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RISK OF ASYMPTOTICALLY OPTIMUM SEQUENTIAL TESTS!

By GLORIA C. ZERDY
Cornell University

The problem considered is that of testing sequentially between two sep-
arated composite hypotheses concerning the mean of a normal distribution with
known variance. The parameter space is the real line, on which is assumed an a
priori distribution, W, with full support. A family {8(c)} of sequential tests is
defined and shown to be asymptotically Bayes, as the cost, ¢, per observation
tends to zero, relative to a large class of fully supported a priori distributions.
The ratio of the integrated risk of the Bayes procedure to that of &(c) is shown
to be 1 — O(log log ¢~ !/log ¢~ 1), as ¢ tends to zero, fot every W.

1. Introduction. For testing sequentially between two separated composite
hypotheses, u < p, and p > pu,, where p is a real parameter of a distribution of
exponential type, Schwarz (1962) has given an asymptotic description, as the cost ¢
per observation tends to zero, of the Bayes continuation region, B,(c), relative to a
fixed a priori distribution, W. He showed that By(c)/log ¢~ approaches an
“asymptotic shape” B, which depends on the a priori distribution only through its
support. Schwarz suggested using a family of procedures which have B, log ¢! as
their continuation regions. The advantages of these procedures are that there is a
specific formula for B, log ¢~ ', and that B, log c¢~' depends on the a priori
distribution only through its support. Wong’s Lemma 5.1 (1968) shows that
Schwarz’s procedures, 8’(c), are asymptotically Bayes. The order of the “efficiency”
of 8’(c), that is, the ratio of the integrated risk of the Bayes procedure to that of
8’(c), has not been determined.

As an aid to finding an asymptotic description of B(c), Schwarz proved that
C(Ac log ¢~ Y c B(c) c C(c), where C(c) is the set on which the a posteriori risk
of stopping is at least ¢, and A is a constant. For certain a priori distributions W
with compact support, Lorden (1967) improved this result to C(M*c) C B(c) for
some constant M*. This enabled Lorden to prove that if, for a fixed a priori
distribution W,-8,,(Qc) is the procedure which has continuation region C(Qc) for
some Q > 0, and which chooses a terminal decision having minimum a posteriori
risk, the efficiency of 8,,(Qc)is 1 — 0(1/ log ¢ '), as ¢ - 0.

When the number of possible states is finite, and the a priori distribution W has
full support, Lorden’s result extends to a class of procedures which do not depend
on W. Lorden points out that in this case, a procedure §(c) which stops no later
than 8,,(Qc) and chooses a terminal decision whose a posteriori risk is at most Kc,
for some Q >0, K > 0, has efficiency 1 — 0(1/ log ¢~!), for every a priori
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distribution with full support. In case the underlying distribution is normal,
Schwarz’s procedures satisfy these conditions, as can be easily shown. However, for
the continuous parameter space, no extension of Lorden’s result to procedures
independent of the a priori distribution has been proven.

This paper is concerned with independent and identically distributed normal
random variables with unknown mean and known variance, the parameter space
being the entire real line. We define a family {8(c)} of procedures which are
modified versions of Schwarz’s procedures, and which are asymptotically Bayes
relative to every a priori distribution with a bounded Lebesgue density having full
support and bounded away from zero in a neighborhood of the endpoints of the
indifference interval. The family {§(c)} is shown to possess the property that the
ratio of the integrated risk of the Bayes procedure to that of 8(c¢) is 1 — 0
(log log ¢!/ log ¢~ "), as ¢ — 0, for every a priori distribution whose support is the
real line. Although the efficiency obtained is not as good as the 1 — 0(1/log ¢~ ")
obtained by Lorden for procedures 8,,(Qc), the procedures 8(c) have the ad-
vantage of being independent of the a priori distribution, within the class of
distributions whose support is the real line.’

2. Unbounded parameter space. The parameter space, 2, is assumed to be the
real line, on which is defined a probability measure, W, with density, g, with
respect to Lebesgue measure. It is assumed that g is bounded above on Q.

The random variables X, X,,- -+ are independent and identically distributed
with X; ~ N(p, ), € 2, and S, = X; + - - - + X, denotes their cumulative sum.

