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DATA-BASED OPTIMAL SMOOTHING OF ORTHOGONAL SERIES

1. Introduction and statement of results.

DENSITY ESTIMATES!

By GrRACE WAHBA

University of Wisconsin-Madison

Let f be a density possessing some smoothness properties and let X, ..., X,
be independent observations from f. Some desirable properties of orthogonal
series density estimates fy,,» of f of the form

Jama(t) =30 L

v=1 ‘(-1—_‘_—}\”2—,,‘)4#1;(1)

where {¢,} is an orthonormal sequence and f,, = (1/n)¥ ;=1 ¢.(X,) is an estimate
of f, = [ ¢.()f(¢) at, are discussed. The parameter A plays the role of a bandwidth
or “smoothing” parameter and m controls a “shape” factor. The major novel
result of this note is a simple method for estimating A (and m) from the data in
an objective manner, to minimize integrated mean square error. The results extend
to multivariate estimates.

possessing a Fourier series expansion

(1.1)

f(t) ~ l + E:c=—oo;v#0ﬁ¢ﬂ(t)

Let f be a square integrable density on [0, 1]

. [}
where ¢,(t) = e, It is desired to estimate f from n independent observations Xi, ---, X,

from the density f. Given a sequence b = (..., b_s, b_i, b1, b2,

-« +) of nonnegative real

numbers with b, = b_,, and Y, | b,| < oo the orthogonal series estimate f,,,b of f as considered
by Whittle [38], Kronmal and Tartar [15], Brunk [2], Fellner [7] and others can be written in
the form (n even)

(1.2)

where

and

Fun@ =1+, Ll 20}
bt~

E* = 2742—n/2,v#0

. 1
b= M 2r=1 03 (X).

This type of estimate can be motivated in several ways. Suppose the Fourier coefficients { f,}
of f have the “phoney” prior,

(1.3)

fo~ A0, b,), independent, v

(A is the complex normal distribution, see [12]). Then,

(1.4)

Ef, = f o()f () dt = f,
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and (by (4.2) below),
R | 2
s Elf=Bil* = (= |£]").

If one approximates (1/n)(1 — | £,|*) by 1/n and the distribution of £, by a (complex) normal
distribution, the posterior mean of f, given £, is

b, .
i/

b+~
n

Then f,,,b(t) of (1.2) can be viewed as a Bayesian estimate of f(¢) with the phoney prior on £{(t)
induced by (1.1) and (1.3). The prior is phoney because the sample functions are not required
to be nonnegative, although they do integrate to 1. Motivation as a smoothing spline estimate
will be discussed later.

Various specifications have been proposed in [2, 15, 26, 38] for the b = (- -+, b_s, b_1, by,
bs, --+) which determines the prior. In this note we propose a two parameter family of b’s,
namely, {b, = AQR#v)>™") v =%1,2, .-}, A =0, m > %. We will write the resulting estimate

as fn,)\,m,
o

(1.6) Saam(®) =1+ E*W%VL
where the factor 1/ has been absorbed into A. This family of estimates possess a wealth of
nice properties, which we shall demonstrate.

Firstly, from a Bayesian point of view, we shall show (trivially) that if two b’s have distinct
values of (A, m), their associated (infinite-dimensional) prior distributions are perpendicular;
furthermore, as A and m range over their permissible values, the class of all priors equivalent
to some member in the family of associated priors is exceedingly large. This supports the
argument that there is no need to go outside this family.

Secondly, leaving the Bayesian point of view and supposing f is a fixed density in the
space W™ (per) of periodic functions

Wi (per) = {f: £, f', +++, £V abs. cont., /™ € [0, 1],
fP0) =), r=0,1,---,m— 1},

where now m is a given fixed integer, it will follow easily that, if A = const. 772"+ then the
integrated mean square error E [§ [ fuma(f) — f(1)]? dt satisfies

EJ [frma(t) = (D1 dt = O(n~2m/@m+D),

This integrated mean square error convergence rate is slightly better than the optimal
achieveable mean square error at a point convergence rate for densities possessing the same
continuity conditions, (see [30]), and it appears that it cannot be substantially improved upon
uniformly for densities in W™ (per). (If m is not an integer, f € W™ (per) if Yo _o
@mv)*"|f.| < )

We view the above two properties, although important, as side issues. A major problem in
density estimation is to choose the smoothing parameter(s), which are a part of every density
estimate (see [30]), objectively from the data, to approximately minimize some optimality
criterion. Here the major smoothing parameter is A, and m is a secondary “shape” parameter—
we amplify this remark: let f.,0(?), be the “raw” orthogonal series estimate of f,

Jro®) =1+ 3, fou(0).

