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DEFICIENCIES BETWEEN LINEAR NORMAL EXPERIMENTS!

By ANDERS RYGH SWENSEN
University of Oslo and University of California, Berkeley

Let Xy, -+, X, be independent and normally distributed variables, such
that 0 < VarX; =02, i=1,---,n and E(X,,"--,X,) = A'8 where A is a
k X n matrix with known coefficients and 8 = (8,, - -, Bi) is an unknown
vector. ¢ may be known or unknown. Denote the experiment obtained by
observing X,,- - -, X, by &,. Let 4 and B be matrices of dimension n, X k and
ng X k.

The deficiency 8(& 4, &) is computed when ¢ is known and for some cases,
including the case BB’ — AA’ positive semidefinite and 44’ nonsingular, also
when ¢ is unknown. The technique used consists of reducing to testing a
composite hypotheses and finding a least favorable distribution.

1. Introduction. An experiment & is a pair ((X, @), (P, : § € ©)) where
(X, @) is a measurable space and (P, : § € ) is a family of probability measures
on (X, @). Between experiments indexed by the same parameter set, Le Cam [4]
defined the deficiency in terms of risk functions obtainable in the two experiments.

This naturally leads to considerations where deficiencies are used as measures of
information. For countable parameter sets there is a recent paper by Torgersen [11]
where he compares an experiment with the totally informative experiment (i.e., all
the measures P, are mutually singular) and the least informative experiment (i.e.,
the P,’s are identical) and studies the behaviour of the deficiencies under replica-
tions of the experiment. The finite state Markov chain has been treated by
Lindgpvist in [6] and [7] where the deficiency is used to measure the loss of memory
of the initial state X, in the tail (X,, X,,;,- ) of the Markov chain
(Xg, X1, - - ). In [8] Lindqvist shows a relation between Dobrushin’s ergodic
coefficient and the deficiency of a Markov chain with arbitrary state space with
respect to the least informative experiment.

In this paper we will treat a case where the parameter set is uncountable, namely
the linear normal experiments and hopefully the results might be of interest where
several experiments of this kind are involved as in design of experiments and in
choosing regression coefficients for additional observations. A short discussion and
some examples are given in Section 5. In Sections 3 and 4 the deficiencies are
evaluated for known and unknown variance respectively.

Among the several equivalent formulations of deficiencies given in [4], of which
one is referred to above, we will use the following. Let & = ((X, @), (P, : 0 € 0))
and F = (%, %), (Qy:0 € ®) be two experiments where (P,:80 € 0) is
assumed to be a dominated family of probability measures, ¥ a Borel set of a
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complete separable metric space and % the Borel sets in %Y. Then the deficiency of
& with respect to ¥ is defined as

8(&,, bg) = inf supy|| PeM — Q4|

where the infimum is taken over all Markov kernels 9 from (%X, @) to (%Y, B),
and || || is the total variation norm.

By letting A(&, %) = max(8(&, ¥), 8(F, &)) we get a pseudometric between
experiments.

To be able to handle the complicated expression for the deficiency, we shall use
some symmetry properties present in linear models and appeal to results from [4]
and [10] on invariance. These results may be summarized as follows.

Let G be a group of transformations acting on ©, %, ¥ such that x — g(x), y —
g(y) where g € G, are measurable mappings, and the families (P, : § € ®) and
(Qy: 0 € O) are invariant under G. Let 9; be the set of invariant Markov
kernels, i.e.,

Me ={M € I : M(g(B)|g(x)) = M(B|x) if g €
G,BE R, x & N where gN = N,g € G and Py(N)
=0,0 €0).

If the following conditions are satisfied, the infimum in the definition of deficiency
may be taken over M.

(i) There is a o-field § in G such that the mappings (x, g) — g(x), (¥, g&) — g(»)
are @ X § and B X § measurable, respectively.

(ii) There is a o-finite measure 7 on (G, §) such that 7(B) = 0 implies 7(Bg) = 0
when B € % and g € G.

(iii)) The group has an invariant mean, which is the case if it is solvable. If in
addition there is at least one invariant Markov kernel for which the exceptional set
N = &, we may also restrict attention to invariant kernels having this additional
property.

