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SMOOTHING OF SAMPLES FOR MAXIMA

BY YASHASWINI MITTAL

Stanford University

Smoothing of the data by averaging is suggested in order to study the
maximum. The maximum of the smoothed data is approximated by that of a
Gaussian sample and thus is more robust against outliers.

1. Introduction. Let X1, ---, X, be a sequence of random variables with mean zero and
Y=Y E e Xi/Var’ (DL rmer X)), i=1,2, -+, [n/L(n)]

where L(n) 1 o with n and [-] denotes the integral value. If the central limit theorem is
assumed to hold for {X;}, then each of Y, is asymptotically Gaussian with mean zero and
variance one. With suitable assumptions on the dependence of {X,} and careful estimates of
the error terms, we show here that the asymptotic distribution of IT, = max<,<(r/L(n); Y is the
same as MaXi=.<[n/L(m)] Z: Where Z, are independent standard normal variables.

Besides being of theoretical interest, the maximum II, of the smoothed sample Yi, ---,
Yin/L(n) has practical interest. Smoothing of samples is done in practice as a routine procedure
in a number of cases before looking at the maximum. Examples of this are abundant in air
pollution data. As pollutant concentrations are observed with a high frequency and are known
to exhibit a distinctly nonstationary behavior due to trends and weather variables, it is
unrealistic to assume that they form an i.i.d. sample. Averaging is used in the hope of making
the data more “Gaussian” and “independent.”

From a practical point of view, it is best to work under verifiable assumptions on the data.
Strictly speaking, however, there are very few “verifiable” assumptions. Suitable practical
assumptions are those that ask for reasonable faith and reasonable verification from the
statistician (e.g., lack of correlations is taken to mean independence or “quickly vanishing”;
covariance function is taken to indicate stationarity). It is hoped that the assumptions made on
the original sample X, - -, X, in the following sections would be more reasonable than the
traditional assumptions in asking for the statistician’s faith, even though they are no more
“verifiable” than the traditional ones. We have aimed here at conditions which are reasonable,
mathematically tractable and lend themselves to the investigation of robustness in the behavior
of II,.

The method of smoothing suggested in the first paragraph above may not be practical in
certain situations since it requires that the length of each block size increase with n, thus
making the recomputation of the averages Y, necessary with each addition of new data. To get
around this difficulty, we have suggested in Section 3 a scheme for selection of block sizes L;.
This scheme allows a large range for selection of L;. The block sizes L, are required to increase
to infinity with n only if / increases to infinity with n. For fixed values of i, one has a choice
of selecting L, to be fixed or a function of n, depending on what seems prudent in the particular
situation.

The proofs of the theorems in Sections 2 and 3 are based on the large deviations type
results for the central limit theorem. In Section 2, we do the case of the i.i.d. sample to illustrate
the simple main idea of the proof. To reduce the length of the exposition, we have assumed
there that all block lengths are equal. In Theorem 2.1, we give the “smallest value” of the
block length L(n) (= (Inn)**® for some § > 0) that would achieve the intended convergence.
We also find the rate of convergence there. There are a few large deviations results available

Received August 1978; revised July 1979.
AMS 1970 subject classification. Primary 60F05, 60F99; secondary 60G15.
Key words and phrases. Maxima, smoothed samples, central limit theorem, large deviations.

66

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to /2
The Annals of Statistics. RIK@J:Y

Z)

®

WWw.jstor.org



SMOOTHING OF SAMPLES FOR MAXIMA 67

for dependent sequences. Any of these can be used to get a corresponding result of the type of
Theorem 3.1. For other results on large deviations and an extensive bibliography, see
Statulevicius ([8], [9]).

The averages computed in Theorem 3.1 involve the knowledge of the variances of the block
sums. Since it is unreasonable to assume that these would be known in practice, we substitute
the sample estimates for them in Theorem 3.2, viz., sum of squares of the block observations.
Since the averages will be computed by taking the ratios (the block sum)/(sum of squares of
the block observations)'/?, care needs to be taken in dealing with very small values of the
denominator. A method suggested to achieve this is that of truncating the denominator away
from zero. See Section 3 for more details.

In the last section, we find a joint distribution of M, (maximum of the original sample) and
II. (maximum of the smoothed sample) in case {X;} is assumed to be a stationary Gaussian
sequence with a smooth covariance function.

2. The case of ii.d. variables. Let {X,, i = 1} be a sequence of i.i.d. random variables
with EX, = 0; EX} = ¢® and Ee™ < oo for all i and | ¢| < t, making all the moments of {X;}
finite for all i. Since this section only illustrates the idea of the proof, we will average X; over

blocks of equal length L(n) to produce an i.i.d. smoothed sample Y1, - -+, Y/t This will
reduce the length of the proof considerably. We choose L(n) to be the smallest value for which
@n (2In[n/L(m)] — In(4Mln{n/L(m)]))""* < L(n)

for some 6 > 0.

