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'ON THE BERRY-ESSEEN THEOREM FOR RANDOM U-STATISTICS!

BY IBRAHIM A. AHMAD

Memphis State University

A Berry-Esseén theorem for U-statistics when the sample size is random is
presented for the case when the random size is independent of the observations.
This result extends the work of Callaert and Janssen. As an application of the
special case of sample means, a rate of convergence to normality is obtained for
the supercritical Galton-Watson process. Other possible applications are in se-
quential analysis.

1. Introduction and the main result. Let Xi, ..., X,, n = 2, be independent identically
distributed (i.i.d.) random variables with distribution function F. Define a U-statistic by:

-1
(11) Un = (;) Elsi<jsn h(Xia X})’

where A(., .) is a symmetric function of two variables such that Eh(X:1, Xz) = 0 and that g(X)
= E[h(X1, X2) | X1] has a finite positive variance oZ. Further let {N,} be a sequence of positive
integer-valued random variables independent of the X;’s and such that E(N,) = m and Var(N,)
= my, are finite for all n. A random-sample size U-statistic is defined by:

-1
12) Un, = (1‘;‘) Sisicizn, KX, X)).

Recently, Callaert and Janssen (1978) established the Berry-Esseén theorem for U-statistics.
Precisely, they showed that if E| (X1, X2)|® = v3 < oo, then there exists an absolute constant
C such that for all n = 2, sup; | P[U, < 0.x] — ®(x)| = Cn~"*(v3/03), where o2 = (4/n)o3.
This result can be extended by modifying the proof of Callaert and Janssen (1978) to the case
when E | h(X1, X2) |**® = v245 < ®, 0 < § < 1 to obtain the bound Cn**(vp.s/03").

On the other hand, Sproule (1974), Theorem 7, proved that if N,/n converges in probability
to a discrete positive random variable, then P[Un, < 2,x/(N,)"/?] converges to the distribution
function of the standard normal variate as n — . Note that N,’s need not be independent of
the X/’s. It would be interesting to investigate the rates of convergence in Sproule’s theorem.
We obtain, assuming that N,’s and the X/’s are independent, a Berry-Esseén theorem.

Following Callaert and Janssen (1978) we define the projection of U, by

(13) U= (;’) Disi<j=n [(X) + g(X))].

Set V,, = (;) U,ond V, = (;) U.. The following is the main result of this note.

THEOREM 1.1. Let {X,}, n = 2, be a sequence of i.i.d. random variables and let {N,.} be a
sequence of positive integer-valued random variables independent of the X;'s and such that E(N,)
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= m and Var(N,) = my for all n. If E| h(X1, X2) |**® = va5 < 00,0 < 8 < 1, and if mo < o, then

172
(14) (i) supe| P[Uy, < 2x(VarPy)/2N;'] - @(x)| = c} (22 ) m—o2 + (22
P \ \ e —

s . 1/2 V2+s -5/2 my my/® 1/2
(1.5) (i) sups|P[Un,=<20gx/(Npn)"?] —®(x)| = C| S| M + 0 + =
&

where C is an absolute constant.

An important special case of a U-statistics is the sample mean, thus as a direct consequence
of Theorem 1 above we obtain a Berry-Esseén theorem for random sums. This problem was
also discussed by Landers and Rogge (1976) where they obtain analogous results without
assuming the independence between X;’s and N,’s but under more stringent conditions on the
indices {N,}.

As pointed out by Sproule (1974) random U-statistics are useful in various sequential
analysis applications such as sequential fixed width confidence intervals for population
functionals. Thus Theorem 1.1 should prove useful in obtaining rates of convergence of
sequential procedures that may be special cases of a random U-statistic.

An application of the sample mean special case to obtain rates of convergence in the central
limit theorem of an estimate of generation size in the supercritical Galton-Watson process is
presented to illustrate further uses of random Berry-Esseén theorems.

2. Proof of the theorem.

2

(1\2,") U, and consider sup. | P[Vy, < x (Var¥y,)"*] — ®(x) | = A,, say. But

() Let pan = P[Na = k], k=2, 3, ... and all n. Also let V, = (N> Uy, and Vy, =

An = Y 5wz Prasup:| P[Vi < x(VarVy,)/?] — ®(x)| = S prsA &
Q2.1 = Ykfk-mi<m/2 Pk,nA k+ Dklk-mi>m/2 Pk,nli k

=1+ I, say.

Let us evaluate bounds for I, and I, separately. In what follows C will always denote generic
constants not necessarily the same.

Iy = Thih-mizm/2 PraSuPs | P[Va/(Var Vi)'
22) =< x(Var f/Nn/Var Vk)l/z] - ®(x)|

< Ykik-mi=m/2 PrnSUpy| P[Us < x(VarUx)"?] — ®(y)|
Varf’N 2
—_ (I) n
o) (x ( VarVy )

But it follows from Callaert and Janssen (1978) that

+ Zk:lk—nqsm/z PrnSUPx =Ji+ Js, say.