Then f, .1 may be viewed as the result of passing f, o through a low pass filter with frequency
response function ¥(») = 1/[1 + A(27v)*™)]. The parameter A controls the half power point
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of the filter (large A corresponds to “low-pass”), and m controls the “shape” (large m
corresponds to a steep roll off). The primary original contribution of this note is a simple
objective method for estimating from the data, the A and m which minimize integrated mean
square error.

Woodroofe [39] provides an objective, iterative procedure for choosing the smoothing
parameter in a kernel estimate to minimize mean square error at a point; however, this
technique appears to be slow to converge and computationally impractical. Good and Gaskins
[10] suggest a method for choosing the smoothing parameter in a penalized maximum
likelihood method, based on a goodness-of-fit criterion. Leonard [16], Fellner [7], Brunk [2]
and Tarter and Kronmal [26] discuss procedures for choosing the degree of smoothness in
various estimates, which involve varying degrees of subjectivity. Scott, Tapia and Thompson
[24] provide an objective, iterative method for choosing the smoothing parameter in a kernel
estimate to minimize integrated mean square error (IMSE). Their method is based on
estimating [ (f”(#))® dt, which appears in a theoretical expression for the IMSE, and is
different from the method proposed here.

Two readily computable completely objective methods using cross-validation to determine
the degree of smoothing (Hermans and Habbema [14], and Wahba [31] will be discussed in_
Section 5.

The objective determination of A and m is based on the following.

THEOREM 4.1. Let
Tom(A) = j (frma(t) = f(1))* dt.

Iff € W™ (per) for some i > Y%, then Ty (), defined by

) n AN 1A N s
T”’”‘(}\)=n—lz*{<>\y+>\> ‘z(m) }'ﬁ'

- () - () )

A = 1/Qmp)*™

where

satisfies

ETom(\) = ETun(\) + 0( 1 )

anfL

The procedure is to compute 7,,m()), and to choose A and m as the minimizers of T}, m(A).

Although the proof of this result is trivial, at the time it first appeared in 1975 (Wahba [29])
it apparently had not been recognized in this context, and is exceedingly useful. It should,
however, be considered to be in the spirit of Mallows’ C;, method [17] for choosing the ridge
parameter in ridge regression. See [9], equation (1.8), for further details.

More recently Davis [5] and Tarter [25] have observed that approximately unbiassed
estimates of IMSE can be obtained for the density estimators they suggest. Good and Gaskins
[11] have recently continued the work in [10]. Habbema and Hermans’ method has also been
proposed by Duin [6]. A Monte Carlo study comparing the estimators in [6], [24], and [31] has
been performed by Scott and Factor [23]. Scott [22] also compares the methods in [6, 11, 24,
31], on some of the data in [11]. Parzen [19] has proposed the autoregressive density estimation
with CAT and/or graphical methods for choosing the smoothing parameter.

The density estimate proposed here is related to the periodic smoothing polynomial spline
and we briefly describe this relationship. We also describe the bivariate orthogonal series
estimate that is related analogously to the bivariate thin plate smoothing spline.
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In Section 6 of this note we generalize the results to rather arbitrary orthogonal series
estimates for densities with support on an arbitrary index set 7. It is noted that if the density
being estimated is assumed to be in some reproducing kernel Hilbert space, then the IMSE
convergence rate O(n~>"/®"*") is achievable whenever the eigenvalues of the reproducing
kernel tend to O at the rate n~™.

2. Equivalence and perpendicularity of priors.

THEOREM 2.1. Let f1, f2, -+ be an infinite sequence of independent, zero mean normally
distributed random variables with probability measure denoted P, if Ef> = [AQav)*™]7, v =
1,2, ---.

(i) For0<A, 0=m<®, Py \, L Pn,,unless my = my and A\, = A,.