REMARK 1. The choice of L(n) in (2.1) needs to be made by trial and error. The “best”
value of L(n) is the one that barely satisfies the inequality. Asymptotically this choice of L(n)
becomes equal to about (2Inn)**®, But for values of n even as large as 10,000, the choice in
(2.1) leads to a considerably smaller value of L(n) than (2lnn)**?,

REeMARK 2. Note that throughout, when no mention of an argument is made in a limiting
statement, as in “L(n) T ,” it is to be taken to read “as n — .” Also, the symbols “O” and

9

0” will be used only when n — .

REMARK 3.  Hereafter the constants c, and b, are defined by

_ In(4Tlnk) k=1,2,....

2.2) e = (2Ink)"? by = ¢, 3

k
Let us define Y, = ;i((:‘lll)[,(n)-'-l X,/(o(L(n))l/z); H,, = MaXi<i<(n/L(n)] Y; and u, = b[n/L(,,)] +
X/Ctr/L i

THEOREM 2.1.  For the quantities defined above
23) Itnw P(I1, < u) = exp(—e™)
for —0 < x < o0,

Proor. In the following, we keep track of both the second and the third order terms. The
third order terms are of some interest.

Write K, = [n/L(n)]. Since Y; are i.id. P(Il, < u,) = {1 — P(Y; > u,)} *~. Using Theorem
2, page 520, of Feller [5], we have P(Y; > u,) = (1 — ®(un)) E. where ®(x) = (27)"V2 [,
exp(—u®/2) du and E,, = exp{un A (un/L"*(n))}[1 + o(u»/L*(n)]. The function A(x) is defined
by the equation

X)) = Ax® + Agxt 4+ ..l

A: being constants and A1 = EX; /6¢°. For the choice of L(n) which gives asymptotic equality
in (2.1), we have u3 /L'*(n) = u;*, and u,/L"*(n) = u;*"% Thus
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unMun /L"*(n)) = L(n) {( Lljl;(n)> A (len(n)>}

un \’ un \'
= 200 {0 (5 ) + o(74) }

3,712 un
= A(ua /L *(n)) + O(L(n))

= Auy’ + Oy 24).
And
E, =1+ Auz® + O(uz),

where 8o = min(2§, § + 2). Substituting, we get

PAL, = ux) = {1 — (1 — P(un))(1 + A 11z’ + Ou; %))} 5.
Now Kn(1 — @(un)) = exp(—x)(1 + o(uz"*)) for any 8 > 0 small. Thus

P(I1, < tn) = {®(un) — M1z’ K5 exp(—x)(1 + o(uz>*")) + O(uz")K7" exp(—x)} %

= % (u,) {1 — M1uz® exp(—x)(Kn@(a)) " + O(uz?) K" exp(—x)} %

where 8; = min(d, 2 + 8 — 6) for some § > 0 small. Substituting, we get

.4 P(IL, < u,) = ®*(un) — A1z’ exp(—x)®5 (1) + O(uz) exp(—x).

REMARK. Simple arithmetic calculations show that ®*(u,) = exp(—e™™) + O(exp
(=x)(InlnK;)*u;*). Thus theoretically the error rate for the convergence in (2.3) is max{u;?;
(InlnK,.)*u;?}. In practice, the second term of the right-hand side of (2.4) can be considered
as the error term since ®*(u,) is computable for a given sample.

This concludes the proof of Theorem 2.1 and illustrates the relationship between the choice
of L(n) and the error rate.

3. The main theorems. In this section we assume that the sequence of variables {X,, i =
1} is ¢-mixing, i.e., there exists a nonincreasing sequence ¢, of numbers such that ¢, — 0 and

(E) | P(4 n B) — P(A)P(B)| = ¢n P(4)

forall 4 € #1 and B € F5sn, k = 1. By #} and F., we denote the o-fields generated by (X,
.-+, Xi) and (Xe+n, Xp+ns1, +++) respectively. Let {L,} be a nondecreasing sequence of
integers. Define A, = }—; L, and K, is such that Ax,—; < n < Ag,. We choose {L,} such that
AY, = L, <n™ for some 0 < y; < y2 < 1. Notice that since A, =i, L; =i" and L, is required
to increase to infinity (with #) only if i 1 oo (with n), thus making possible the choice of fixed
block sizes for fixed values of i. On the other hand, one can choose equal block sizes (i.e., L,
=L;=--. = Lg,), but in this case L, will be required to increase to infinity fast enough. E.g,,
it is possible that L, = n" forsome 0 < y<landalli= 1,2, ..., K,,, but it is not possible that
L =Innforalli=1,2, ..., K,, since for, say, i = n'/%, we will violate the requirement L, =
AL

In the first theorem we prove the sums of {X,} over various blocks will be normalized
using its variances which are unknown in practice. In Theorem 3.2 we will replace these by
sample estimates.