For a particular class of experiments, the translation experiments, the conditions
take a particularly simple form. Let ® = %X be a locally compact topological group
which is Hausdorff, @ the Borel sets and

Py(A) = P(A407")

where P is a probability measure. Clearly the group G described above corresponds
to translations x — xf where 8 € ©. Now (i) is automatically satisfied, and by
taking 7 as a Haar measure, (ii) is also satisfied. Hence the only condition which
needs to be verified is (iii). We will denote an experiment of the form above by &p.
In [10] Torgersen showed that for two translation experiments on (X, @) every
invariant Markov kernel with ¢ as exceptional set may be written M(B|x) =
u(Bx~!) where p is a probability measure on (X, @). Hence if &, is dominated,

8(6,,86,) = inf,||p*xP — Q|

where * denotes convolution, i.e., p* P(A) = p X P{(x},x,):x,x, € 4}.
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Furthermore, if u, is a least favorable distribution at all levels a € [0, 1] for
testing
P/,0 € ® against K:Q

where P (A) = P(6”'4) for § € 8,4 € &, then
8(6p,8p) = llpo*P — Q.

This result will enable us to compute the deficiency between certain linear normal
experiments.

We can describe them in the following way. Let 4 be a known k X n, matrix,
and &, the experiment given by the independent normally distributed random
variables X}, - -, X, with VarX; = 0% i=1,--,n4and E(X,,---,X, Y =AB
where = ( B,, <o Bk) € R*. ' denotes transpose. Thus to dlfferent design
matrices 4 and B there correspond experiments &, and & respectively.

To avoid trivial cases we will assume that n,ng > k > 1.

We will treat both the case where o is known and the case where it is unknown.
In the former the parameter set is ] — o0, oo[¥ = R* and in the latter ] — oo, oo[* X
10, o[= R* X R* . :

2. A special case and reduction to a canonical form.

PROPOSITION 2.1. Let A, B be design matrices corresponding to experiments &,
and b g respectively. If row [B'] Z row [A'],

8&,,6p5) =2
whether o is known or not.

PROOF. Suppose o is known and let P, Qp be the probability measures corre-
sponding to the parameter value B in &, and &, respectively.

By assumption there is a 3, such that 4’8, = 0 and B’S, # 0. Then

8(by, &p) = infy, supg||PsM — O
> inf,, sup,egll Py M — Ous,ll
infy, sup,|[PoM — Qg |l-
But || PoM — Qs || — 2 as t — oo for all Markov kernels. Hence 8(& 4, b3) =

Consider now the case where o is unknown. By fixing this parameter we obtaln

experiments for which § = 2. This means, since a § computed for known o always

gives a lower bound for the corresponding 8 with ¢ unknown, that by, bg)=2

also when o is unknown. []
A consequence of Proposition 2.1 is that the A-distance is 2 between experiments

given by X 1, - - -, X, independent and normally distributed Var X; = a2, EX, = a
+ pBt, i=1,---,n and Y,,- -+, Y, independent and normally distributed
Var Y, = 6% EY,=a+ Bt;+ yt}, i=1,- - -, n whether o is known or not.

Hence the A-distance is of no help if we want to study the effect of variation in the
regression variables ¢, - - - , t, for estimation of a and B in the two experiments.
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From now on suppose row [B’] C row [4’]. Let
ry = rank [4], rp = rank [ B]
S} = infy(X — A'BY(X — A'B), S} = infy(X — B'BY(X — B'B)

where X is the vector of observations in &, and Y is the vector of observations in
&p. Then there exist nonzero linear functionals
0, = C/'B, i=1--,r

of B such that @y, - -, 6, are estimable in &, and 0,,- - -, 6, are estimable in &p.

