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STRONG CONSISTENCY OF K-MEANS CLUSTERING!

By DAvVID POLLARD

Yale University

A random sample is divided into the k clusters that minimise the within
cluster sum of squares. Conditions are found that ensure the almost sure conver-
gence, as the sample size increases, of the set of means of the k clusters. The
result is proved for a more general clustering criterion.
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1. Introduction. The k-means clustering procedure prescribes a criterion for partitioning
a set of points into k groups: to divide points x1, x2, . .., x, in R® according to this criterion,
first choose cluster centres a1, as, . . ., a; to minimise

1 .
Wn = ; Z;lzl min;<;<x " X — "27

.

where || - || denotes the usual Euclidean norm, then assign each x, to its nearest cluster centre.
In this way, each centre a, acquires a subset C, of the x’s as its cluster. The mean of the points
in C, must equal a, — otherwise W, could be decreased by first replacing a, by that cluster
mean then, if necessary, reassigning some of the x’s to new centres. The criterion is, therefore,
equivalent to that of minimising the within cluster sum of squares.

In this paper {xi, x2, ..., X} is assumed to be a sample of independent observations on
some distribution P. Conditions are given that ensure the almost sure convergence of the
cluster centres as the sample size increases. This generalises one of the results of Hartigan
(1978), who gave a detailed analysis for the splitting of observations in one dimension into two
clusters; he proved convergence in probability for the point defining the optimal split.

MacQueen (1967) obtained weaker consistency results for a k-means algorithm that
distributes points x1, X2, . . . sequentially amongst k clusters. With this algorithm, the centres
are not chosen to minimise W,; instead, each x, is assigned to the cluster with the nearest
cluster centre, then that centre is shifted to the mean of the enlarged cluster. MacQueen proved
that the corresponding W, converges almost surely; he did not prove convergence of the cluster
centres.

Because of the difficulties that can arise from ambiguities in the labelling of the points
X1, ..., X, and the centres ay, . . ., a, it is advantageous to regard W, as a function of the set
of cluster centres and of the empirical measure P, obtained from the sample by placing mass
n~! at each of xy, xs, ..., x,. That is, the problem is to minimise

W(A, P,) := J Mingea | x — a|f* Pa(dx)

over all possible choices of the set 4 containing k (or fewer) points. For each fixed 4, a strong
law of large numbers (SLLN) argument shows that

W(A, P,) — W(A, P) = J Mingea || x — al|f® P(dx), as.

It might be expected therefore that 4,, the set of optimal cluster centres for the sample, should
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136 DAVID POLLARD

lie close to A, the set of centres that minimises W/(-, P), provided that 4 is uniquely determined.
With an appropriate definition of closeness, this is the result to be proved in the next section.
It implies that there is a labelling @n1, ane, ..., ane oOf the points in 4,, and a labelling
a, ..., a of the points in A, such that a,, — &, a.s. This approach also avoids problems with
possible coincidence of two of the cluster centres—a possibility that caused MacQueen (1967)
so much trouble.

In practice, finding an 4 at which W(-, P,) attains its global minimum involves a
prohibitive amount of calculation, except in the one dimensional (s = 1) case (Fisher, 1958).
This problem has been discussed by Hartigan (1975, Chapter 4; 1978). However, there do exist
efficient algorithms (see Hartigan and Wong (1979) or Wong (1979), for example) for finding
locally optimal partitions of the sample points into k clusters. I do not know whether the
techniques to be developed in this paper can be applied to prove consistency results for these
locally optimal partitions.

My method of proof is based on repeated application of the SLLN; the arguments apply to
almost all sample points w. First it is shown that the optimal sample cluster centres A,
eventually lie in some compact region of R*. The proof of this takes an inductive form, starting
from the simple 1-mean case. Once the consistency result for (X — 1)-means is established, the
k-means case is treated by first showing that there exists a large compact ball B(M) that
contains at least one point of the optimal 4,, for all n large enough. If this were not so,
W(., Pn) could be decreased (when 7 is large enough) by moving all of the cluster centres to
a single point. Then an even larger compact ball B(5M) is shown to contain all of the points
in A.. Indeed, B(SM) can be made so large that any points of 4, outside B(5M) can be
deleted .without increasing W(4,, P,) by very much. This would give a set of at most k — 1
points for which, if n is large enough, W(-, P,) is less than the minimum value for (k — 1)-
means: a contradiction.