The density function of S, is
Si(s,p) = exp(sp — np®/2)
relative to the measure
Bals) = J%(2mn) "3 exp(—y?/2n)dy.

We are testing between Hy:p < —1 and H,:p > 1. Assume g is bounded away
from zero at p = —1, 1. Let /(n) be the loss for making a wrong decision when p is
the true parameter value; /() =0 on (—1,1) and 0 < L < /(u) < 1 elsewhere.
The a posteriori risk of stopping is defined by

R(n,S,) = {min,_o [y exp(nS, — np>/2)I(n)W(dp)}/
{ fa exp(pS, — np?/2)W(dp)}.

Let c denote the cost of each observation X;, and let C(c) = {(x,y): R(x,y) > c}.
The Bayes continuation region with respect to W and ¢ will be denoted by B, (c).
The limiting region of Schwarz’s paper is, in our case, defined by

By = {(x,y): 1+ min,_o ,(n,y — x/2) > sup,(ny — xp?/2),
x> 0,pp=—1,p =1}
= {(x,9):x = 2x)* < —x + (2x)*,x > 0}.
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Let u,(c) and n, denote the x-coordinates of the points of intersection of the line
y = kx with the boundaries of C(c) and B,, respectively. Then n, = 2(1 + |k[)~2.
Let T = log ¢~ '. We assume throughout that ¢ < c,, where ¢, is chosen so that
log c5 ! > 1, and so that ¢ < ¢, implies 2T 'og T < ¢, < 1, for some ¢, satisfying
0<eg <1
We begin by proving several lemmas. For positive a, we let Bya =

{(ax,ay):(x,y) € By).

LEMMA 1. Let N(c) be the first time (n, S,) exits ByT(1 — €), where e = 2T 'log
T, and let 7 =[2(1 — e)e]?. For p € @ = {p:|u| + 1 < [(1 — &T/
log T13/4}.

E,N(c) > T(n,— M,T '1og T) if |p| > 7/2(1 —¢)

> T(n, — My(T ' 1og T)) i |ul < n/2(1 —e)

where M, and M, are constants independent of c, and M, (respectively M,) is
independent of p € ', || > n/2(1 — &) (respectively |n| < n/2(1 — ¢)).

PrOOF. Let W(f) denote a standard Wiener process, ie. P[W(0) =0] =1,
EW(f) = 0 for all ¢ satisfying ¢ > 0, and Cov[ W(s), W(#)] = min (s, 7). If EX, = p,
then S, — un and W(n) have the same distribution. Using this fact, and a
well-known result about Wiener processes which can be found in Doob (1953)
page 392, we have for any p € Q

P,[max, ¢ caa-o7!S, = pn| > 1T] < P[supog,caa-or|W(H)| > T]
< 4P[W(2(1 - e)T) > T

4[2(1 — e)] e~ TT/401-8) +
(1) nT?
477!
1
(2loglogcy )2
DT ! (say).

By symmetry one need only consider yu > 0. For i = 1, 2, let x; be the larger of the
x-coordinates of the intersections of y = ux + (—1¥~!'yT with the (extended)
upper boundary of By(1 — ¢)7, that is, with y = — x + (2(1 — e)Tx)%. Let vy =
1 — &. Then

N|—-

n_L Y
e+l (p+1)?

[(1 = 20w+ D/ -1]]

X, = T{nﬂy -

and

x, = T{nﬂy + Mz o+ (”1 1)2[(1 +2n(p + 1)/7) - 1]}.

Let L be the line through the points (x;, y,) i = 1, 2, which lie on the (extended)
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upper boundary of By(1 — €)7, so that y, = px; + (— 1)~ !'yT. Then L has equation

20T 2nx,
= (p- " )x + 7 1 .
d (M xz_xl)x (xz_x1+n
Let N, be the first time S; > (29x,/(x, — x,) + )T where S, = Y, Y, =X, -
(b = 2nT/(x, — x,)). Note that N, is the first time S, crosses L. The Y, are
i.i.d. N2qT/(x, — x,), 1). Since E, N, and E|Y,| are finite one can apply Wald’s
equation to get