Let us define Y, =Y 25 1 X,/V./* where V, = Var(Y &4_+1 X)), i=1,2, -+-, K, and I,
= maxXisi=x, Y,. We recall the definitions of ¢, and b, given by (2.2) and let u, = bx_ + x/ K,

THEOREM 3.1. Let
3.1 EX,=0forallj=1.
(3.2) Yoe1 ¢1/% < o0,
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(3.3a) A <ol=< Ao for large n and some constants A; > A, >0

where o2 = Var(X,).
(3.3b) lim inf, ¥V,/L, > 0.

E|X,|*“ =< M for all j = 1 and some constants M > 1

3.4 and ¢ > 2. (We will take vy, in the choice of L,

such that yi¢c/2 > 2.)
Then
(3.5) It P(Il, < u,) = exp(—e ™) for —o0 < x < 0.

REMARK. Notice that (3.1) can be replaced by the requirement that EX; be “close enough”
to some fixed known constant . The expected values will be “close enough” if }',cz, (EX, —
w)/ V% = o((Inn)""/?) for large i. This would make the exposition considerably more cumber-
some and not much more practical. Thus we choose to work with the condition (3.1).

ProoF OF THEOREM 3.1. As mentioned in the introduction, we make repeated use of the
results of Babu, Ghosh and Singh [1]. For convenience we reproduce their Theorems 2 and 5
below. Conditions (3.1)-(3.4) above are very similar to their conditions except somewhat
stronger. The first theorem below is the large deviations result and Theorem B is stated in [1]
as a moderate deviations result. We need Theorem B in case L, is quite large.

THEOREM A. Let { X} be a ¢p-mixing sequence for which (3.1) and (3.2) hold. Also let

3.3) inf,>1 n Var(})=1 X,) >0

3.4y E|X,|*™=M  forsome ¢>0 and M>1
Then for all t* > (c + 1) Inn and some K > 0,

(3.6) [P < t) — D@t)| = Kn~ %77 (Int)***
where

M = B X,/ Var A1 X)),
THEOREM B. For {X,} as in Theorem A and t* < (c + 1)Inn,
3.7) [P, <1t) —®@1)| < Kn* exp(—tz/z) + Om (1 + |1])F)
for some A > 0.

We turn now to the proof of Theorem 3.1. We use standard arguments that have been used
in the literature before. Divide Y1, ..., Y.k, into m blocks of length K, each. Clip a small
portion from the right-hand end of each to “separate” these intervals. On each block, find
upper and lower bounds for the probability that the maximum is bounded by u,. where t,n
= bk, + x/cmk,. Finally, let K, tend to infinity first and then take a limit as m — oo.

For any integerm= L let , = {(j— DK, + 1, (j — DK + 2, -+, jK, — [KX*1}, I} =
(jKn —[KX*1+ 1, «+-, jK} forj=1,2, .-, mand I = U % I[; I* = U, I*. Define I1,(m)
= MaXi<,=mk, Y, [I;, = max,ey, ¥, and II; = max,es Y,. Now

(3.3) P{IL.(m) = tm} =12 P{Il; = thin} + P1 + Py
where
Py = P{IL.(m) = thm} — P{ll1 = thn} and P> = P{IL; = tpn} — I1721 P(I1; = th).
For the first step of the proof, we will show that upper bounds on both | P; | and | P2 | are o(1).

| P1| = P(Y,> tnm for at least one i€ I*)
3.9)
= 2161" P(K > unm)~
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We can use Theorems A and B to estimate the probability in the right-hand side of (3.9) if Ly
1 . The smallest value of i for i € I* is K, — [K,/*]. The choice of L; gives L, = AlX; > (i
— 1)" for some y; > 0. Thus Theorems A and B together give

(3.10) P(Y; > tnm) < 1 — ®(tnm) + K max{ K" L7 unm  (I0thm)* >}

for some constants 8 > 0 and K > 0. The second term in the right-hand side of (3.10) is
maximum of the error terms in Theorems A and B. We need Theorem B in case L; is so large
that 42, =< (c + 1)InL,. We notice that if ¢ is too small, Theorem B can give significantly bigger
error term than that of Theorem A. However, in our case 4, is large enough that it does not
make much difference.

We choose y; such that yic/2 > 1 and replace L, by |i — 1| in the right-hand side of
(3.10). The total number of i in I* is m[K}/*] and i = K, — [Kx/*]. Substituting the value of
unm and taking the sum over i in (3.10) we get that

(3.11) [ 1| = o(K:)

for some 0 < § < %. To find an upper bound for | P;|, we use the ¢-mixing property of
{X,}. Each I, is separated by a distance of at least [K}*] from I, for I # j. Applying (E) m
times we get that

(3.12) | P2| = moik,.) = o(1).

Thus for any integer m = 1,

(3.13) P(I1, (M) < thm) = H,:Zl P(I1; < thnm) + o(1).