These functionals may be constructed as follows. Let " be a r, X k matrix such
that the first r; rows of 7’ span row [ B’] while all the rows of ¥’ span row [A4'], i.e.,
row [V'] = row [A’]. Then there is a n, X r, matrix S”of rank r, and a ng X r,
matrix T” of rank r such that

A =SV and B =TV.
Let Ay,---,A, be the characteristic roots counting multiplicites of (SS)~NTT).
Without loss of generality we may assume that they are arranged so that A,
=...=A, = 0. By the theorem [2] on simultaneous reduction of two quadratic
forms there is a , X r, nonsingular matrix F so that
FSSF=1 and FTTF=A

where A is the diagonal matrix whose ith diagonal element is A,. Denote the ith
row of F~! by d,. Then we may put

C = vd, i=1,-,r,.
From linear normal theory it now follows that if X bt )?m are the UMVU
estimators of 4, - -, 6, in &, and Y, - -, Y, are the UMVU estimators of
0,---,0, in bg, then S, )?1,- . ,X,A are independent in &, and S,,
Y, -, Y,B are independent in &, with the following distributions
ii~N(0i»°2)’ i=1 S}/02~X3A_m
and
Y, ~ N(6,0%/4), i=1,--+,rg S2/6? ~ x,fg_,ﬂ.
Furthermore for ¢ unknown (known) S,, )?1,- .- ,f,A(XA’l,- . ,)?,B) and Sp,
Y- -+, Y, (Y- -+, Y,) are sufficient in &, and &, respectively.
From now on we drop the . Thus &, are given by S, X,, - - - , X, and &, by
Sg, Yy, - -+, Y, with both sets of random variables having the properties de-

scribed above.

3. The case of known o. Put / =rz =rank B and let A, - -, A, be as
described in the preceding section.

ProprosiTION 3.1. If row [B’] C row [A'],
8(64, 85) = EIl — Ty 5 A7 exp(— (&, — 1)Z2/2))
where Z,, - - -, Z, are independent and identically N(0, 1) distributed.
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ProOF. By the results in Section 2 &, is given by X, - - , X, independent and
normally distributed EX, =6, VarX,=o02 i=1,---,r, and &, is given by
Y,,---,Y, independent and normally distributed with EY, =6,, Var ¥, = ¢2/A,,

i=1---,L

By invariance considerations similar to those of the proof of Proposition 2.1 in
Hansen and Torgersen [3], it may be shown that X, ,, - - - , X, may be deleted in
by.

Now &, and &, are translation experiments for addition in R’. Since this is a
commutative operation, and &, and &, both are dominated, 8(&,, &) may be
found by the method described in Section 1. Let Py, § € R’ be the probability
measure defined by X, - - -, X, and let Q be the probability measure defined by
Y, - -+, Y, for the parameter value § = 0. Then the least favorable distribution p,
for testing

H:P, § €R against K:Q
is given by the independent variables U, - - - , U, where U, = 0 with probability 1
if A; > 1 and U, is N(0, 6*(A] ' — 1)) distributed if A, < 1. Hence 8(&,, &) =
|| o* Py — Q||. But py* P, has density

10 ~'¢(x/ )y 1 A76(A7x,/ o)
with respect to the Lebesgue measure. []
Now suppose r, = k and BB’ > AA’, i.e., BB’ — AA’ is positive semidefinite. If
F has the same meaning as in Section 2, then
Z(A—1)Z = ZZFF~Y (A —I)F'FZ = W/(BB — AA)W
where W = FZ. Furthermore
EWW' = EFZZ'F = FF = (AA)™!
and
det[ BB'](det[ AA’])™' = (det[ FBB'F])(det[ FAAF])™" = A,---A,
SO we may write

8(6,,65) = El(det[BB’])%(det[AA’])_ilexp(—%W’(BB’ —AA’)W) —1

where W is multivariate normal with mean 0 and covariance matrix (44")~"!. This
is the result given by Le Cam in [5].

COROLLARY 3.1. If 6% is known, then for any pair &,,&, of linear normal
experiments such that BB’ > AA’ and A is of full rank

8(8,,65) = |IN(0,(44)7") — N(0,(BB")7")|I.

