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EDGEWORTH EXPANSIONS FOR LINEAR COMBINATIONS OF ORDER
STATISTICS WITH SMOOTH WEIGHT FUNCTIONS'

By R. HELMERS

Mathematical Centre, Amsterdam

Edgeworth expansions for linear combinations of order statistics are estab-
lished. The theorems require smooth weight functions and the underlying distri-
bution function must possess a finite fourth moment. In addition a local smooth-
ness condition is imposed on the underlying distribution function.

1. Introduction. Statistics of the form T, = n™' Yoy ¢inXin, n = 1, where Xin i = 1, 2,
.., n denotes the ith order statistic of a random sample X, ---, X, of size n from a
distribution with distribution function (df)F and the ci,, i = 1, 2, --., n are known real
numbers (weights), are said to be linear combinations of order statistics. In the last decade
there has been considerable interest in these statistics with regard to the problem of their
asymptotic normality, which has been investigated under different sets of conditions by many
authors in this area. We refer to the important papers of Shorack (1972) and Stigler (1974)
and the references given in these papers. More recently attention has been paid to the rate of
convergence problem. Berry-Esseen type bounds for linear combinations of order statistics
were established by Bjerve (1977) and by the author (1977), (1980).

The purpose of this paper is to establish Edgeworth expansions for linear combinations of
order statistics with remainder o(n™") for the case of smooth weights. Our method of proof was
outlined by van Zwet (1977). In his paper he obtained a bound on the characteristic function
of a linear combination of order statistics which solves a crucial part of our problem. A
drawback of the approach followed in the present paper is that our results do not include
trimmed means. However Bjerve (1974) has shown that trimmed means admit asymptotic
expansions. In Helmers (1979) Edgeworth expansions for trimmed linear combinations of
order statistics are established. The results of this paper as well as related ones are summarized
in Helmers (1980).

The paper is organized as follows: in Section 2 we state our results in the form of two
theorems. Section 3 contains a few preliminaries. Theorem 2.1 is proved in Section 4 and
Theorem 2.2 in Section 5.

2. The Results. Let J be a bounded function on (0, 1), which is three times differentiable
with first, second and third derivative J’, J” and J " on (0, 1). Let J” be bounded on (0, 1)
and let F be a df with finite fourth moment. The inverse of a df will always be the left-
continuous one. x ¢ denotes the indicator of a set E. Let || A || = supo<.<1 | (s)| for any function
h on (0, 1). Introduce functions A, h> and h; by

2.1 hi(u) = — Jr J($) (X051 () = 5) dF~'(5)
0

22 ho(u, v) = — J' T (8) (X051 (#) = $) (X0 (¥) = 5) dF~'(5)

Received March 1977; revised July 1978.
' This paper is a revised version of Mathematical Centre report SW44. It was written while the author
was on leave at the Université de Montréal.
AMS 1970 subject classifications. Primary 62G30: secondary 62E20.
Key words and phrases. Linear combinatons of order statistics, L-estimators, Edgeworth expansions,
second order efficiency, deficiency.
1361

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKOIE ®

Www.jstor.org



1362 R. HELMERS

(23) h3(u7 v, W) == J’ J"(S)(X(u.xl(“) - 5)(X<o.~|(") - 5)(X<o,s|(W) - S) dF“(S)

for 0 < u, v, w < 1. Furthermore define, for each n = 1 and real x, the function K, by

K3

24)  Kn(x) = ®(x) — ¢(x) [— x*=-1+

K4

24n

2
= (x* = 3x) + % (x® = 10x* + 15x)]

where ® and ¢ denote the df and the density of the standard normal distribution. The
quantities k3 = k3(J, F) and k4 = k4(J, F) are given by

2.5)  Kk3=«k3(J, F) =?(—JI—F; U) hiu) du + 3 J; L hi(uhi (V)he (u, v) du dv:l

[0

and
K4 = K4(J, F)
l l 4 4
(26) =04—(‘]:F)‘|i£ hl(u)du—3o (J, F)
+ IZJ' f hi(u)hi(v)ho(u, v) du dv
0 0
+ J j J' (Gh (i (VYR (Wha(u, v, w) + 12k (w)hs (v)o(u, w)he (v, w)) du dv dw:|
o Jo Jo
where
Q@7 o2=0%J, F)= J' hi(u) du.
0

In our first theorem we shall establish an asymptotic expansion with remainder o(n™") for the
df F¥(x) = P(T% < x) for —oo < x < o where

2.8) Tk = (T, — E(T))/o(Ty)

for the case of smooth weights.