Now, for any z > 0,
o(1) + Y PN < un.) = P(IL, ([2] + 1) < )
3.19) =< P(IL, (2) < upnz)

< P(IL, ((2]) < th:) = H,[fl P(I1;, < un2) + o(1).

We proceed now to find upper and lower bounds for P(I1;, < uy.). For a lower bound, Boole’s
inequality gives P(IT;, < tn;) = 1 — Y,er P(Y, > up;) forall j=1,2, ..., [z] + 1. Let us look
at the case when j = 1. Let n; be some integer such that n; = o(InK,)"/?. For 1 <i =< n;, we use
Chebychev’s inequality to get

P(Y: > un;) < EY}/ub, = un? = O((InzK,)™).

Thus Y%, P(Y, > u,,) = o(l). For i > n;, we use Theorems A and B as in (3.10). Using the
same kinds of arguments as after (3.10), we get

SE ™ P(Yi > tns) < Kn 54—’%’—22 + K{un?  (Inun, )2 Y i — 1|72 + K%}
for some & > 0. We use the traditional notation ¢(x) = (27)"/*exp(—x2/2). (There does not
seem to be any danger of confusion between the function ¢, in (E) and the standard normal
density ¢(x).) Substituting value for .. and taking limits we observe that

(3.15) ltnsoo Yuer, P(Y, > tns) < 7/2

where 7 = exp(—x) and j = 1. Forj=2, 3, .. -, [z] + 1, we can use Theorems A and B directly
since i = K,,. Thus (3.15) holds for all 1 = < [z] + 1. Substituting in (3.14) we get

o o -
(3.16) lim inf, . P(IT, (2) < tp;) = lim inf Hj=1+ P(I1;, < un:)

= (1 — 7/2)F*,
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Next, we will find an upper bound for P(I1;, < uy.). To do this we first need to “separate” Y,
i€, Ifi€ UL, I, then i > K,, hence i > [K3], 0 < 6 < 1. From the first block I, we exclude
Y1, Y2, --+, Yy no = [K3] from consideration, since doing this will only increase the
probability P(II;, < uy.). Thus we assume without loss of generality that i = [K3] for some
8 > 0. This ensures that any block lengths considered after this exclusion will be sufficiently

large, viz., L, = A%; > K}°. Let us fix j = 1 and notice that here I; = {no, o + 1, - - -, K, —
[K*1}. The computations for j =2, 3, -, [z] + | are very similar. For z fixed and n large

enough, define

Vi=Var(Qd7 1 X) and Y=Y x/(V)A
Also let
Y! = Ya e X
Then we can write
(3.17) II;, = maxes, {(Vi/V)'2Y, + V;V2Y7).
Thus
P(I1;, < up,) < P{maxes, (Vi/V)'?Y! < tn. + O((InK,)"*%)}
+ P{max,es, (Y7/V¥? > (InK,)™"}
for some 0 < 6 < %. Now, because o} < A, for all j, Var(¥;) < [z]*4; and
| V.= Vi| = [z]d2{1 + X121 ¢}

using (E) and Lemma 1, page 170 of Billingsley [4]. Because of (3.2), Y%, ¢ = (constant)
and because of (3.3b) ¥, = (constant) L, where both the constants are independent of i. Writing
Vi/V) =1+ O(K*) we get

(3.18) P{maxier, (Vi/V)"*Yi < tp. + O((InK,) ")} = P{max,es, Y < ul.}

where #n, = u,, + o((InK,)™'*?). Since Y/ is a sum of only [z] number of X;, each one of
which has finite absolute moments up to order 2 + ¢, we must have E| Y/ |*** < o for all i.
Using Chebychev’s inequality,

1/2

V.
P{max‘511 xr/ V}ﬂ) > (ann)_l} = Zzen P( Y > Ink, ) = (ann)2+C Ztel, y,; oz,

Substituting /" for L, and taking the sum we see that the right-hand side above is o(K,?) for
some § > 0 and

(3.19) P(II}, < un.) < P(max,er, Yi < up.) + o(K3P).

To finish the proof of (3.16), we need to showthat lim SUPnw P(maxier, ¥, <u;;) <1 —
7/z + terms of smaller order than 1/z). By Boole’s inequality,

(320) P(max;ell Yz, = u;Lz) =1- Ezell P(Y: > u;zz) +2 Z Zi,le[l;wél P(Y: > u;zz; Y; = u,n2)~

The second term in the right-hand side of (3.20) is computed in very similar manner to that of
(3.15) which gives Y.er, P(Y] > u..) = (1/2)(1 + o(1)). Events in the third term of the right-
hand side of (3.20) are separated by a distance at least equal to (I — i)[z]. Using (E) we get an
upper bound for this last sum in (3.20) to be

2 Z Zi,le[l;zaél P(Y: > u’nz)P(Y; > u;zz)
+ 2 Yier, P(Y! > unz) Yisuier, ¢ - oz

= 2(%en, P(Y! > ur2))’ + 2g(2)(7/2)(1 + o(1))
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where g(z) = Y £1 ¢u(2 is a function of z. Because of (E), it is easy to see that It, ,.g(z) = 0.
Substituting in (3.14) we get