[ZnT/ (x, — xl)]EﬂNL = E,Sy,
> (29x,/ (%, — %) + ) T.
Hence, *
EN, > (%, + x,)/2

= Ty{n, +[(1 +2n(p + 1)/7)?
£ (1= 2n(p + 1)/9)7 = 2]/2(n + D).
It is easily verified that ‘
(1+x)7 > 1+x/2-x22 for |x| < 1.
Thus for n <y/2(p + 1) or (p + 1) <3[yT/4 log T]2, we have
2 E,N, > Ty[n, — 27%/v?]
= T(n” —en, — 21127_')
> T(n, — Dy?),

where D, is a constant independent of g in € and ¢, for ¢ < ¢,

If u > n/2y, the point of intersection, having the larger x-coordinate, of y = ux
+ (=1)nT (i = 0, 1) with the boundary of ByT(1 — &) is on the curve y = — x +
QyTX)3.

Let x, be the smaller of the x-coordinates of the intersections of y = ux + T
with the upper boundary of By(1 — €)7, that is, withy = — x + (27Tx)%. Then

_ n Y :
%o = T{ny -1 - sl -2t i),

Let 4, = {max,,,|S, — pn|/n <nT/x,}. Then proceeding as in (1), and using
the fact that x, < 2Tn*/y = 8 log T, whenever (u + 1) < y/27, we have

PI.:.(A;:) < Pp.[maxl<n<x°|Sn - ,u,n| > TIT/xo]

o~ T2 /25

< 4%

235,

x2
< 4_&6—(logT+D3)
nT

< D,T™!
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where D, and D, are constants independent of u in & and ¢, for ¢ < c,.

Let A, = {max, _,<s,7|S, — wn| <nT},andlet4 = 4, N 4. Then (1) implies
P,(A5) < D,T7, so that
3) P,(4°) < (D, + D,)T™ .

Given the event A,, if (n, S,) has not exited from B,T(1 — ¢) before time x,, then
(n, S,) must first cross L before exiting B,T(1 — €) because of the convexity of
B,T(1 — ¢€). Given A, (n, S,) cannot exit B,T(1 — ¢) before time x, because of the
convexity and the definition of x,. Thus, for p > n/2y, N(c) > N, with probability
one, given the event 4 = 4, N A4,.

Let b = 29x,/(x, — x;) + n and m = 29T /(x, — x,). Note that S, = S, — n(p
— m) and N, is the first time S, > b7T. It is easily seen that b/m <2 and
m~' < 4.

Now

EMN(C) > E[LNL - f(N(c)<N,_)E[NL - N(C)|S,(,(c)]dP”
bT - S, )
> EpNL - f(N(c)<N,_)(—_m—N(c' + 17)dP'L,

using Wald’s equation and the upper bound on excess over the boundary in Lorden
(1970). Thus

4) EN(c) > EN, — Q2T + 17)PF(N(c) <N.) + 4E, inf, S,
> E,N, — const,

using (3) to get an upper bound on the probability and also Kingman’s (1962)
inequality
Var, S| 1

= ——> -2

. i
E, inf, S, 2E,S] >

The inequality
E,N(c) > T(n, — M,T " 'log T)

where M, is a constant which is independent of p and ¢, ¢ < ¢, follows im-
mediately from (2) and (4).

If 0 < p <n/2y, the line y = px — nT intersects the boundary of B,T(1 — ¢)
on the curve y = x — (27Tx)% so that we do not have N(c) > N, on A with
probability one. Let x; be the larger of the x-coordinates of the points of
intersection of y = ux — 97 withy = x — (27Tx)%. Then

X3 = T(nﬂy— I j i + a _Y‘u)z[(l —29(1 — M)y—l)%_ 1]) > X,

so that N(c) > x, on A with probability one. Hence, (1) and the fact that
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N(c) < 2yT imply that
E,N(c) > E,[N(c)|4] — 2yTR,(A°)
> x; — 2vD,

20 _ 27’
T(nﬂy - 1_+M- - —72— - Z‘YDI

A%

Vv

T(n, — My(T""log T)?),

where M, is a constant independent of u and ¢ for ¢ < ¢, This establishes Lemma
1.