THEOREM 2.1.  Suppose that

2.9) Ci"=1(n-:-l) for i=1,2cem =12 .
J is three times differentiable on (0, 1) with first, second and third bounded derivative J', J” and
J"” on (0, 1). Suppose further that there exists an open neighbourhood in [0, 1] in which the
density f(F (1)) and the second derivative f'( F ~\(t)) exist and are bounded and in which J(t)
and f( F~'(t)) are bounded away from zero. Suppose also that F possesses a finite fourth moment
Bs = EX1. Then we have that

lim,_. n sup.| FX(x) — Ka(x)| = 0.

Our second theorem is a modification of Theorem 2.1 which lends itself better to applica-
tions. We shall establish an asymptotic expansion with remainder o(n™") for the df G.(x) =
P(n"*(T, — p)/o < x) for —0 < x < o where

1

(2.10) p=u(J, F)= J F7Y(s)J(s) ds

0

and ¢ = ¢*(J, F) as in (2.7). Introduce a function h4 by
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(2.11) ha(u) = — f (% = 9" ()X 1 (W) = 5) dF~\(s),

for 0 < u < . Furthermore, quantities a = a(J, F) and b = b(J, F) are given by

2.12) a=a(J,F)= : [2' j s(1 — $)J'(s) dF'(s) — j F(s)(% — 5)J'(s) ds]
o(J, F) A b

and

1

[j (hi(wha(u, u) + 2h1(w)hs(v)) du
@.13) ’

1 1
+ Jr J' Q27 'h3(u, v) + hi(uhs(u, v, v)) du dv:I.
0 0

Finally define, for each n = | and real x, the function L, by
a + (aks + a® + Zb)x axs 3] .

(2.14) Ln(x) = Ka(x) = (x) [ - n 6n

THEOREM 2.2.  Suppose that the assumptions of Theorem 2.1 are satisfied. Then we have that

limy_. 7 supy| Ga(x) = La(x)| = 0.

It may be useful to comment briefly on these results. In the first place we remark that it is
not difficult to check from our proofs that assumption (2.9) (see Chernoff, et al., (1967) and
Stigler (1974) where the same type of weights are considered) can be replaced by the weaker
condition that

i/n i/n
maXi<i<n | Cin — N J J(s) ds — J' M(s)ds| = O(n™), as n— o,

(i—=1)/n (i—1)/n
for some y > % and smooth functions J and M (J(M) must have bounded third (first)
derivative on (0, 1)), provided we replace the factor (‘2 — 5)J’(s) appearing in the integrands
‘of (2.11) and (2.12) by M(s). In particular this condition is satisfied in either one of the
following cases: ¢i» = J(i/n) (see Moore (1968)) or

i/n
Cn="n J J(s) ds
(

i—1)/n

(see Bickel (1967)) with M(s) = % J'(s) and M(s) = O respectively.

Secondly we note that the assumptions required for J and F to hold on an open
neighbourhood in [0, 1] are needed to ensure sufficient smoothness of F} and G,, which is
what Cramér’s condition (C) (see Cramér (1962)) does in the classical case of sums of
independent and identically distributed random variables (cf. the proof of relation (4.2); see
also van Zwet (1977)). V

Next we give a numerical example which indicates that the expansions given in this paper
perform well as approximations of the finite sample exact df’s. It also shows that they can be
much better than the usual normal approximation.

We consider the asymptotically first order efficient estimator, based on linear combinations
of order statistics with weights ¢, = J(i/(n + 1)), of the centre 6 of the logistic distribution

Fx)=[l+e """ for —w<x<o
which is (see, e.g., David (1970), page 224) given by the weight function
J(s) = 6s(1 —3), O0<s< 1.
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As.F is symmetric about its expectation and J is symmetric about % we can check that in such
a case ky(J, F) =a(J, F) = 0 (cf. (2.5) and (2.12)); i.e., there is no term of order n~'/2 in the
expansion. After long but straightforward computations we find that

1 11— 72
La(x) = ®(x) — g(x) [M (x* = 3x) +(—”L)x] .

In the following table we give the numerical results. The exact df Gn(x) is computed by
numerical integration of the multiple integrals involved in this computation for n = 3 and n
= 4 and by Monte-Carlo simulation based on 25,000 samples for n = 10 and n = 25.