If &, and &, are given by X, Y multivariate normal with known covariance
matrices 3, 3, and EX = A'S, EY = B’B then after a linear transformation we
may consider equivalent experiments given by independent normally distributed
variables. Thus 8(&,, &) may be computed also in this case.
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4. The case of unknown 6. Some of the notation we will use in this section are:

If (X, 7) is a topological space, let B(X) = o({B: B € 1}) be the Borel sets in
X.
Let P, 5.3, (@1, 5, 5,0) D€ the probability measure on (R’ X R* , B(R’
X R*)) given by the independent random variables X,,- - -,
X, S4(Yy, -+, Y, S) where Xy, -+, X, (Y, -+, Y,;) are normally distributed with
EX; = B, VarX, = 6*(EY, = B, Var Y, = 6¢?/A))i = 1,- - -,/ and S?/0*(S2/0?) is
distributed as x; (x7,)- A"+ -, A, are known positive constants. P/, .. 5 , and
Qi s, p,o are the marginal distributions on (R!, B(R')) of P, 8, p,0 and
O\, ny. 8., 8,0 TESPECtIVELY.

#C is the number of elements in the set C. .

Let A,,---,A, have the same meaning as in Section 2. Let m =
#{i:0<A; <1}. Without loss of generality we may assume that A,---,
A, m>LI>A, -4, >0andA,  =---=A =0.

It follows by the reduction in Section 2 and by a reduction similar to that of the
proof of Proposition 2.1 in Hansen and Torgersen [3], that if row [B’] C row [A4']
and if / = ry = rank [ B], we may assume

& = ((R'XR* , DR X R*),(Py,,_, 0 0.0° (017 +,6,0) ER' X R* )
if n, > r, and with P’ instead of P if n, = r,. Similarly, we may assume
&5 = (R X R* ,B®R' X R*),(Q1n,- 10,00 (B> +,8,0) ER' X R* )

if ng > rp and with Q’ instead of Q if ny = ry.

We will first treat the cases where there is no estimator for ¢ in &, but one in &,
(Proposition 4.1) and the case where there is no estimator for o neither in &, nor in
&5 (Proposition 4.2).

ProposITION 4.1. Ifn, =r, and ng > I, then

8b,,b5) = 2.
ProOOF. Let the group G be given by
g(xy, - +5x) = (oxy + 81,7 * * 8% + &)
8o ynz) = (8ov1 + 81>+ * 1 80Y1 + 815807)
g0y, ,0,,0) = (801 + 81,801 T 81,800)
where (g, - ,8,80) € R’ X R* . It can be verified that the assumptions (i) (iii)
in Section 1 are satisfied so that it is enough to consider invariant kernels.

Furthermore, it is not difficult to see that every invariant kernel has ¢ as the

exceptional set.
Now suppose 8(&,,55) < 2. Then if ¢ + § < 2, there exists an invariant Markov

kernel such that
1 Pro,....0,6M = Qin,—1,60,,- 8,0l
<e+86,(0, ,0,0) € R X R*.
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Let K be a compact set in R’ X R* . Choose B, € ®H(R), i = 1, - -,/ and B, €
B(R* ) such that K C B; X - - - X B; X B,. Then

M(BI >< A XBI >< Bolxl,’ A ,x,)
= M(goBy + g, X - XgoB; + g X g By|gox, + &1, , 8%, + &),
(gl" . sgl’gO) € RI X R+ .

Let g,—0. Then R'X R* NgoB, + g, X - XgoB, + g, X goBy—>J so that
M(B; X -+ XB; X By|x,* -+ ,x;) = 0. Hence M(:|x,,- - ,x,) vanishes on every
compact. Since M(|x,,- - -, x,) is a probability measure and R’ X R* is 6-compact,
this gives a contradiction. []

ProrosITION 42. Ifn,=r,and ng=1

8(&4,865) = | Plo,.. 0,1 —:Q;,o,---,o,l”
E|l = Ils087 exp[ — (4, — 1)22/2]]
where Z,,- - -, Z, are independent N(0, 1) distributed.