(3.21) lim supn e P([]n (2) < thnz) = (1 — 7/z + 7%/2° + 2g(2)7/2)*).
Combining (3.16), (3.21) and taking limit as z — o we get
(3.22) Iteso ltno P([]1 (2) < tnz) = exp(—e™)

for —o0 < x < 0. Simple arithmetic then leads to (3.5). This concludes the proof of Theorem
3.1

We now turn our attention to estimating the variances ¥, which are unknown in practice.
The averages Y, in Theorem 3.1 were based on these variances V,. In Theorem 3.2 below we
compute new averages that are based entirely on the sample.

A reasonable estimate for ¥, seems to be

0. = Z?LA,:,H X127

especially if the dependence in {X,} is weak enough. In Theorem 3.2 we slightly strengthen
the ¢-mixing condition of Theorem 3.1 (thus making the dependence of {X,} even weaker).

As explained in the introduction, the new averages can be highly sensitive to small values
of Q.. In any case, while looking at the maximum of these averages we want to make sure that
we don’t get stuck with large values of the maximum that could be generated by small values
of Q.. Conceivably this could be done in many different ways. Below, we do this by truncating
Q. away from zero. Let Q¢ = max{#, Q,} for some 6 > 0 and

Yi= 30 X002 = Y(V/Q))"? for i=1,2, .. K,.

We define 1 = maxi<,=x Y7.

THEOREM 3.2.  We assume that (3.1)~(3.4) hold. In addition, if

(3.23) V.— EQ.,= o(L,/InL)
and
(3.24) inf(Var Q,/L)) = ¢;

for some constant ¢; > 0. Then
(3.25) ltn—o P(II5 < u,) = exp(—e™)

for —oo < x < o0

ReMARK.  Conditions (3.23) and (3.24) are on the correlations of (X, X,) and (X2, X}).
Using (E) and Lemma 1, page 170, of [4], it can easily be shown that the left-hand side of
(3.23) is O(L.). Property (E) is related to the rate of decay of dependence between X, and Xj.
In (3.23) we assume that there is enough cancellation due to positive and negative correlations
so that the left-hand side of (3.23) grows slower than L,/InL,. For (3.24) it is sufficient to
assume that lim inf, Var(X?) > 0 and

T Zoreta,erags=k E(X] = 0))(Xi — oF) = o(L,).
PrOOF OF THEOREM 3.2. The use of Q! instead of Q, is simply to avoid embarrassing

situations when Q, may be too small. We first show in Lemma 3.1 below that this does not
occur if L, 1s assumed to increase with n.

LemMA 3.1, If there exists a function f(n) 1 o such that L,/f(n) } o for all 1 < i < K,, then
(3.26) i P(Q.# Q) = o(1).
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Proor oF LEMMA 3.1. We know that
P(Q. # Q1) = P(Q. < 8)
, — EQ, 6— EQ,
=P 9 %2 < Q] 3
(Var Q) (Var Q)"

We see that (Var Q,)"%(0 — EQ,) = —d, L.’? for some constant d; > 0 because of (3.23) and
(3.24). Applying Theorems A and B we have

(327) T P(Q.# Q) =T (1 — ®(dLV?) + K max(L; " (InL)*>; L7¢(diLV?))}

for some constants K > 0 and A > 0. We will split the sum in the right-hand side of (3.27) into
two parts, 1 =i =< f(n) and f(n) < i < K,. For the first part we write

Ll—-(1+c)(lnLl)2+2c < (maX151<m (x1/41nx))2+2('LL—(1+(')/2 < d2Ll-—(]+c)/2

for some constant d; > 0. Thus the first part of the sum in the right-hand side of (3.27) is at
most

dif(n ) .
o [ O L ax @£ (F) e (duf) ) = o(1),

dif(n)
For i > f(n), we will substitute i"" for L,. The second part of the sum under consideration is at
most

(const) ¥y (i7" %exp(—d3i"/2) + (Ini)*+?i 1149},

Because yic/2 > 1, the above is o(1). This proves Lemma 3.1.
The proof of Theorem 3.2 is slightly tricky. We write

5 V. o
Y=Y, +7%, —Q——Q—g 1g.

In view of Theorem 3.1 it is sufficient to show that the maximum of the second term above
will converge to zero in probability. First let us assume that there exists f(n) such that L,/f(n)
1 . Then Lemma 3.1 above would let us substitute 1 for Q;/Q¢. Remaining proof would
follow from the basic fact that (Q./V, — 1) goes to zero sufficiently fast (shown at 3.32). But
for this we need to assume that i > no = [K?}] for some § > 0. Thus, as a first step of the proof
of Theorem 3.2, we exclude Y35, ..., Y5 from consideration in (3.25). That is, we want to
show that the right-hand side in the following inequality is o(1).