LeMMA 2. Let N(c) be the first time (n, S,) exits ByT(1 + €) where e = T ! log
T. For any p in L,
E,N(c) < T(n, + KT 'log T),
where K is a constant independent of p. and c.
PrROOF. Let L be the line through the point (7(1 + €)n,, T(1 + €)un,), tangent
to the boundary of By7T(1 + ¢). Consider the case p > 0. The line L has equation

g (1+%¢)
y—2("" 1)x+T1+‘u'

Let N, be the first time n, that S, — 3(p — 1)n > T(1 + €)/(1 + p). Then
E(S, —3(p—1) = §(n+1).
Since E,N; < oo and EM|X | — %(M — 1)| < o0, we may again use Wald’s equation

to get
, T(1 +¢)
p,+1E“[SNL 1+p J

EN, = nT(1 +¢) +
Applying Theorem 1 of Lorden (1970) we get

/_T(I'Fs) 2 +3\2
VEMSNL 1+,u,]<1+ptE"(Yl)

2 p+ 1)\?
(e

EN, <nT(1+¢)+5

so that

< T(n,+ KT 'log T)

where K is a constant independent of p and ¢, for p > 0. Since E,N(c) < E,N,,
the desired result follows for u > 0.
The case p < 0 is analogous.



1116 GLORIA C. ZERDY

LEMMA 3. Given ¢ > 0, there exists a positive number c* such that for ¢ < c* and
all real k,

c
ik(T—)<no+e=2+e.

Proor. This lemma follows from Lemmas 3.5 and 3.6 in Wong (1968).
LemMa 4. Ler Q" = {p: |p| + 1 <1[(1 — )T/ log T2 + nT} where ¢ =

21og T/T and n=[2(1 — e)e]%. Let H(c)={(n,S,):S,/n€Q", nis a positive
integer}. Then for sufficiently small c,

B,T(1 —¢) N H(c) c C(c) n H(c).
ProoF. The boundary of C(c) is defined by the two equations
Ju, exp(8S, — n0?/2)1(6)g(0)dbf, exp(6S, — n8*/2)g(6)do = c,

i =0, 1. Suppose n~'S, = k with k > 0. Let f(§) = 0k — 6%/2. Then f(8) = f(—1)
+(@+ I)(k+1)—(8+ 1)?/2, and

Ju,exp(8S, — n6?/2)I(8)g(8)do
= ohexp{n[ A(=1) + (8 + D(k + 1) — (8 + 1)>/2]}1(6)g(6)db.
By the assumptions on g, there exists a p > 0 such that g(#) > p whenever

0 € [a, —1], for some a satisfying —2 <a < —1. Let u, =47'[(1 — )T/ log
T]% + 7T — 1. For k € w” and T sufficiently large so that u, > %,

Ju, exp (88, — n8%/2)1(0)g(8)dé
> exp [ f(~1)] Lof; " exp [n(8 + (s, + (1 — a)/2)]d0

—-1))L
”F:l: -E-nfi _ 2,))/’;] e+ 1 +(1—a)/2) €XP (¥)dy

L e (nf(=1)Lp
- 2np,

exp (nf(=1))
npy

where 4, depends only on g and /. We can also represent f as f(6) = f(k) — (8 —
k)?/2, so that

Ja exp(0S, — n8?/2)g(0) df < sup,cgq g(8) exp(nf(k))fq exp[ —n(f — k)2/2] d
supy cq 8(8) exp[ mf(k)][n™ =% exp(~y2/2) & |

n '%Az exp[ nf(k)],

f(g+1)/2 exp (y)dy

where 4, depends only on g.
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Thus, there exist constants C;, i = 1, 2, which depend only on g and /, such that
on the boundary of C(c) N H(c), we have

loge > nf(—=1) — logn + C, — logp, — nf(k) + 3 logn + C,
for k > 0. That is,
5) u ([ fK) = (~1)] > T = Llog T — 1 log(u(c)T ")
—logp; + (Cy + Gy).
Now using Lemma 3 we get the right-hand side of (5)
> T —1logT — 3 log(ng+ 1) — logp, + (C; + Cy)
>T—1logT —3logCy — log C,T °

for ¢ less than the c* of Lemma 3, where C,; and C, are constants depending only
on g and /. Thus,

(6 u()[f(k) —A-1)] > T —2logT
for T sufficiently large, independent of k in £, k > 0. Analogously, it can be
shown that (6) holds for k in &, k < 0.
Since f(k) — f(—1) = 1/n,, we have
u(c) > n,T(1 — 2T 'log T)

for sufficiently large T independent of k in §”. (T depends only on g,/ and c).
Therefore,

B, T(1 —¢) N H(c) c C(c) n K(c)
as desired.