ProoF. The proof is analogous to a part of the proof of Proposition 2.1 in
Hansen and Torgersen [3]. Let G be the group given by

g(xpse v ,x) = (80X + 8157+ + 8% + 8/)
gy y) = (81 + 815280V + &)
g(019' o ’01’0) = (gool + 81> ’gool + g,,goo)
where (g1, - - ,8,80) € R’ X R* . It is easy to verify that
8(6y,65) = infME“JH,Gsup(O,,-~-,0,,o)”Pll,ﬂl,---,O,,oM - Qf,o,,~-~,a,,o||'

= infMe@H,G”PII,O,-n,O,lM = Qo0

Consider M € 9. Since M(+|x,,- - -, x,) is a probability measure on a o-compact
space, there exists for every ¢ > 0 a K compact so that

M(K|x;, - ,x) > 1—e.
Choose a;, b;, i = 1,- - -, I so that
{xi--+ox} UK C Ty [a,b].
Then
M-\ [a;, b;] %y, - - ,%;)

M(IT;- 18o[ a;, b;] + 8il8ox1 + 81,7+, 80%: + &)
= M(ITi-180([ @, 6;] — x;) + x| %1, -+, x;)
>1—c¢

by inserting g; = x; — gox;. Now, let g, — 0. Then

M({xp, - x}x, %) > 1 —¢
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so that the only M € 9 is the Markov kernel given by M(B|x,,---,x,) =
Ig(xy,- -+, %), BE BRY. [

From now on in this section we will, unless explicitly otherwise stated, assume
ng>rgandng > rg. Let x = (xp,- . x;,%0), 7 = (V1 * *»VpYo) € R’ X R* and
define a group operation by

xp = (¥ +YoX15 Y+ VoX1YoXo)-

Then R’ X R* is solvable and consequently has an invariant mean. With the
standard topology for R’ X R* the operation just defined is continuous. Hence
R’ X R* is a locally compact group which is Hausdorff and satisfies the second
axiom of countablhty
Let Z,,---,Z, W be independent random variables, Z, ~ N(0, 1), i =
,/and W~ x2 _, . Then

—ry

Pl ng—ry, 0y, ~~-,0,,0(B)
PI,nA—rA,0,~~ 0, 1((21, 4, W)(op co,0,0) € B)

o1(BBy, - -, 0, o)_l) where B € B(R' X R™Y).

Ling—r,,

Similarly
Qtn\-1,,,--,0,0( B)

= QI,nB—I,O,-'«,O,l(B(al" A ,01,0)_1) Whel'e B (S %(RI X R+ )

so that & and & are translation experiments. Since (P, _, g ....0
(8, - -,6,,6) € R’ X R") is dominated the method described in Section 1 may be

applied.
If B€ B(R' X RY), then
PI//nA—rA 4,,- 0,,0(B)

= PI ny—rg,0,--+,0, 1((01’ o ’0150)_13)

P ny=r00,-,0, 1((21, L Z,W)E (8, ,01,0)_13)
.PI,nA—rA,0,~~~ o, 1((8y;...,0,,0)(Z,,- - Z, W) € B)
oa((Zy+0W, -, Z,+ W,0W) € B)

l,ng—r,,0
[g(zy + 0w, - -z, + Ow,wo)ll|_ 6(2,)7,,_, (W) dwdz, - - - dz,
= 50" 5, (W/O)Li_ (2, — Ow/0) dz, " - - dz,dw.

Vny—r,

Thus I,’:l".q_’mop"',opo has density o"?,,A_,A(w/o)H,’-_lqb(z,- ~ Ow/o) with respect
to the Lebesgue measure. Here ¢ is the density of the standard normal distribution,
and ¥, _, is the density of S where S?is x,, —r dlstnbuted

Slmllarly, Qi,ny—1,0,---,0,1 has density ¥, _ ,(w)H A o(z; A ).
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PROPOSITION 4.3. If m= #{(i:0<A, <1} =0 and 1<n,—r,<ng—|I,
then

‘5(6,4: B) 1 ny—ry,0, --,0,[(n3—l)/(n4—r,4)]% - QI,nB—I,O,u-,O,lll
-1
= E[1 = (ny — D%y iW)[ (14 = 10%n,—, ((n4 = r)W/ (ng = 1))]
X g 51 Az% CXP(_ (4; — 1)Z?2/2)|

where Z,,---,Z, and W are independent, Z; ~N(,1), i=1,---,r, and
(ny —r)W/(ng — 1) ~ ,, _,, Here v, _, denotes the density of the x,, _s dtstrzbu-
tion.