(3.28) P(Maxn <<k, Y? < ) — P(II5 < u,) < 370 P(YV > up).
In order to find the upper bound on P(Y? > u,), we write
1/2
V. QO
0. Qi

in view of Lemma 3.1. At (3.31) below we prove a weaker version of (3.32) and this would
allow us to substitute Y, for Y7, Y, being asymptotically normal. Use of Theorems A and B
would then allow exclusion of Y7, ..., ¥x,. (Notice that all through this we have assumed
that L,/f(n) 1 «.)

There may exist some f(n) as above simply by choice of L,. But because of the wide choice
made available in the beginning of the section, L, may be fixed for fixed values of i. The only
way left to make sure that L, 1 o (with n) is to exclude some Y} for small values of i from
consideration. This argument may seem circular, since we noticed in the last paragraph that
L, was assumed to increase with n for exclusion of Y%, .-, on. But note that there we
needed to exclude a specified number n, of Y7. This is possible only by using more accurate
information about the probabilistic structure of Y as we do in arguments leading to (3.32).
A smaller number 7, = o((InK,,)"/?) of Y7 can be excluded by using cruder bounds given by,
say, Chebychev’s inequality and substituting the smallest possible value of Q! in Y7 viz., 6,
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which is what we do below. For the final twist of the argument, notice that Chebychev’s
inequality would give reasonable bounds on the new average ¥ ,c;, X,/ if L; is not too large.
Thus we define D = (1 =i =< m | L; < u,) where n; is some integer such that n, = o((InK,)"?).
In case D is not empty, we exclude Y7 for i € D by using Chebychev’s inequality, and for
remaining i, (i.e., i > n;) we have L,/n]* 1 o (with n). If D is empty, then L, > u,; | =i =<n,
and hence for all /, 1 =i = K, since L, is nondecreasing in i. Thus for i € D, there exists f(n)
= min(n},, u,) for which L,/f(n) 1 c (with n).

For i € D, let us write Y{V:/6)"* instead of Y7, since this would only increase the
probability P(Y, > u,). Also ¥, ~ (const)L, S (const)u, in view of (3.3a), (3.3b), (3.23) and the
requirements of set D. Now

Yiep P( Y > ) < Yiep P(Y, > d3ullz/2)
(3.29)

-2 -1
= ZzED d3 Un

for some constant ds > 0. The total number of i in D is at most o((InK,)"/*) and the right-hand
side of (3.29) is o(1). Thus in the remaining part of this section we can assume without loss of
generality that there exists some f(n) 1 o such that L,;/f(n) 1 o (with n) for all i.

We now turn our attention to showing that the right-hand side of (3.28) is o(1). In view of
(3:26) we write Y7 = Y(V.,/Q)"* fori €[, 2, -+, n). For any € > 0,

(3.30) P(Y? > u) < P(Y, > (1 — €)u,) + P(|(Vi/Q)? — 1| > e).

Using Theorems A and B as in (3.10), we see that the sum for i € [1, - - -, ng] of the first term
in the right-hand side of (3.30) is o(1) for sufficiently small values of § > 0 (i.e., of n, =
[K3]). We will now show that

(3.31) 0, P(Q, > (1 + 26)¥,) = o(1).

Note that (Var Q)"V*(V; — EQ,) = O(L!”* /InL;) due to (3.23) and (3.24). Thus P(Q, > (1 +
2¢)V;) = P((Var Q)"V*(Q. — EQ:) > (const)eL,’?). Using the same estimates as in (3.27),
(3.31) follows easily. The argument for Y2, P(Q: < (1 — 2€)¥V,) = o(1) are very similar. A few
arithmetic calculations show that this is sufficient to conclude that the right-hand side of (3.28)
is o(1), i.e., we assume Y%, ..., Y5 as excluded from consideration.

To complete the proof of Theorem 3.2 we are now in a position to prove a stronger version
of (3.31), since i > [K}]. We write Y7 = Y, + Y,{(V./Q:)/* — 1} (having substituted Q; for
07 in view of 3.26). Theorem 3.1 implies that it is sufficient to show that (InK;) MaXp,=i<kK,
{(V./Q)"2 — 1} =, 0 as n — oo. For this we will show that

(3.32) ltnoseo Y220 P(Q)/ V2> | + €/InK,) = 0.

The corresponding result for P(Q;/V, < 1 — ¢/InK,) will then follow easily. Now

Qz - EQz VL - EQz EI/:
Tz > 7z T iz )"

(Var @) (Var 0)° * (InK,)(Var Q)

Because i > [K}], InL, > y,8lnK, and (3.23) implies that (V; — EQ;)(Var Q) V% =

o(L:*(InK,)™"). Thus the right-hand side of (3.33) is at most P{(Var Q) V*(Q, — EQ)) >

diL”*(InK,)™"} for some constant d; > 0. The remaining steps are by now routine applications

of Theorems A and B. The sum in (3.33) is o(1) and this completes the proof of Theorem 3.2.