(ii) Let Py be the probability measure corresponding to Ef Z=b,,v=1,2 -+, where

b= (1250 B’ |*/ | 250 0’ )1 + 0o(» 7)), v=12---

where the o’s and B’s are such that 0 < b, < . Then P, = P\ withm =p — g and A =

(277)72’"0‘17//311 .

Proor. This is a consequence of Hajek [13] who proves that, for any b(j) = (b1( ), b2( ),
ce0),j=1,2, Ppay = Py if
2
< oo

©
v=1

b
b.(2)

and Pp1) L Pp(2 otherwise.

We take this opportunity to remark that sample functions from P, are, with probability
1, not in W™ (per), since

Ep,, Yieu Qu)™ | | = .

3. Convergence properties of fo m,x.

THEOREM 3.1. Letf€E W%’%" (per). Then, for any m with %2 < m < m, the expected integrated
mean square error ET,, ,(X) of fn,m,\ satisfies

km 0
ETnn(A) = A0p + 75 +

n}\l/Zm nz';'

1 jw dx
km = — —_—
aT R (1 +x2m)2

On =Yoo Quv)?™ | £, ]2
(6w = [5(f™(2))? dt if m is an integer). Thus, if X = O(n™>"™/®"*V) then

where

and

ETm = O(n—2m/(2m+l)).
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PrOOF. By Parseval’s theorem

Trm(A) = J (f(1) = fuma(D)* dt
3.1) 0

A,
}\+>\f -f +2|v|>n/2|f|

where A, = 1/(27v)*™. Since
E(f,=f)=0
. 1
Elf— £l ==L

we have

Ay
(32) ETn,m(A)=Z <}\ +}\) If fl +Z (}\ +A) Ifl +Z|V|>'l/2 |f|

A\ Ay 2 v ? 2
-2 () -3 () P hee () + Sowna

The theorem follows upon noting that

5 () 18 =h e

= Abn

1y, MYl 5 1 2 dx _ km
NAX) A +AQm)T T n ), T+ M@ mA
and

0
(3.3) Sinisnz | fo]* =

( n)2m N

We remark that this estimate (and the integrated mean square error convergence rate)
essentially appear in Cogburn and Davis [3] and Wahba and Wold [36] as a spectral density
and log spectral density estimate, respectively. For m an integer f, m. is, to a good approxi-
mation, the solution to the minimization problem: find f € W™ (per) to minimize (1/n) ¥ -1
(fU/m) = Y2 + A [o (f"™(1))® dt, where Y, = f,,0(j/n), and SO fym, is (approximately) a
periodic spline function (see [3, 36]). The method for choosing A and m of this note also can
be applied to the log spectral density estimate described in [3, 36], see [34].

E|v|>n/2 (2771’)2m|f| =

n)2m

4. Unbiased estimates of the expected mtegrated mean square error, when A and m are
used.

THEOREM 4.1. Let

@.1) Tn,m(A)=,,ilz*{<>\,};>\> l<>\>\+>\) }Ifl
. YA
,,_12*{<}\,+}\> (N"'}\)}

. 1
ETn,m(A) = ETn,m(}\) + 0(—%)
n

Then, if f € W™ (per),

A=0,m>%.
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PROOF.
EIfI* = E = S Sies 6.X)07(X0)
42) =;"E f fu) du+ = n; 1 J $.(u)f(u) du J & X(u)f(u) du
1 n-1 2
=-t+— [fol”

Taking the expectation of the right-hand side of (4.1) substituting in (4.2) and comparing with
(3.2) and (3.3) gives the result.

5. Cross-validation and generalized cross-validation estimates. The generalized cross-
validation (GCV) method also provides an objective estimate for the minimizer of T m(A),
but via a further approximation, see [31], Monte Carlo experiments with f,, » x» with m fixed at
2 and the use of GCV to estimate A, were reported in [31], with excellent results. Results
obtained by minimizing 7 () here should be at least as good, if not better than those
reported for GCV in [31]. Experiments comparing the GCV estimates and estimates obtained
by minimizing the expression analogous to T, .(A) in the context of smoothing splines for
nonparametric regression with m = 2 support this latter statement, see [4].