The agreement between G, and L, is very reasonable. Already for sample size n = 3 the
expansion performs much better than the normal approximation as approximations of the
finite sample exact df’s. It seems useful to add a comment on how the related Cornish-Fisher
expansion improves accuracy as regards the percentiles of the exact df: for the sample size n
= 3 the normal 95% percentile 1.6449 underestimates the actual percentile 2.1609 (obtained by
a simulation based on 25,000 samples) by 24 percent. Applying the Cornish-Fisher expansion
for the percentage points we get 2.2566 as our estimate for the actual percentage.

To conclude this section it may be mentioned that an important application of the
asymptotic expansions established in this paper lies in the computation of asymptotic defi-
ciencies in the sense of Hodges and Lehmann (1970) for estimators and tests based on linear
combinations of order statistics. These computations are given in Helmers (1980). Here we
note only (we omit the details) that in the asymmetric case the phenomenon, first noted by
Pfanzagl (1979), that “first order efficiency implies second order efficiency” (see also Bickel
and van Zwet (1978), p 940 and 988) also holds true for linear combinations of order statistics.

3. Preliminaries. In this section we present a few preliminary results which will be needed
in our proofs.

Let, foreachn=1, Uy, ---, U, be independent uniform (0, 1) rv’s and let U,,(l =i <n)
denote the ith order statistic of Uy, - - -, U,. It is well known that the joint distribution of X,
-+, Xy is the same as that of ( F~'(U,), - - -, F~'(U,)) for any df F. Therefore we shall identify
X; with F~'(U,) and also X;, with F~'(U,,). The empirical df based on U, ---, U, will be
denoted by I',. Throughout this paper we shall assume that all rv’s are defined on the same
probability space (2, 4, P). For any rv X with 0 < o(X) < o we write X = X — &(X) and X *
= X/o(X). For any positive number / the /th absolute moment of F will be denoted by B:. We
start by stating an obvious result concerning the finiteness of certain integrals.

TABLE 1

X Gy Ly G, L, G Ly Gos Lo P

0.0 .5000 .5000 .5000 .5000 .5000 .5000 4991 .5000 .5000
0.2 .5640 .5536 .5663 .5601 5734 5716 5758 .5762 5793
04 6262 .6069 6307 .6190 .6445 .6409 .6492 .6495 .6554
0.6 .6850 6592 6919 6759 .7089 .7058 7152 7177 1257
0.8 7391 .7100 7469 7318 7680 7647 7728 7788 7881
1.0 1875 7583 7963 7790 8196 .8164 8295 8314 8413
1.2 .8248 .8032 .8391 .8236 .8629 .8604 .8756 8752 .8849
1.4 .8658 .8439 8752 .8627 .8985 .8966 9100 9102 9192
1.6 .8958 8797 .9049 .8960 9275 .9256 9376 9374 9452
1.8 .9202 9100 9287 9234 .9486 .9478 9580 9576 9641
2.0 9397 9347 9474 .9454 .9646 9645 9732 9711 9772
22 .9550 .9543 9618 .9622 9764 .9766 .9830 9824 9861
24 .9669 9691 9726 9748 .9845 .9850 .9895 9890 9918
2.6 9758 9798 .9807 .9837 9905 .9907 9942 9934 9953
2.8 9825 .9873 9865 9899 9937 9945 .9963 .9963 9974
3.0 9875 .9863 .9907 9939 .9959 .9968 .9982 9879 9987
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LEMMA 3.1. (a) Let I be a number > 1 and let, for some § > 0, B1..s < . Then there exists
A > 0, depending on | and 8, such that

1
3.1 J (s(1 = sHV' dF~'(s) = AR < oo;
0
(b) If 1 =1and 8 = 0 then (3.1) holds with A = 1.
ProOF. Applying integration by parts we obtain

(3.2) J (s(1 = )" dF~(s)
0

1

=l =)' F )| =1 J F7s)(s(1 = )71 = 25) ds.

0

Note that under the assumptions (a) and (b) the first term on the right of (3.2) is easily seen
to be zero. To conclude the proof of part (a) we apply Holder’s inequality to the second term
on the right of (3.2):

(3.3) l“f FU(s)(s(1 = 5)) /"= ds sj | F~\(s)| (s(1 = s)) /D" ds
0 0

1
< Bm‘xlﬁs» ( J (s(l _ s))—l+0‘/l(l+6—l) ds) (I+6—=1)/(1+8) < 0.
0

The proof of part (b) is immediate from (3.2) and the remark made after it. This completes the
proof of the lemma. 0
The second lemma of this section will enable us to estimate certain moments.