LEMMA 5. Let 8(c) be the procedure which stops the first time (n, S,) exits
B,T(1 + €) and decides H, (respectively Hy) if S, > — n + 2T(1 + e)n)% (respec-
tively <n— QT(1 + e)n)%), where € = T "' log T. Then there exists a constant B
such that

P,[ 8(c) makes an error] < Bc
for all p in Q.

PrOOF. Suppose p < —land Y, i=1,2,-- -, are independent and identi-
cally distributed random variables, with Y, ~ N(0, 1). Then, with B, and B
constants, and using the fact that ¢® = T~!, we have :

S, +n 1
P,[ 8(c) makes an error] < P_,|maxX,c,cora+e— 5 > 2T(1 + ¢))?
n2

< S2IP[Y, > QT(1 + €))7
< B,T(1 + &)[(T(1 + e))—%e-mﬂ)]

< BT3cl**
< Bec.
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The case p > 1 is analogous.
LEMMA 6. Let N(c) be as in Lemma 2. For sufficiently small c,
JoE N(c)W(dp) > M(g)T,
where M(g) is a constant depending on g.
ProOOF. Suppose 0 < § < % For p € Q, Chebyshev’s inequality yields
©) E,N(c) > 8T(1 + ¢)P,[ N(c) > T(1 + e)].

Let Y be a normal random variable such that EY = 0 and EY?> = 1. For —1 < p
< land 1 <n <8(l + €)T, we have

S, + y 1
n T2 5 1(1 + ¢))}
nz

P[Y > 11 + e))i = (1 + p)nt |

P[S,> —n+ @nT(1 + )] = B,

P[7 > @101+ (1 - 28]
MT— ie~TA+e1 —@8)1)?

N

A,

N

MT=(cT- 1)(1—(28)%)2

where M is a constant.
1
Letting r =3(1 — (28)7) ™%, we then get

S +n 1
max, ¢ ,csa+er—— > QT(1 + ¢€))?

n2

1.,
P, < 8(1 + ) MT3(cT~1)(17¢D?)

1
= (1 + e)M(cT'T )17V
—> 0asc —» 0,
where we have used the fact that ¢cT# — 0 as ¢ — 0 for all 8.

Similarly,
. S, —n 1
Pl" 1nfl<n<8(l+6)T__l_ < - (2T(1 + E))2 - 0
n2
as ¢ —0.

Therefore, for —1 < p < 1,

S,+n 1
P,[N(c) <8(1 + e)T] < P,|max,,cs0+0r— 7 2 QQT(1 + ¢€))?

n2

S,

n

—n

1
(8) +Pp. in'fl<n<8(l+e)T < - (2T(1 + 8))2]

1
n2

<

b

N—-

for small ¢, uniformly in p.
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From (7) and (8) we get
E,N(c) > 18T(1 + ¢)
and
JoE,N(c)W(du) > [i_1, nEN(c)W(dp)
> M(g)T,

where M(g) = %8 Ji=1, n&(wWdu. This establishes Lemma 6.
We now prove the main result. We shall let #(W, &) denote the integrated risk of
a procedure 8 with respect to an a priori distribution W.

THEOREM. Let 8}%/(c) denote a Bayes procedure with. respect to W and c, and let
8(c) be the procedure defined in Lemma 5. Then

r(W,8%(c)) - O( log log ¢! )
r(W, é8(c)) log ¢!

as ¢ - 0. ’

ProOOF. From Schwarz (1968) we know that if B(c) denotes the Bayes continua-
tion region, then
9 B(c) O C(Aclogc™!)
for some constant A. Let ¢ = Ac log ¢!, and let T and 7 be derived from T and 7
by replacing ¢ by ¢, where 7 is as defined in Lemma 1. From (9) and Lemma 4 with
¢ replaced by e, = 2T "' log T, we have
(10) B(c) N H(&) D C(&) N H(E) D BoT(1 — &) N K(&).
Let A be the event that (n, S,) is in H(¢) for all n < 2(1 — sl)f‘” and let W(z)
denote a standard Wiener process. For