ProoOF. Letn, —r, = nl, ng—rg=n, v= (n2/n1)2 and 8, (B) = Iz(x). We
must show that py = 8§, X -+ - X§, X 8,, is a least favorable distribution for testing

H:P/, g .. 0.6 (0 .0,0) € R’ X R* against K:Q

at all levels a. Then the proposition will follow from the results given in Section 1.
The strongest a-level test §, for H, against Q is given by

8,(zp5 - ,zpw) = 1
1870 (2:87 )7, (W) > CIL_18(2)7, (w/v)r™!
o exp(—=!_ (A, — Dz2/2)wm"exp(—w*(1 — n,/ny)/2) > C!
o (24, ,2,w) EK

where
@) a= Pll,/n,,O,n«,O,p(K)
(ll) Kw= {(zls”"zl) (Zl, ",ZI,W)EK} ¥

={(z1,-" >z 2. 1 (4, — 1)22/2
<—logC" + log[w™ ™ exp(—(1 — ”1/"2)“’2/2)]}

is an ellipse which may be degenerate since A, = 1 is possible.
(ii)) K Iz {w:(zp, -+ ,zpw) EK} =)ky(2y," - 521)s ky(zy,+ + -,z where

ky(zy,- - szl)nz_"'exP(— a- ”1/"2)k12(21,‘ o ’21)/2)
= ky(z;,- - >Zl)”2_"'exP(_ (1- ”1/"2)]‘%(21,’ e ’21)/2)-
Then if k; = max,, log[w">~" exp(—(1 — n,/n,)w?/2)),

PI//nl -,0, P(K)
= ! - w
= fE(A —1)z2/2< —log C' +k; lf((zz,: zfi)Hi-l‘P(zi)" IYn,("‘)dezl’ - dzy.
Let E, ... , , be the expectation taken relative to P/, o . Then
1 jERd 1

Pl,n|,01,~~,0,,o(K) = 0,,'~,0,,U[IK(X1’ : anW)]
= th,---,0,,0E0.,'~,0,,o[ IK(XI" LX) W)IW]'
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But Ey ... 5 ,[Ix(Xy,- -+, X;, W)|W]is a function of (X, - -, X,, W) only through
W. Thus the distribution is independent of (8,, - - ,6;). Consequently,

Pll,ln,,ﬂl,-n,o,,o(K) = Eo,---,o,an.,~--,o,,o[IK(Xv’ X, W)IW]-
Furthermore,
Eo,,n.,o,,a[IK(Xls‘ LX) W)IW] < Eo,-n,o,o[IK(Xv‘ X W)IW]

since K, is an ellipse with center in (0,- - -,0) € R, and the probability for
(Z,,--+,2) €K, where Z,,- - -, Z, are independent random variables and Z, ~
N(w/o,1),i=1,---,lis maximized when the center of the ellipse and the center
of the distribution coincide [1]. Thus

Pll,lnlvap"',obo(K) < Pl/,/nho,“-,o,o(K)’ (01’. o ’01’0) € RI X R+

and if we show that
PI/,ln,,O,-“,O,o(K) < P/,In,,o,u-,o,y(K) =a for ¢ >0

it follows from Theorem 3.7 in [9] that pu, is a least favorable distribution as
claimed above.

Let
()

Py 0,..,0,0(K)

= fzf_,(A,—l)z}/2<k,—1ogc'Hz{-l‘i’(xi)[rn,(o_lkz(zv T ’ZI))

J— fn2(0_1k1(21" .. ’Zl))] dzl o e dzl
where fn, is the cumulative distribution function for W where W? is distributed as
thv.‘ {P/, 0. 00:0 ER"} is an exponential family of distributions and
a(o) = [Ix(zy,- - ’ZI’W)Pll,ln,,o,-~~,0,o(dzl" “e,dzy,aw).

Hence by Theorem 2.9 in [9] differentiation with respect to o under the integral
sign is permitted, and

o'(o) = S5 (8- D22 <ky+10gC! Hf-l‘i’(zi)o_z[ ki(zy,- - ’zl)?n.("_lkl(zl" o ’ZI))

—ky(zy,- - ’Zl)?n,(o_1k2(zl’. e ,21))] dz,-- - dz;.

By (iii) above a’(») = 0 so that a has an extremal point at ».