LeMMA 3.2. Let I be a positive integer and let, for some 8 > 0, Bi.s < . Then for any
number p, for which pl = 2, there exists A > 0 depending only on p, | and §, such that

1 !
3.4 g(J’ |Fn(s)—s|” dF'l(s)) SABK(;M)n—pl/z.
0

ProoF. By Fubini’s theorem we have
1 1 1 1
& (j |Tu(s) = s|” dF'(s)) = j e j 6111 | Tu(si) — si|” dF (1) - - dF ~'(s1).
0 0 (1)

An application of Holder’s inequality shows that
E =1 ITu(s:) = s:” < [Ii=1 (& | Ta(si) = s: )

forall0< s, ---, ss < l. Hence we know that

1 ! 1 . !
g(J' | Tr(s) — s|? dF-‘(s)) =< (f (&|Tu(s) = 5P dF“(s)).
0 0

Since T(s) = n™' Y1 Xos(Ui) for all 0 < s < 1 and n = | the Marcinkievitz, Zygmund,
Chung inequality (see Chung (1951)) yields forp/=2,n=land 0 <s <1

& |Tu(s) — s|” < Bn™"*s(1 — 5)

where B > 0 depends only on p and /. It follows that

1 ! 1 1/1 !
f(J' | T(s) = s|” dF'(s)) an‘”’/z(f (s(1 —s)) dF“(s)>‘
0 0
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An application of Lemma 3.1 completes our proof. 0
To formulate the third and final lemma of this section we introduce a function H by

(3.5) mw=f|mmwrwhﬁ”m
forO<u<|.

LemMa 3.3. (a) Let [ = | and suppose that B, < . Then & H'(U,) < .

(b). Let B < o and suppose that J " is bounded on (0, 1). Then 6h\(U;) = O for any i and with
probability one &(h:(U;, Uy)| U;) = 0 for i # j and &(hs(U, U;, Uy)| Uy, Up) =0 ifi 5 jand i
# k.

PROOF. () It is immediate from (3.5) and the ¢, — inequality that

! !
(3.6) EH'(U) = 2"[5 <f sd F"(s)) + & ( f (1=y) dF“(s)) } )
.U w,,n

Using integration by parts, the finiteness of 8; and applying the ¢, — inequality once more we
easily check that the moments appearing on the right-hand side of (3.6) are both finite. This
proves part (a) of the lemma. To see that part (b) of the lemma is also true we shall only prove
the last statement of part (b). The other two statements are easier and can be proved similarly.
Using Fubini’s theorem and applying part (a) of the lemma we see that with probability one

1
& (J' | J”(s)| Ix(o,S](Ui) - S| IX(O,S](l]f) - SI IX(O,Sl(Uk) - s' dF_l(S)I U, Uk)
0

=||J"|-8H(U)) < .

Therefore the conditional expectation &(hs(Ui, U;, Ux)| U;, Uy) is well-defined and Fubini’s
theorem can be applied to see that &(hs(Ui, U;, Ux)| Uj, Ux) = 0 with probability one. 0O

4. Proof of Theorem 2.1. Since our proofs will depend on characteristic function (c.f.)
arguments let us denote by p(¢) the c.f. of T and by p,() the Fourier-Stieltjes transform

on(t) = J' exp(itx) dK,(x) of K, (see (2.4)).

We shall show that for some sufficiently small € > 0

@1 j loX(1) = Ba(n)| | 1] di = o(n™")
|t|=n¢

and that

@2 j X 11" di = o(n™")
n‘s|l|5n"’/3

and

4.3) f | 6.(t)| | £]™" dt = o(n™")
|t|>log(n+1)

hold as n — . An application of Esseen’s smoothness lemma (Esseen (1945)) will then
complete our proof.

We first prove (4.1). We shall essentially have to expand p#(t) for these “small” values of
| £]. To start with we define for 0 <u < 1

4.4) Yi(u) = J J(s) ds — (1 — w)J,

u
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and
Yo(u) = J' % — $)J'(s) ds — (1 — u)J:

where J, = [} J(s)ds and J, = [} (%2 — 5)J(s) ds. Then it is easy to check (see Shorack (1972)
for a similar approach) that with probability one

f G(Tn(s) + 17 Ya(Ta(s))) dF () + (Jy + 07 To)n™" Ty F7I(U)

(45) i/n in
+n7 'YL, (ci,, -n f J(s) ds — J' % — 5)J'(s) ds) F~Y(Us).
(

(i—=1)/n i—=1)/n

Introduce, for each n = 1, the rv S, by (a prime denoting differentiation),
1
Sn = I { Yu(s) + n7" a(s) + (Tuls) = SHWH(S) + n™¥5(s)
0

La(s) =

“6) S gy 4 L) 50

L yrs )} dF(s)
+ (j] + n_'jg)n_' ,"'=1 F_I(U,‘).