(333) P(Q)V:i> 1+ ¢/Ink,) = P<

4. Joint distribution of M,, and II,. In this section we will assume that {X;; j=0}isa
stationary Gaussian sequence with mean zero, variance one and r, = EX,X;. Let M, =
Mmaxo<;<» X;. The limiting distribution of M, is extensively studied under various conditions
on {r,} (see, e.g., [2] and [7]). The smoothed sample { Y,; i = 0} in this case will again be a
Gaussian process (nonstationary) whose convariance function can be computed from {r;}.

Throughout this section, we assume that r,Ink — 0 as k — o. This condition is sufficient
and practically necessary for the convergence of M, as is apparent from looking at results of
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[2] and [7]. Conditions for convergence of I1, however, do not depend directly on {r:}, but on
the size and the smoothness of the variances ¥, of the blocks. In Mittal ([6], Theorem 2.1),
asymptotic behavior of the maximum of normalized sums is considered. Conditions (4.1)—(4.3)
below are those of the “moderately dependent” case there. See [6] for some examples of
covariance functions satisfying (4.1)-(4.3). The joint distribution of M,, and I, in the “strongly
dependent” case (see Theorem 3.1 of [6]) is conjectured to be degenerate on the diagonal. The
normalizing constants in this case will involve the covariance function. We choose to omit the
calculations for the “strongly dependent” case.

The sequence { L.} described in the beginning of Section 3 will have now even a greater
freedom of choice. To keep the choice sensible, we will assume that L, <n™ for some 0 < y,
< 1land L,/LSY — o as i — o for all 0 < y < 1. In addition, assume that Inn/InK, is
bounded. (This allows the choice L, = (Inn)*, k = 1 for all 1 < i =< K, which was not possible
in Section 3. As before, K, is such that Y57 L, < n =35, L,)

THEOREM 4.1.  Let rylnk — 0 as k — o and for sufficiently large k,
@.1 Sk _pr=KkG(k)>0,
—1 <8 < 1 and G(k) is a slowly varying function satisfying the following conditions.
For all sufficiently large I, G(k)/G(l) is bounded away from 0 and o«

“.2) ifl=zk=1°1=6>0and
43) If 1=k, k— o such that (I — k)/k' ™" — o for all y > 0

and——=— ¢ for 0 < ¢ < o, then lz,Hc,,,;c (G()/G(I—k)—1)=0.
Then
4.4) Ity P(My, < tn(x); I1, < uk, (y)) = exp{—e™* — e}

for all —o < x, y < o where un(x) = bn + x/cn and by, and cn, are defined in (2.2).

Proor. The proof consists of showing that M, and II, are asymptotically independent
and that IT, properly normalized converges to the double exponential distribution (exp(—e™)).
Notice that conditions (4.1)-(4.3) are intuitively much weaker than the ¢-mixing assumed in
Section 3. This is to be expected since here we are dealing with Gaussian rather than general
sequences.

We will first find the limiting behavior of IT,. Without loss of generality, we can replace II,,
in (4.4) by maxg,,<.<k, Y, for any 0 < y < 1 since S P(Y, > ux, () < K™ ¢(ux,(»)/
ux,(y) = o(l). Thus from now on let us assume I, = maxg,,<.<k, Y. The result follows from
Theorem 3.1 of Berman [2] if we show that | EY,Y,| < 1 (see 4.9 below) and that | EY,Y,|In|;
—i|— 0asj—i— o (shown at (4.11) and (4.12)).

Define D;, = Y% Ly and B, = {A,_1 + 1, A,y + 2, -+, A,} where A, is the same as in
Section 3. Then '

“5) EY.Y; = Yien, Sen, E(XiXe)/(V.V,)'?
= Yot Z/?ﬁ)ﬁ’?l re—i/(V.V,)V2.
Using condition (4.1), we get the numerator on the right-hand side of (4.5) to be equal to
(4.6) =o' {(Dy+ Ly — D°G(Dy + L, — I) — (D, — IG(D, — )}.
First, let us assume j = i + 1. Then we can rewrite (4.6) as
@7 St (Li+ L, — ’G(L,+ L, — 1) — V..

Herewehave L, < L,+ Li—I< L, + L, Now (L, + L,— )/(L, =)' = L’ — o for all §
> 0. Thus condition (4.3) implies that G(L, + L, — I) = (I + €)G(L,) for large nand 0 < / <
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L, — 1. The variance V, ~ (8 + 1)7'L{"'G(L,). (See (2.5) in [6].) The following upper bound
for (4.7) ignores the second order terms. For every € > 0, we can find » large enough that (4.7)
is at most

4.8) G(L)Y(1 + &) (L + L)' = L' — L + e((L, + L) — L))

We recall the algebraic inequality (a + b)’ — @’ — b’ < a”*b?* for alla, b>0and 0 < < 2.
Also notice that G(L.)/G(L;) — 1 as n — o because of (4.3) and the choice of L1 = L,.
Substituting in (4.5), we get the following strict upper bound for it.