The question of the practical benefits of varying m has also been addressed in Monte Carlo
experiments in the context of smoothing splines for nonparametric regression [8, 32, 35]. These
experiments tend to indicate typical reduction in true IMSE of a few percent if m is estimated
as opposed to being fixed at 2.

Tn.m(\) was occasionally found to be negative at its minimum in [8] but the numerical
results indicate that the minimizer is still a good estimate of the minimizer of T, ().

Hermans and Habbema [14] choose 4 in a kernel estimate (see [18, 20]) of the form

1 x =X,
Srn(x) = Py X K( 7 )

by choosing 4 to maximize what might be called the “cross-validation likelihood function”
V(h),

V(h) = [Tiz1 fur(Xa)

where f L’f;),(Xk) is a cross-validatory estimate of f( Xx),

wyoy_ 1 - x—X,
Srn(x) —mZFh,,ek K<—h ) .

They use the normal kernel K(r) = 27~"/%¢""/2. The method is adapted easily to certain
multidimensional kernel estimates. The properties of this method remain to be determined.
Some numerical comparisons appear in [22, 23].

6. Abstract orthogonal series density estimates with optimal smoothing. The Fourier
series density estimate of this paper would be an ideal, easily computable, all purpose density
estimate for smooth densities with compact support, if it were not for the fact that the density
estimate is periodic: f,,» for m an integer satisfies the periodic boundary conditions /' aa(0)
=fuma(l), =10, 1, --+, m — 1. If the true underlying density does not satisfy appropriate
periodic conditions, then an unpleasant Gibbs phenomena can result. If, on the other hand f
goes smoothly to zero at the boundaries, then the estimate should be quite satisfactory. It is,
of course, a natural estimate for densities on a circle. This problem can in theory be avoided
by other choices of orthogonal series.

We now consider the estimation of densities with support on some arbitrary index set 7, for
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example, the real line, or a subset of Euclidean d-space, and eliminate the periodicity
requirements on f.
Let {¢,};=1 be a complete orthonormal sequence of functions in % (T), and assume

2
(T
:°=19V2,(—m)<Mo<oo, tET

for all m = mo where mo > %. Let J#, be the collection of functions {h} in %[T] which
further satisfy

=1 Vzmh% =0, <o

where
hy=f¢,(t)h(t) dt.
T

M is the reproducing kernel Hilbert space with reproducing kernel
$u(5)9:(1)

V2m

R(s’ t) = ;0-*1

(See [27]).
The orthogonal series density estimate fy m, is

n A” F
fn,m,)\(t) = 2v=1 mﬁd)v(t)

where

A,, = V—2m,
l n
f‘" = ; Z}‘l ¢V(X;)7
and the integrated mean square error is
Tom(N) = f (frma(t) = f(1))* dt
T

n >\v ; }\ : 0
== <>\y+ o=f —mfv> + Xnn S

THEOREM 6.1.  Let f € #75 . Then, for any m with my = m < m, the expected integrated mean
square error ET, m(X) of fn,ma satisfies

Knm 0,
ET, .(A\) = A0, + — (0,ﬁM0)1/2 47
n>\ n2m

where
K 1 ® dx
"= ), Ty

On =37 v*"f2 (=1 fl5,)

and (87 My)""* is a bound on sup; f(1).
Thus, if A = O(n~>™/®™*V), then

ETm = 0(n—2m/(2m+1))'

ProOF. The proof follows that of Theorem 3.1 and we only give details that are different.
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We have
Ef, = f $(x)f(x) dx = f,
T
. 2 1 9
E(f,—-f) = e E Y1 Yhe1 0 Xi)pu(Xi) — f7
. l 2
= (& —f7)
where

&= j $3(x)f(x) dx.
T
(g, was always 1 in the Fourier series estimate). Now 0 < g, < (65 M,)"/* since

g = supx f(x) f ¢4(x) dx = sup, f(x)

and
2 1/2
Sx) = 3°=1ﬁ¢v(x)-<~[23°=1 v T ¢;§:)] = [0 Mo]"2.
Thus
ET,.(A\)=3" A 2E , 2
n.m( )— v=1 r_'__ (ﬁ_fv)

2

n A 2 o 2
+ Y- ()\,, T }\) fo+ Yo |fo]