~ 1
(1—-¢)T\2
< = -l- —_— - 1,
|M’I I"‘O 4( log T
we have, as was seen in the proof of Lemma 1,

Sal

c | ~r
P#(A ) = Py[max1<n<2(l—e|)f_nn' > o + 'qT]

N

ISnl ~
Py max,cncaq-epr—,~ 2 H+ 1

< P [maxic,coa-eprlS, — pnl > 7]
< P[Sup0<t<2(l—e|)T|W(t)I > 'ﬁf]
< (constant)T .

(11)

Let N(&) be the first time (n, S,) exits Bo.'i' (1 — ¢,). The definition of B, then
implies that N(&) < 2(1 — )T with probability one. Using this fact together with
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(11) and Lemma 1, we get, for p € {’ and lul > 4/2(1 — &),
E,[N(é)|4]P,[4] = E,N(3) — E[N(&)|4°]P,[A4°]

.'i'(n" —~ M, T 'log T) — 2(1 — ¢,)(constant)

T(n, — M, T 'log T),

(12)

vV Vv

where M, is independent of ¢ and p.
Similarly, for |u| < 7/2(1 — ¢,), we get
~ ~ .l
(13) E,[N(@)|4]P,[4] > T(n, — My(T"log T)?),

where M, is independent of ¢ and p.
Let N*(c) and N(c) denote the stopping times of the procedures 8}(c) and 8(¢),
respectively. Lemma 2, (10) and (12) imply that for 4/2(1 — &) < |u| < po,

EN(c) — E,N*(c) < E,N(c) — E,[N*(c)|4]P,[4]
< E,N(c) — E,[N(&)|4]P,[4]
< (T - f)nﬂ + Klog T + M, log T.

Also, for |u| <17/2(1 — ), Lemma 2, (10) and (13) imply that
E,N(c) — E,N*(c) < (T — T)n, + Klog T + M(T log T)2.
Note that
T—T=T-(logA™'+ T—1logT) = logT — logA~' = O(log T),
and
log T = log(logA™' + T — log T) = O(log T).

Hence, since n, < 2, there exist constants K, and K, depending only on g and /,
such that

(14) E,N(c) — E,N*(c) < K, log T,
for sufficiently small ¢ independent of u, when 7/2(1 — ¢)) < |u| < po- Also
(15) E,N(c) — E,N*(c) < Kjlog T + My(T log T)3,
for sufficiently small ¢ independent of p, when |u| <7/2(1 — ).
For |u| > py we have from Lemma 2,
E,N(c) — E,N*(c) < E,N(c)
(16) < T(—-2—2 + KT log T)
(Iuf+ 1)
< T(K,T'log T + KT 'log T)
< (K3 + K) log T,
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where Kj is a constant.
Let e(W, 8) denote the integrated risk due to error. Lemma 5 yields
r(W,8(c)) — r(W, 84(c)) = cfg| E,N(c) — E,N*(c) | W(du) + e(W, 8(c))
- e( W, 8:;/(0))
17
(an < cfo[ E,N(c) — E,N*(c)|W(du) + Be.

We now have, by (14), (15), (16), (17) and Lemma 6

r(W, 8(c)) — r(W, 8%(c)) 1
r(W, 8(c)) M(g)T

[/ |u|<ﬁ/2(1—el)({5uN (¢c) — E,N*(c)) W(dp)

+ (K, + K;+ K)log T + B]

< M_(lg_)? [(supgeﬂg(a))(Kz log T + ﬂZ(f log f)%)

X "e +(K,+K3+K)logT+B]
- &

2M .
(Supaeng(é'))(Kz log T + ——2—log T)

< M(g)T 1 —¢)?

+(K,+ K;+ K)logT+ B

< (constant)T~'log T,
where the constant depends on g and /. Thus,

r(W, 8(c)) — r(W, 8%(c)) _ 0( log log ¢! )
r( w, 8(6)) log ¢!

as desired.
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