4.9) 1+ €)p + 2¢)

where p < 1. We can choose € and €’ small enough for n large so that (4.9) is strictly less than
one. ’
Next let us assume j = i + 2. The (4.6) is equal to

Yizo' {(Dy + L, = (G(Dy + L, = 1)

(4.10)
= G(Dy — D)) + G(Dy = )((Dy + L, = 1)’(Dy — 1))).

Now, consider the first term in the sum of (4.10). We know that (D, — I)/L}™® = L,_,/L}°
— o for all § > 0. Hence applying (4.3) we get

(D, + L, —(G(D;+L,—1)— G(D,— )< e(D, — )L,(D, + L, — I)y'*®
for € > 0 and n large. Also

(Dy+ L, =1 = (D, = Iy’
=Dy + L —=0D/(Dy+ L, —D'"°—(D,— 1) < L(D, + L, — I)"'*°.

Thus (4.10) is less than

(1 +eL, Yk (D, + L, — IY'"G(D, — I).
Suppose that forall0 <8 <1, L,/(D, — 2L, + )" ?and L,/(D,, — L: — L, + 1)'~? both tend
to infinity with n, then using (4.3) we know that G(D;; — [)/G(L.) and G(Dy, — I)/G(L,) both
tend to one with n — oo. Substituting in (4.5) we get
@11 |EYY | =1+ YLL)" (G —i— DL+ L) P <l +€)j— iy 102
Now, if there exists 0 < § < 1 such that L,/(D, — 2L, + 1)'? is bounded as n — oo, then

maXos=i<L,—1 G(Dlj — l) ( L, >(1—8)/2

EY.,Y;| < (const) -
I JI ( GI/Z(L,)GI/Z(L,') (Dlj + Lj — Ll)(l 6)

L (1-8)/2
4.12 B P A D, + L, — L) ?0-972
(4.12) <Dl,+ I,= Li) (Dy + L, )

<e(j- i)e(l—sm

for large n. Similarly for the case when L, /(D — L, — L, + 1)'~% is bounded. Thus (4.11) and
(4.12) imply that | EY,Y,|In|j — i| = 0 as n — oo for all i, j > K. This together with (4.9) and
Theorem 3.1 of [2] implies that /tp ... P(I1, < ux,(y)) = exp(—e™) for —o0 < y < 0,

To show the asymptotic independence of M, and I1,, notice that Z" = (Z7, -, Zn.x )"
= (X1, -+, Xn, Y1, -+ -, Yx,)T has a joint normal distribution for each n. Let Y(n) denote the
covariance matrix of Z". That is, the (i, j)th element of Y(n) is 0,(n) = EZ}Z} . Let 0% (n) =
EZ®Z}, if both i and j < n or both i and j are > n. Take o} (n) = 0 otherwise. That is, }°(n)
= ((¢%(n))) is the covariance matrix of Z" where X; and Y,, are assumed independent for each
I and m. Slight modification of (4.12) in Berman [3] (as used in [6]) gives that

|P(M, < up(x); I1, < uk, () — P(Mn < u, (x)) P(I], = uk, (y))l
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(.13) = (const) X1 Y14 | 0,(n) — 0% (n) |
-exp {—(un(x) — 20, (n)un(x)ux, ()
+ uk, (»)/2(1 = o5 (n))}.

We only need to compute o, (n) = 0,,(n) for i < n; j > n, the sum in (4.13) being zero over the
remaining terms. Now

(414) EX,Y, = Z[eB/_" EX,X[/ leizn
If X, € B,, then

InL,_, + L}, G(L,-,) .
T+8)/2 ~1/2 =o(L,%
LGV (Ly-n)

4.15) EXY, =
for some € > 0 of X, & B,_,, then let 4, denote the “distance” between X, and B,_,, i.e., for
all / with X; € B,_,, !/ — i = A,. Hence for X, &€ B,_,,

Exy, <o+ L) Gy + L) = A5G(4y)
@.16) A= LG

< LJ(L;S}/Q(AU + Ljfn)71+8+(.

The above follows by similar computations as before. The right-hand side of (4.16) is
o(L;=,) for some € > 0. However, if 4, = K}, for some y > 0, then we can write the right-hand
side of (4.16) as o(K,"") for some y’ > 0. Substituting in (4.13) we get an upper bound for the
right-hand side there to be

2 2
nYirKE L, exp{ “;(x) -(- 2L;fnun(x)/un(y))“"T(y)}

(4.17)

+ nK.K;" exp{_ui(x) — (1= 2K un(x)/un (1)) “’z‘z(y )} .

We have chosen K, such that u,(x)/u.(y) is bounded and L; 5, — 0 as n — . Thus the terms
in (4.17) are o(1) and the result follows.
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