. NS AP VNS B

@D ={ {(m) ‘;(A,H) }f~
1 Ay : 2
+ ;Zf—x <)\,,—+X> gy} + Yoens | o]

km (]
=M\ + PN (07 Mo)'? +

n2m N

THEOREM 6.2. Let f € #;. Then Ty m()) defined by

. noo, MY A Vg
Tom) = —— v=1{<>\,+>\) _Z(AVH) }f”

(6.2) ,
R VAR VI S AR SR
n—12 L+ N +A) 8
where
PO G
&= Y= 63(X))
satisfies

ET,.n(N) = ETnm(N) + 0( ! )

n27ﬁ

PrOOF. Take the expectation of (6.2), substitute in Ef ; = (1/n)g, + (1 —(1/n))f? and E3,
= g, and compare with (6.1).
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These results can be used, for example, to estimate densities supported on the real line with
the {¢,} the Hermite functions, and Theorems 6.1 and 6.2 can be applied by using properties
of the Hermite functions given in [21, 37].

We leave as an open question whether O(n~2™/®™*") is the best or nearly best possible
integrated mean square convergence rate for densities in #7,. Note that this convergence rate
depends only on the rate of decay of the eigenvalues A, (=»~>") independent of the nature of
T.

We remark that Good and Gaskins [11] have used both Fourier series and Hermite series
in the computation of their estimates and found Fourier series far preferable. I. Chang
(unpublished) has done a few rather nondefinitive Monte Carlo experiments with Hermite
series, but the same conclusion was suggested. Good and Gaskins give an explanation, another
possible explanation is that the problem is the unfavorable L. convergence properties of
Hermite series on [—o, o] see, €.g., Askey and Wainger [1]. Thus, in many applications it
might be preferable to assume the true density has compact support and to scale the data to
the interior of [0, 1].

7. Bivariate orthogonal series density estimates analogous to bivariate thin plate
splines. A theory of bivariate smoothing splines has recently been developed based on the
minimization problem: find fin a suitable function space to minimize

) 23— 0 e [ 50 (1) (Grar) doar

See Wahba [32], and reference cited there. The solution to this minimization problem is known
as a thin plate spline. We briefly remark on the doubly periodic orthogonal series density
estimate on the unit square which is, approximately, the related doubly periodic spline
function. For a little more generality, replace the second term in (7.1) by

1 1 amf 2
m kpm—k| M
fo JO S atB <k><_}’_as az'"‘k) ds dt.

Then one is led to the density estimate

ﬁu/
1 + [aQRmp)® + BRwr)* ™
where ¢u.(s, 1) = ¢u(8)P(1), fu» = (1/n) T 1 65(X;), T4« indicates an appropriate sum over
(approximately) n values of the pair (p, ») for which u® + »* is smallest, and X; is the jth

(bivariate) observation.
One is led to (7.2) by replacing A/A, = A(27v)>™ in the univariate estimate of (1.6) by

Yo a’“ﬁ”“’“( ’Z)(zw)“(zw)m—“ = [a2mp)® + BRwr)*]™

(7.2) Sumap(S, ) =1+, Sun(s, 1)

Letting
6, = [aQmp)” + BQ2m)"]™,

to estimate m, « and 8 one minimizes
2 2
_n 0., 1 1 A 12
an TS 12**{<1+9w) ”<1+ew> }'f”"'

1 1 2 , 2
+ E** - 9“ .
n—1 1+ 6, 1+ 6,

Equation (7.3) was obtained from (4.1) by replacing A/A, by ©,,.
Monte Carlo experiments with & = B(=A") in the nonparametric regression context of
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(7.1) have been very successful, see [33, 35]. A d-dimensional generalization of (7.2) and (7.3)
is obtained by replacing ¢, by

¢M1M2‘ tcBg = ¢u1¢p;. .. d)l‘d
and ©,, by
Oy g = [T=1 csRmpr)®]™,

to obtain IMSE convergence rates one rearranges the eigenvalues (which behave as a constant
times ©,,,,...,,) in size place, to find that they decay at the rate n~>™/%, provided each a; > 0,
(see [33]). Then provided 2m/d > 1, 2m/d can be substituted for 2m in Theorem 6.1, giving
an IMSE convergence rate O(n~2™/®7* %),
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