Consider f(t) = T'(k,/t) — T(k,/t), ky > k; > 0, t > 0. f(¢) can have only one
extremal point #,. Since f > 0 and f(¢) >0 as t— oo or ¢— 0, this must be a
maximum point and hence f'(¢) < 0 when ¢ > ¢, and f'(¢#) > 0 when ¢ < ¢,. These
results applied to the integrand in the expression for /(o) show that » must be a
maximum point. [J

PropPoSITION 4.4. IfO<np— 1+ #{i:0<A; <1} <n,—r,, then
‘S(gA,ga) = ”PI/—m,O,---,O,I - Q;—m,o,.-.,o,lu
= E|l — HA,>1A1%CXP(— (4, - l)Zi2/2)|

where Z,,- - -, Z, are independent and N(0, 1) distributed random variables.
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REMARK. The following proof uses the fact that ny > rp so that &, and &, are
translation experiments. However, even if ny = ry, ie., 62 is not estimable in & B
the result is true. This might be seen by using a similar argument to the one given
below to obtain an upper bound for 86(&,,&;) and fixing o and using the result
from Section 3 to obtain a lower bound.

Proor. By Proposition 2.1 in Hansen and Torgersen [3] the deficiency of the

experiment given by X,_, .., - --,X,, S, with respect to the experiment given by
Y s> Y, 8Sp is 0, ie., the first one is more informative than the second.
Hence there exists an invariant Markov kernel M so that

P"‘»"A—’A»ol—mﬂ»'“’ahoM = vanﬂ_l’al—vn+|""’0h°
forall (8,_,,+1," **,0,,0) € R™ X R* . Since M is invariant, it may be represented
by a probability measure p, and

m’"A_"A’ol—m+|""v01M = u2*va"A—’m01—m+|»'"»01"7
for all (8,_,,+1,"**,0,,6) € R™ X R* . Hence

Qm,nB—l,O,-u,O,l(B) = l‘z*Pm,nA—r,,o,~--,o,|(B)
= 2 X Ppn,—rp0,,01({(x,5) 1 xp € B})
= fP,,,,,,A_,A,o,..,,O,,(x_'B)uz(dx)
= fP':,n,—r,,o,_,,,H,--~,0,,o(B)#2(d91—m+1" -+,db;,do).

Now, let u; = §, X - - - X &, be the probability measure on R'~™ with all mass in
0, and let py = p; X p,. Then the strongest a-level test for H, against Q has
rejection region of the form

{21, z,w) rexp(—Zi7(A; — 1)zF/2 > k}.

The projection into R’~" is an ellipse and by using an argument with conditioning
on W, as in the proof of the preceding proposition, it follows that pu, is at least
favorable distribution for all levels a. [J

It still remains to consider the case 1 < n, —r, <ng—rg+ #{i: 0 <A, <1}
and #(4,;:0< A; <1} > 0. We have not been able to find an expression for
8(&,, bp) in this case.

Consider now the situation treated by Le Cam for o known, i.e., A4" nonsingular
and BB’ — AA’ positive semidefinite so that FFAA'F = I and F'BB'F = A for a
nonsingular r, X r, matrix F. Since BB’ is positive semidefinite and since
A, ,A,A are the solutions of det[BB’ — AAA']=0, A,,--- ,A,A > 1. By no-
ticing that A4’ nonsingular implies BB’ nonsingular, 8§(&,, &z) may now be found
by Proposition 4.1 if r, = n, < ngz, by Proposition 4.3 if r, <n, < ngz and by
Proposition 4.4 if r, < ng < n,.
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COROLLARY 4.1. If 02 is unknown, then for any pair &,, 65 of linear normal
experiments such that BB’ > AA’ and A is of full rank

IN(0,(44)7") = N(0,(BB) )l if r, < ng < n,
”N(O’(AAl)_l) X F”A_’Ar(nB_’B)/(nA_rA)

- N(O,(BB’)_I) X Ll if rgy <ny < ng

8(&4,65)

where T, , is the measure corresponding to S if S/t is x? distributed.

