fr(t*) = limyoo [Jre5 Grn(t*) < [[1es lim supnoo Gia(t*), to prove
Theorem 4.7 it suffices to show that for an arbitrary subsequence {m} of {1, 2, ---}, I € 4,
and 0 =t< a F),

and that

(55 lim supp— Bim(?) < B (1), Jj=12

In the following three lemmas we prove (5.5).

LeEMMA 5.5.  Under assumptions (i)~(iv) of Theorem 4.7,
(5.6) a = lim infh, 0 Fr) = a( F).

Proor. It suffices to consider the case a < «. Let {m} be a subsequence of {1, 2, ---}
such that limm_. a( F) = a. By definition, F[a( Fr)] = 0. By (iv), limm—e Fla( Fm)] = 0.
Hence F(a) = 0. Consequently relation (5.6) follows from the definition of a( F).

In Lemmas 5.6 and 5.7 below, let {m} denote an arbitrary infinite subsequence of

{1,2, ---}.

LEMMA 5.6. Let us assume that assumptions (i)-(iv) of Theorem 4.7 hold. Then for all I €
Jand0=t=a(F),

lim supm— B (1) < Bi(2).

Proor. By Fatou’s Lemma,
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lim Supm— e B .(t) = Yeep lim supm. [x{a € DU, m) N
[0, a( F)) N [0, )} -In{ Fa(a)/ Fa(@ )} 1.

Consequently the result of the lemma follows by Remark 5.3, Lemma 5.5, and by Assumption
(iv) of Theorem 4.7. 0

LEMMA 5.7. Let us assume that assumptions (1)—(iv) of Theorem 4.7 hold. Then for all I €
Fand 0=t =< a( F),

lim supm—o Bhm(t) < BX?).
ProoOF.. By Assumption (i) of Theorem 4.7,
Yeenam x{a € C(I) 0 [0, a( Fn)) 0 [0, )} -In[ Fru(a)/ Frn(a™)]

=- f x{u € DI, m) n C(I)
[0,¢)

0 [0, a( Fu))} -1n[1 + Fu({u}, 1)/ Fu(w)] dFn(u, I)/ Fu({u}, I).
By Lemma 5.5,

Bl () = — J' x{u € CU)} dFm(u, 1)/ Fn(u)

[0, &

= f x{u € DU, m) n C(I)}
[0,¢)

{[In[1 + Fu({u}, )/ Fn@)]/ Fu({}, I)]=1/Fnu(u)} -dFn(u, I).

Consequently the result of the lemma follows by Assumptions (ii)-(iv) of Theorem 4.7 and the
Helly-Bray theorem. 0
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