The second stage in the proof involves showing that, almost surely, W(4, P,) — W(A, P)
converges to zero uniformly over those subsets of B(5M) containing k or fewer points. The
proof of this uniform SLLN is deferred to Section 4. Minimising W(-, P,) is therefore
asymptotically equivalent to minimising W(., P,)—the desired result.

The proof just outlined will apply to more general clustering criteria. For example, the
cluster centres could be chosen to minimise a quantity based on absolute deviations

f Minges || x — a| P.(dx),

or even a criterion with a robustness appeal:

JminaeA [x —a|| A1 Pa(dx).

The main theorem is proved in a generality that includes such possibilities: a general increasing
function ¢ (|| x — a||) of the deviations || x — a|| can be used in defining a within cluster sum
of deviations.

2. The consistency theorem. Let x1, x2, ... be independent R*-valued random variables
with common distribution P. Write P, for the corresponding empirical measure. The sample
{x1, x2, ..., x,} is to be divided into k clusters by minimising a within clusters sum of
deviations; a consistency result for the cluster centres is to be proved.

For each probability measure Q on R’ and each (finite) subset A of R* define

(4, Q) f mingea ¢ (|| x — all) Q(dx)

and

me(Q) = inf{®(4, Q): A contains k or fewer points}.
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For a given k, the set A, = A,(k) of optimal sample cluster centres is to be chosen to satisfy
®(A,, P.) = mp(P,); the optimal population cluster centres 4 = A (k) satisfy ®(4, P) =
my(P). The aim is to show that 4, — 4, a.s.

The convergence of sets should be taken to mean convergence as determined by the
Hausdorff metric H(-, -), which is defined for compact subsets 4, B of R® by: H(A4, B) <§ if
and only if every point of 4 is within (Euclidean) distance § of at least one point of B, and vice
versa. Suppose that 4 contains exactly k distinct points, and that § is chosen less than one half
of the minimum distance between points of 4. Then if B is any set of k or fewer points for
which H(A, B) < §, it must contain exactly k distinct points, each of which lies within a
distance 8 of a uniquely determined point of 4. Almost sure convergence of A4, in the
Hausdorff sense could, therefore, be translated into almost sure convergence of individual
cluster centres under a suitable labelling.

For the minimisation procedures just described to make sense, the function ¢ must satisfy
some regularity conditions. We shall need ¢ continuous and nondecreasing, with ¢(0) = 0. In
order to control the growth of ¢ in the tails, assume that there exists some constant A such that
& (2r) = A¢(r) for every r > 0. As long as [ ¢ (]| x [|) P(dx) is finite, this ensures that ®(4, P)
is finite for each A: for each a € R®,

f o(llx — al) Pl = J o(lx] + llal) P(d)
= @lal) + f 6Qlx[) Pdx)

l=zl=llal
= ¢(Qlal) + ?\fqb(IIXII) P(dx).
These assumptions on ¢ will remain in force throughout the paper.

THEOREM. Suppose that [ ¢(|| x||) P(dx) < « and that for eachj= 1,2, ..., k there is a
unique set A(j) for which ®(A(j), P) = m;(P). Then A, — A(k) a.s., and (A, Pn) — my(P)
as.

The uniqueness condition on the A(j)’s carries a lot of information: not only is it needed
for the inductive argument outlined in Section 1, but also it implies that m(P) > ma(P)
> ... my(P). For suppose that m,_; (P) = m,(P) for some j. Then 4 (j—1) could be augmented
by any arbitrary point to give a (nonunique) set 4, of no more than j distinct points, for which
®(4, P) = m;(P). The condition similarly implies that 4 () contains exactly j distinct points.

Since the conclusions of the theorem are in terms of almost sure convergence, there might
be aberrant null sets of w’s for which the convergence does not hold. Rather than add the
qualifying “except for a possible null set of w’s” to each assertion, I leave the casting out of the
null sets to the reader; the argument is written as if almost sure statements held everywhere.