Note that | (u)| < 4| J||u(l — u) and |Y2(u)| < 4||J’ |u(l — u) for 0 < u < 1, and that ¥/(s)
= —J(s) + Ji, ¥i(s) = (s — W) J'(s) + Jo, 7 (s) = — J'(s) and 1" (s) = — J "(s) on (0, 1) so that
it is easily verified that S, is a well-defined rv.

We introduce some more notation. Define rv’s I,, form = 1,2,3,4and n =1 by

@7  Ln=- J' J($)Tals) — 5) dE~(s) = n™" Yoy hi(U)

(48) L= J'J()Mdf‘ i(s) = 2"'n "2 Y, Y0y ho(Us, Uy)

49) I = f J”()m———)dF i(s) = 67'n ™ Yoy Yoy The1 ho(Us, Uy, Us)
0

(4.10) Iin=—n" J (% = 5) J'(S)Ta(s) — 5) dF\(s) = ™% Y0y ha(U)
0

where the functions h;, h2, hy and h4 are given by (2.1), (2.2), (2.3) and (2.11). It is easily
checked that

@.11) Sn=Sn—= ESn =Yt Lnn= Y=t (Inn — & Imn).
Furthermore define rv’s J,, form=1,2,3,4and n = 1 by

4.12) Irn = Inn/0(Sn) = (Inn = & Lnn)/0(Sn),

so that

4.13) Sk =Ym=1 Jmn.

The proof of (4.1) will now be split up in a number of steps. We begin by deriving an
asymptotic expansion for the variance of S,; i.e., we shall first prove

(4.14) |6%(S.) — n7'0® = 2n7%’h| = O(n™"?)  as n— o

with 62 = ¢*(J, F) and b = b(J, F) as in (2.7) and (2.13). To see this we first note that (cf.
(4.11)) 6%(S.) = 0 (Tm=1 Lnn). It follows directly from (4.7) and (2.7) that ¢ Y1) = n"'o%
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Also note that it is immediate from (4.7), (4.8) and an application of Lemma 3.3 that

2 CoV(lin, Isn) = 26 nton = n7* Y7oy Y7y Yoot ER(UDR(U;, Uy)
1
=n"? J' hi(u)h2(u, u) du.
0

Next we consider 0°(:,). Using Lemma 3.1 and Lemma 3.3 once more we directly find that
813, = 47'n7(6hA(Us, U))Y + 2707 6A3(U,, Us) + O(n™)  as n— .

Because we also know that (&1,,)° = 4™ 'n"*(&ho(U,, Uy))* we have shown that

1 1
0% (1) =2"'n"? f J' h3(u, vydudv+ O™ as n— o
0 0
Similarly we can prove that

1 1
2 Cov(lin, I3n) = n72 J f hi(whs(u, v, vV dudv+ O(n™®) as n—
0 0

and also that
1

2 Cov(lin, Is,) =2n" J' hi(u)hy(u) du.

0
Finally we remark that we can prove using similar arguments as above that
o*(Isn) + *(Is) = O(n™)  as n—o
and also that
| Cov(Z2n, I32) + CoV(Isn, I4n) + Cov(Isn, Isn)| = O(n™?) as n— o,
Combining all these results we have proved (4.14). It follows directly from (4.14) that
(4.15) [67™(Sx) — n™ %™ | = 0O(m™*") as n—o

with 0% = 6%(J, F) as in (2.7).
To proceed we shall prove that T — S¥ is of negligible order for our purposes. Let 7
denote the c.f. of S*. We shall show that for every ¢ > 0

(4.16) J' | px(t) — X (0| |t|™ dt = O(n~*?*) as n—> .
|t|=ne

To prove this we first use Lemma X.V.4.1 of Feller (1966) to see that
4.17) loX(t) — 7X(t)| < |t| &| T* — S¥|

for all r and n = 1. Using (4.5), (4.6), the boundedness of J ” on (0, 1) and applying Taylor’s
theorem we see directly that

1

2
o(Tn— S2) <3| J"|?6 <J' Tn(s) — 5)* dF"(s))

0

1 2
+3|J" ||2n'26“( J (Ta(s) — s5)? dF"(s))

. i/n )
+ 302<n-1 (J (;) -n J' J(s) ds
n+1 )
(i=1/n
i/n l
- J' (5 - S)Jl(s) dS) F_I(U,‘,,)>.
(i=1)/n