V245 V2+s

Ji < Ykigh-misms2 Prn C (;ﬁ) k<=cC (—m) Skik-mi=m2 Prnlm/2) "2
g |

2.3) £ Y
V2+s -
= C(of,:‘s) m™2,
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Note also that since |®(x) — ®(ex) | = C|e — 1| for all € and x we have
var?u,\ |
VarV;

| VarVy, — VarV,|
VarV, '

J2 = Ykih-misms2 Prn
2.4)

= Ykh—mi=m/2 Ph

Note that VarV, = ko and VarVy, = E(N,)o2 . Hence we get

—kl_c my?

2.5) RHS of (2.4) < C Yrijk-mi=m/2 Pin |m = - E|N.—-m|=C

2
m
From (2.3) and (2.5) we obtain that

1/2
V2+5 - m2
(2:6) L= C{ (of,:“) m? 4 -m—}

Next, note that,

_ k—m
amn I = Yrpb-mism/2 Pl & < Yhih-misms2 Pin l_(m—/2T|
1/2

C
<—E|N,—m|= 2
m m

Thus we have proved that

1/2
V2+5 — m3
2.8 n < o2y =
@) A <C{(o§+‘*>m M m} 0<s=<l1.

(ii) Note that
sup. | P[Un, < 20,x/(N/*)] — ®(x)| = sup.| P[Vn, < x0(NY?)] — D(x) |

og(N'*)
(VarVy)"?

2.9) = sup.| P[Vn, < x (Var¥Vy)"?] — ®(x) |

= sup,| P[Vn,/(Var(Vn,))* < x¥n,] — ®(x)|,

where Yy, = (N./m)"/?, since VarVy, = mo2. Using Lemma 1 of Michel and Pfanzagl (1971)
we have that for any r > 0,

(2.10)  sup.| P[Un, < 20,x/(N,)""*] — ®(x)|

1/2
= sup:| P[Vn, < x(Var(Vn )] — ®(x) | + P[ ‘ (%) -1 ‘ > r] +r.

Choosing r = (m3'*/m)"? the desired conclusion follows since
1/2
n N,
P[ (%) -1 ze]sP[an—m|Zmr]svar( )=<2§>r‘2. O

m*r? \m

3. An application to branching processes. Let Z, = 1, Z;, Z,, ... denote a supercritical

Galton-Watson branching process with EZ, = m > 1 and VarZ, = 0% < . It is well known

that W, = m™"Z, converges with probability one to a nondegenerate random variable W as

n — oo (Harris (1963), page 13). Heyde (1971) showed that (m*> — m)"/%6™'Z; "2 m (W — W,,)

is asymptotically standard normal. Furthermore Heyde and Brown (1971) derived a rate of
convergence in this result, viz.,

3.1) sup:| P[(m* — m)"207'Z;""m"(W — W,) < x| Z, > 0] — ®(x)
) P
< Co~®V(m? — m)**2 (23| Z, > 0O)E|W— 1|29, 0<dé=1,
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provided E | Z;|**® < . The case § = 1 is proved in Theorem 2 of Heyde and the case 0 < §
< 1-can be proved by the easily adaptable lemma of Heyde and Brown (1971).

On the other hand it is possible to use the above theorem to give another bound which does
not involve the evaluation of EZ,%2. Precisely we prove the following result.

THEOREM 3.1 If E| Z,|?*"? < 0,0 < § < |, then
(32)  sup:| P[(m* — m)"%67'Z;V’m"(W — W,) < x| Z, > 0] — D(x) |

<C E|W—1|* (m? — m)**® [Var(Z.| Z. > 0)]'/*
a o** (EZn|Za >0~ E(Zn|Z» > 0)

[Var(Z.| Z. > 0)]" 2}

(E(Z.|Z:]0)]"*

Proor. Note that given Z, > 0, m"Z,*(W — W,) has the same distribution as(Z*)"/?
(X1 + --- + Xz), where the X; are ii.d. and are independent of Z} which is Z, under the
probability measure conditional on Z, > 0. Thus by the above theorem we get

sup: | P[(m® — m)207'Z;*m™"(W — W,) < x| Z, > 0] — D(x) |
(33) = sup.| P[Sz; = x(VarXy)V(Z)"* — ®(x) |

El X |2+s i my? mV/2 1/2
= l=—= 2=+
{([Var(xl)]“‘s " m \m) |

where m = EZ¥. Since the distribution of X; is the same as that of W — 1, the desired
conclusion follows. [

REFERENCES

[1] CALLAERT, H. and JANSSEN, P. (1978). The Berry-Esseén theorem for U-statistics. Ann. Statist. 6 417-
421.

[2] Harris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.

[3] HEYDE, C. C. (1971). Some central limit analogues for supercritical Galton-Watson processes. J. Appl.
Probability 8 52-59.

[4] HEYDE, C. C. and BROWN, B. M. (1971). An invariance principle and some convergence rate results
for branching processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 271-278.

[5] LANDERs, D. and ROGGE, L. (1976). The exact approximation order in the central limit theorem for
random summation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 264-283.

[6] MicHEL, R. and PFaNzAGL, J. (1971). The accuracy of the normal approximation for minimum
contrast estimates. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 73-84.

[7] SPrROULE, R. N. (1974). Asymptotic properties of U-statistics. Trans. Amer. Math. Soc. 199 55-64.

DEPARTMENT OF MATHEMATICAL SCIENCES
MEMPHIS STATE UNIVERSITY
MEeMPHIS, TENNESSEE 38152