3. Proof of the theorem. The first step consists of finding an M (not depending on w) so
large that, when n is large enough, at least one point of A4, is contained in the closed ball
B(M) centred at the origin and of radius M. It is convenient to assume that ¢(r) — o as
r — oo; the proof for ¢ bounded is only slightly more complicated.

Find an r so that the ball X of radius r and centred at the origin has positive P measure. For
the purposes of this first step it will suffice that M be large enough to make ¢(M — r) P(K)
> [ ¢(||x||) P(dx); for the second and third steps two further requirements will be placed on
M.

By assumption ®(A4,, P,) < ®(Ao, P.) for any set A, containing at most k points. Choose
Ay to consist of a single point at the origin. Then

(Ao, Pn)=J'¢(IIXII)Pn(dX)*f(b(IIXII)P(dX) as.
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If, for infinitely many values of n, no point of 4, were contained in B(M), then
lim sup, ®(A4., Pr) = lim, ¢(M —r) P.(K) =¢(M —r) P(K) as.

This would make ®(A4., P.) > ®(A4o, P,) infinitely often: a contradiction. Without loss of
generality we may therefore assume that 4, always contains at least one point of B(M).

If k = 1 the next step in the proof can be skipped; if £ > 1 then we have to show that, for
n large enough, the closed ball B(5M), of radius 5M and centred at the origin, contains all the
points of 4,. For the purposes of an inductive argument, assume that the conclusions of the
theorem are valid when applied to optimal allocation of 1, 2, -.. k — 1 cluster centres. If 4,
were not eventually contained in B(5M), the cluster centres outside B(5M) could be deleted
to obtain a set of kK — 1 (or fewer) centres that would reduce ®(-, P,) below its minimum over
all sets of k — 1 points. To obtain such a contradiction, we need M large enough to ensure that

?\j o([x]) P(dx) <e,
Ixl=2M

where € > 0 is chosen to satisfy € + m(P) < mg-1(P). This is the second requirement placed
on M.

Suppose that 4, contains at least one point outside B(5M). What would be the effect on
®(An, P,) of deleting such points as cluster centres? At worst, the centre a; that is known to
lie in B(M) might have to accept into its own cluster all of the sample points presently assigned
to cluster centres outside B(5M). These sample points must have been a distance at least 2M
from the origin, otherwise they would have been closer to the cluster centre a; than to any
centre outside B(5M). The extra contribution to @(-, P,) due to deleting centres outside
B(5M) would therefore be at most

f o(llx = al) Pa(dx) = f ol xll + lai]l) Pn(dx)
lxl=2m

| x|l =2M

= J 62 x|1) Pn(dx)

llxl| =20

=A J o(llx[) Pa(dx).

lxl=2M
The set A} obtained by deleting from A, all centres outside B(5M) is a candidate for

minimising ®(-, P,) over sets of k — 1 or fewer points; it is therefore beaten by the optimal set,
B, say, of k — 1 centres. Thus

DA%, P,) = DP(B., Pn),

which, by the inductive hypothesis, converges almost surely to m_1(P). If A, £ B(5M) along
some subsequence {n,} of values of n, we therefore get

my_1(P) < lim inf; ®(4%, P,) as.

< lim sups [®(4y, P+ A j 8(1x1) Pa (@)

x|l=2M

< lim sup, ®(4, P,) + A D(||x|)P(dx) as.

x| =2M

for any fixed 4 with k or fewer points. Choose 4 = A(k), the optimal set of k centres for
®(-, P). Then, because of the second requirement placed on M, this last bound is less than
®(A(k), P) + € = mp(P) + € < my_1(P): a contradiction.

We now know that, for » large enough, it suffices to search for 4, amongst the class of sets
ér = {A C B(5M): A contains k or fewer points}. For the final requirement on M, we assume
it is large enough to ensure that & contains A4 (k); the function ®(-, P) therefore achieves its
unique minimum on & at 4 (k). Under the topology induced by the Hausdorff metric, & is



CONSISTENCY OF K-MEANS 139

compact (this follows from the compactness of B(5M)) and, as is proved at the end of Section
4, the map 4 — ®(4, P) is continuous on &. The function ®(-, P) therefore enjoys an even
stronger minimisation property on &: given any neighbourhood .4 of 4 (k) there exists an 7
> 0, depending on .4, such that

®(4, P)=®(A(k), P) +
for every A belonging to &\.4,
The proof can now be completed by an appeal to a uniform SLLN:

Supace, | (A4, Pn) — ®(A4, P)| > Oas.