5. Applications and examples. Let 9N, and 9N, denote the least informative
and the totally informative experiments respectively. Then &8(9N,;,&,) and
8(b,,IN,) are absolute measures of the information in the experiment & ,. Unfor-
tunately, for translation experiments on the real line both of these deficiencies are
equal to 2, as shown by Torgersen [20]. Hence 8(9,,&,) = 8(&6,, ;) = 2 for the
case where ¢ is known and consequently also for ¢ unknown.

However, if an experiment is given by the independent, identically distributed
observations X, - -, X,,, deficiencies may be used to compute the information in
an additional observation.

In the experiments considered in this paper the observations are not identically
distributed. The question then arises whether deficiencies may be of help to
determine the regression coefficients for additional coefficients.

Let A = (a;;) be an k X n, matrix which we suppose is of rank k. Let B = [4?]
be the k X (n, + 1) matrix having the columns of A4 as the first n, columns and
the vector ¢t = (#;,- - -, ;) as the (n, + 1)th column. Then

det[ BB’ — AAA’] = det[ A4’ + tt' — AAA']
det[#t" — (A — 1)44’].

Since rank[#t'] = 1, the solutions of det[tr’ — AAA’] =0 are all equal to zero,
except one. Hence, if A is the nonzero solution,

det[ A4'] det[ 1r/(44) ™" — AT]
det[ A4’ ](=A)*"'(4a, — B)
=[(= 1)k + (= 1)* T A A ] det[ 4a'].

det[ 1’ — A(A44)]

On the other hand
det| 1/(44)™ = AT] = (=8 + u w/(aa) " ](—2)!
+ factors of lower order.in A.

Here tr denotes trace. Hence A, = tr(#t')(AA4’)”"!, and consequently 1 +
tr[(#t')(AA")™ "), 1,- - -, 1 are the k solutions of det{ BB’ — AAA’] = 0.
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Now, let Z ~ N(0, 1). Then by noticing that tr[(zt')(AA")™ "] = t'(44")" ¢,

8(6,,65) = E|l —[r(44) "t + 1] exp(—1/(44))""122)2))|

4{@([(1 + 1/(A44) 7 e)(¢(44)7"t) " Hog(1 + t'(AA')"t)F)

fewnr ot sl

when o is known. In the expression above we have written the integrand f and used

that [|f|=2/f".
If Z and W are independent, Z ~ N(0, 1), (n — k)W/(n — k + 1) ~ x2_,, then

1
2

n—k
n—k+1]<""‘)/2 F( 2 )

8(6,,6,) = E|l —[
2

, , -1 Z W
Xexp( t(AA) t2 m)
when o is unknown.

Another possible use of the deficiencies might be in optimal experimental design.
Here various plans are compared in terms of such functions as det(44’) and
tr(AA’) which are functions of the design matrix A’. In comparison of experiments
there are two different experiments involved and a possible choice as reference
design might be one with a design matrix having the upper £ X k matrix gqual to
the identity matrix and the lower (n — k) X k matrix consisting only of zeroes.
This would correspond to a situation where n — k observations are taken with the
regression coefficients in a fixed state, and taking the k remaining with one
regression coefficient at a time differing from the fixed value.

By comparing this experiment with one with design matrix 4’ it will be the
eigenvalues of A4’ that determine the deficiency. The dependence on the eigenval-
ues are, however, much more complicated than for functions such as det(44’) and
tr(4A4").

Finally as an example let us consider regression with two variables, i.e., 4 = (a)
and B = (by) are 2 X n, and 2 X n, matrices respectively with a,; = 1, ay; = 1,
j=L---,ncand b;; =1,by =5, )= - » ng. Assume rank[A4] = 2 so that
not all #;, - - - , t, are equal. If M, = 37 ,(t; — 1), My = Z7(s; — 5)%, det[BB’
— AAA’] = 0 has two solutions given by

[ZnAMA]_‘[nBMA + nMy + ngng(s —1)

1
- 2 2
t[(nBMA — nyMpy + n ny(t —5)2) - 4nAnBMAMB]2].
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8(&,, bg) may now be found for o known, and for ¢ unknown, except when
0<n;,—2<ng—rank[B]+ #{1:0< A, <1}and #{i: 0< A, <1} >0.
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