(4.18)
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Applications of Lemma 3.2 with /=2 and p =2andp =4 respectively implies that the sum
of the first two terms on the right of (4.18) is O(n™*), as n — . To treat the third term on the
right of (4.18) we need the following simple inequality: 6> (XL aiXin) = o° T biXin),
provided a;a; < b;b; for all 1 <, j < n. (cf. Helmers (1977), page 943). Using this and the fact
that it is easily verified that

. i/n i/n
1 1 ,
(4.19) maxi<i=a|J (m) - nJ'. J(s) ds — f <§ - s) J'(s) ds|
(i—1)/n (i—1y/n

=0(n7? as now

we find that the third term on the right of (4.18) is O(n™") as n — . Combining these results
it is easy to conclude that

(4.20) (T, — S»)=0(n™") as n— oo,

To complete our proof of (4.16) we remark that it follows now from (4.20), (4.15) (with m =

—2) and the fact that the conditions of Theorem 2.1 can be shown to imply the positivity of

6%(J, F) that 6*(T* — S*) = O(n™?) as n — co. This combined with (4.17) proves (4.16).
Next we define for real rand n = 1

ity
4.21) Tin(t) = €™ (1 + it( Jon + Jan + Jun) + (IT) J3n).

We shall show that 7} can be approximated by 71, for all |z < n®: i.e., for every ¢ >0

4.22) J’ | T2(t) — Ta(®)| [t] T dt = O(™")  as n— oo,
|t|=n¢

To prove this we first use Lemma X.V.4.1 of Feller (1966) once more to find that

. it 2 )
|T:(t) _ Tln(f)l - 6‘8”"'"(8'“'l'“’"+'l""+'l"') — 1 — it Jon + Jon + Jan) _(_li_)__ J%n)

Stz(é[l-l‘lnjzlnl + 6'-’2n-’4n| +(§|J3nj4n| +£J_;n + 6an)+ |t|3£|J2n +J3n +J4n|3s

for all t and n = L. It is not difficult to verify from the proof of (4.14) and from (4.15) that the
coefficient of ¢2 in the above inequality is O(n~*?) as n — . An application of the ¢, —
inequality Lemma 3.2 with / = 3 and p = 2, 3 and 4 respectively and of (4.15) shows that also
&| Jon + Jsn + Jun|* = O(n™"?) as n — 0. Combining these results we can check that (4.22)
is proved.

We continue with the analysis of 71.(f). For convenience we write 62 to indicate no’*(S,)
and we denote the c.f. of hi(Uy) by p. To start with we remark that it follows from (4.21) that

t
Tin(t) = p (m)

it p"z(nl/t._,o )n(n - l)é‘ exp( i (h](Ul) + hl(Ug))>

+ 2n;’/2o,. nl/zo,.

<hy (Ui, Uy)

(L g exp( ——h(U)) )i Ur U)
7 \n'a, P\ 172, YD) JAR B

it nsf L _
+ 6"5/20,1 o <n1/20">n(n - l)(n 2)

-8 exp(—i— (m(Uy) + h(U:) + hl(U’i))> <hy(Uy, Us, Us)

3
nl/'o,.

it 5 t
+ — n-s — |3n(n — 1
6n"%0n 4 (nl/_a"> ( )
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-é"exp(n 7 (hy(Uy) + hl(U"))> hy(Uy, Uy, Uy)
it t it - '
+ e p"“(nl/2 )n 6exp( (Ul)) hy(Uy, Un, Uy)

+ (b ) n & exp( e hi(UN | i(U
mp ey n exp hi(Uy) Jha(U)

(lt)
8 n’e’

_4 !
—=p" <n1/20 )n(n = D(n—2)n—-3)
“4.23)
(é”exp( (hl( Uy) + h( U‘))))hz(Uh Uz))

+ 8(”’) 5 p""( >4n(n - D(n-2)

é”exp( (hl(Ul) + h(Us) + hl(Ua))>h2(U1, Us)hy (U, Us)

+ 8(:’) 5 p""( )Zn(n —)(n—-2)

.(g’exp< I (hl(U1) + h(U2) + hl(Uq)))hz(Ul, U)he(Us, Us)

U p""<n )4n(n -1

8n30

é"exp( (hl(Ul) +h (U7))>h2(Ul, Ul) hz(Ul, Uz)

@ _
+ el (n >2n(n l)é"exp( (h1(U1)+h1(U2))>

«(ho(Us, U))?