This result is- proved in Section 4. We need to show that 4, is eventually inside the
neighbourhood .47 It is enough to check that ®@(4,, P) < ®(A(k), P) + n eventually. This
follows from

D (An, Pn) < D(A(k), Pn)
and
®(An, Pn) — ®(An, P)— Oas.
and
®(A(k), P,) — P(A(k), P)— Oas.
Similarly, for n large enough,

®(A,, P.) = inf{®(A4, P,): A € &} — inf{®(4, P):AE &) as. = m(P). O

4. Proofs of the uniform SLLN and the continuity of ®(e, P). Let ¥ denote the family of
P-integrable functions on R° of the form g4(x):= minsea ¢(||x — a||), where A ranges over
all subsets of & containing k or fewer points. We need to prove the uniform SLLN:

fgdP,,—JgdP

Many results like this are to be found in the literature—see Section 1.1 of the survey by
Gaenssler and Stute (1979). A sufficient condition for (*) to hold is: for each € > 0 there exists
a finite class %, of functions such that to each g € ¥ there are functions g, g € % with g <
g=gand [ (§ — g)dP < e. (The proof uses the SLLN applied to each function in the
countable class %2 U %3 U %y U ..., together with the bound [ (g — go)dP +
max{| [ gdP, — [ gdP|,|[ §dP. — [ gdP|} for | [ gdP, — [ gdP|.)

To find a suitable %, let Ds be a finite subset of B(5M) such that each point of B(5M) is
within a distance § of at least one point of Ds. The appropriate value of § will be specified
shortly. Write &5 for {4 € &; A C Ds}). Take %, as the class of functions of the form

(*) SUPge % —0a.s.

Mingea ¢(||x — al| +8) or mingea ¢(||x — af — 9),

where A’ ranges over &,s.

Given an 4 = {ay, a2, ..., ar} in &, there exists an 4" = {ai, a3, ..., akr} in & s with
H(A, A') < 8—just choose a; € Ds with ||a, — a; || < 6, for each i. Corresponding to g4 € ¥
take

g4 = minees (|| x — al| + 6)
and
g4 = minges (|| x — a|| — 9),
where ¢(r) is defined as zero if r is negative. Since ¢ is monotone and

lx—all =8 =x—al=|x—al|+3
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for each i and each x € R”, this choice ensures that g4 < ga < ga. Also, if R is greater than SM
+ 4,

J ga(x) — ga(x) P(dx)

= J’ Tim1 [6(lx — @il +8) — ¢ (| x — ai|| = 8)] P(dx)

= k supj«=r SUpaenem | (| x — a|l + 8) — (|| x — a|| — §)|
+k 2A ¢(||x ) P(dx).

lx|=R

The second term can be made less than €/2 by choosing R large enough, then the uniform
continuity of ¢ on bounded sets can be used to find a § > 0 small enough to make the first
term less than €/2. This completes the proof of (*).

A similar argument can be employed to prove continuity of the map 4 — ®(4, P) on &;.
If A, B € &, and H(A, B) < § then to each b € B there is a point a(b) € A4 such that
|5 — a(b)|| < 8. Then

®(4, P) - ©(B, P) = f Minaes ¢ (|| x — all) — minses ¢ (|| x = &) P(dx)
= f maxse[¢(||x — a(b)[)) — ¢ (llx = b])] P(dx)
= J' Yees [o(llx = b +8) — ¢ (llx — b])] P(dx)

which is less than € if § is chosen as in the preceding paragraph. The other inequality needed
to complete the continuity proof is obtained by interchanging the roles of 4 and B.

Notice that the arguments in this section, and those in Section 3, do not really depend on
the underlying sample space being R° equipped with its usual norm—any metric space for
which all the closed balls are compact would do. For example, the theorem would still hold if
the Euclidean norm on R* were replaced by a norm such as || x ;== max{|x,|=i=1,...,s};
and for compact metric spaces, we would obtain generalisations of results of Sverdrup-
Thygeson (1981).
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