* 8(,:? 2 pn_z(nl/tza ) (et 1)(é"€xp< ! (Ul))};z(Uh o

8n’s:

+ (”)Zp""< o )né"exp< il I(Ul))(iiz(vl, Uy

To proceed we first derive an asymptotic expansion for the factors p”~™(¢/n'/%0,) appearing
in the terms on the right of (4.23). Since o~'(n — m)™'> T/" hi(U;) is a properly standardized
sum of independent identically distributed rv’s with expectation zero, variance one, and finite
fourth moment, an expansion with remainder o(n™") for p" ™(t/(n — m)'/%o) for | | = an"'’* for
some a > 0 follows directly from the classical theory of Edgeworth expansions for such sums
(see, e.g., Gnedenko- Kolmogorov (1954), Section 41, Theorem 2.1, inequality (b)). We perform
a change of variables 1, = "%, /((n — m)'%0). It follows after expanding e” *%/2 around t and
using (4.14) that we obtain for some a > 0 and all n = 1, uniformly for all | 1| < an'?

n-m ! —¢2 2 _(L)2 _’f
p (—72—1 ) /(1 n(2+b>
1 1 2
(u) f HOR (zt)‘( j hi(u) du — 30‘) (it)s( j hi(u) du) ) l

4.24) 717253 24no* + 72no®

= o(n'l |t| P()e™*), as n— oo
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where P is a fixed polynomial in ¢, ¢° = ¢*(J, F) is as in (2.7) and b = b(J, F) as in (2.13).

Next we expand the expectations appearing on the right of (4.23). We shall show that
uniformly for all #:

‘ 6exp< (hl(Ul) + hy(U: )))h (Ui, U>)

(4.25) (") J J' hy(uyhy(v)ha(u, v) du dv

_

=73 J’ J' R (Vha(u, v) du dv | = O(n~(t* + t*) + 72 |t ]?).

(4.26)

é"exp( h (U]))};Q(Ul, U])—nll—/t_,of hl(u)hg(u, u) du
0

= 0(n™'* + n~2 1)),
(427) ‘ é"exp( (h](U]) + hl(U ) + h (U;))) :;(U], Uz, U:))

(:/tz) ,,J’ J' J hi(whi(v)hi(W)hs(u, v, w) du dv dw

=0m™" + n2 |t ).

(4.28) ‘ é"exp( (hl(U )+ h (U7))> 3(Ur, U, U2)

. 1 1
t
- ﬁJ’ J' hi(u)hs(u, v, v) du dv

é”exp( hi(U, )) s(Un, Ui, Ur) ‘ 0("_1/)“')

= O™ 't* + n 2| t)).

(4.29)

(4.30) ‘ é"exp( h (U1))h4(U) —,—f hi(ha(u) du | = O(n™'t* + n=%2|¢t]).

“4.31) ‘ (é”exp( 77, (h(U,) + hl(UZ)))h2(U1, U2))

- (j I )2
53 h1(W)hi1(v)ho(u, v) du dv
n°c

4.32) ‘ & exp( (hl(Ul) + h(Us) + hl(Us)))hv(Ul, Ux)ho(Ur, Us)
el
hi(Whi(v)h2(u, w)hs(v, w) du dv dw

(433) ‘ é‘exp( 1/2 (h](U ) + h (U?) + h](U;))) ‘z(Ul, U])hg(Uz, U';)

=02 |t|° + n7%).

= 0™ |t + n*%).

= 0(n73/2 I t |3).

(434) ‘ é"exp( (h](U ) + hl(U ))) Ag(Ul, U])hg(Ul, Uz) = 0(}1_1/2'[').

(4.35) ‘ é’exp( (hl(U ) + h(U: )))(h7(U1, U2)y

1 1
- f J h3(u, v) du dv
0 0

= 0(n™21)).
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) . 2
(436) . (d’ exp(nﬁlltfa: hl(Ul))’;z(Ul, Ul)) = O(n_llz).
(437) ‘ (gCXP( it 1(U1)>(h2(U1, Ul))2 = 0(1), as n— oo,

Because the statements (4.25)—(4.37) are all proved in essentially the same manner we
shall only prove, by way of an example, (4.25). Expanding exp((it/n"26,)(h1(U1) + hi(Uz)))
around ¢ = 0 and applying Lemma 3.3 we find for all ¢

2
I JCXP( 72, (hy(Uy) + hl(U2))>h2(U1, Us) —QJ J’ hy(u)hi(V)ha(u, v) du dv

(4.38)

4

f t
U =73 & | m(Ur) + hy(Us)|?| he(Ur, Up)|.

o7 J j h3(w)hi(v)ha(u, v) du dv

Application of Lemma 3.3. (a) (note that | ho(Uy, Us)| < || J'||- H(U:) for i=1, 2) shows that
the term on the right of (4.38) is O(n~%0,**). Since (4.15) implies that 0;,' = 0~! + O(n™') we
have proved (4.25).

We are now in a position to prove (4.1). We first apply (4.16) with 0 < ¢ < % to see that the
integral on the left of (4.16) is o(n™"), as n — . Secondly we use (4.22) with 0 < ¢ < % to find
that the integral on the left of (4.22) is also o(n™"). To proceed let us note that we can write
down pn(t) explicitly as

jt%s  3kat* — k366
439 () = e[ 1 — 2 + :
4.39) on(t) =€ ( 6n'’? T2n

Next we apply (4.39) and (4.23) — (4.37) to check that
(440) [ im0 =il ar= o™
|t|=anl/2

with g as in (4.24). Hence we can conclude that (4.1) holds for 0 < ¢ < %.

Next we consider (4.2) and (4.3). To prove (4.2) we remark first that application of Theorem
4.1 of van Zwet (1977) shows that his bound applies to our situation, under the conditions of
Theorem 2.1. It is also clear from van Zwet (1977) that the only missing ingredient to complete
the proof of (4.2) is the requirement that there exist positive numbers e and E such that e <
n'?6(T,) < E for all n = 1. To see this we first use (4.15) and the positivity of o> = o%(J, F)
to see that n'/%0(S,) is bounded away from zero and infinity and then apply (4.20). This proves
(4.2). To see that (4.3) is also true we simply use (4.40) and the fact that k3 and k4 are finite
under the assumptions of Theorem 2.1. This completes the proof of Theorem 2.1.

5. Proof of Theorem 2.2. To start with we remark that for each n = 1 and real x
G.1) Gn(x) = FX¥(xon V2% Y(T,) + (1 — € (Tn))o " {(Ty)).
Using this identity and applying Theorem 2.1 we find that
(5.2)  supx| Ga(x) — Kn(xon V267 Y(T,) + (n — &(T))o "(T))| = o(n“) as n— o,

To proceed we need expansions for on /%6 ~(T,) and (n — &(T»))o~'(T,.). We shall first prove
that

(5.3) lon 26 (T,) = 1+ bn"'|=0n"**) as n—ow

with b = b(J, F) as in (2.13). Application of (4.15), (4.20) and the Cauchy-Schwarz inequality
yields

o? o2 a2 e
54 naZ(T,,) oS, )( + O(n~"?)) as n .
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Relation (4.14) implies that
2
o

no*(Sy)

Combining (5.4) and (5.5) we find

b )
(5.5) =1-2-4+0n*) as n—o o,
n

02

b 3/2
=1—2;+ on™? as n— o,

from which (5.3) is immediate. Next we shall show that
.7 | — 6T~ (Tn) — an™2| = O(™*)  as n—w,
with @ = a(J, F) as in (2.12). We first use (4.5), (4.6) and Taylor’s theorem to find that

E|T,— S| = O(é”J’ | Tr(s) — s|* dF~'(s)
(5.8) ’ 1
+n! é"J |Tra(s) — 5|2 dF7'(s) + n™2 €| Xa |)
0

as n — oo, Application of Lemma 3.2 implies that the first term on the right of (5.8) is O(n™%)
as n — o, To treat the second term on the right of (5.8) we first note that this term is at most
n" & ([§ | Tw(s) — 5*| dF'(s))*)"/* and then we apply Lemma 3.2 once more to find that this
term is O(n"%) as n — . Combining these results we obtain

(5.9) ETo=ESn+ OE|To— Su|) = € Su + O(n7?).

Using now the definition of S (cf. (4.6)) and noting that & (I'(s) — 5)° = n™?s(1 — s)(1 — 2s) we
can easily check that

(5.10) ESp=p—aon'+ 0% as n—o o
so that (5.9) implies that

(5.11) p—&ET,=aon™'+ 0O(n™> as n— o,
Because (5.6) directly implies that

(5.12) o (T)=n""+0n"" as n—ow

we have proved (5.7). To complete now the proof of Theorem 2.2 we use (2.4), (2.14), (5.3),
(5.7) and apply a Taylor expansion argument to find that

(5.13)  Ku(xn V6™ (T)o + (. — E(Tn)o (T) = La(x) + O(n™®*)  as n— o

uniformly in x. Combining this with (5.2) completes the proof of Theorem 2.2.
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