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STRONG CONSISTENCY OF LEAST SQUARES ESTIMATORS IN
LINEAR REGRESSION MODELS!

By N. CHRISTOPEIT AND K. HELMES

University of Bonn

For the linear regression model y = X8 + u with stochastic regressor
matrix, strong consistency of the least squares estimator of 8 is proved in the
case of martingale difference errors and predetérmined regressors and for the
case where errors and regressors are orthogonal up to the second order. The
results obtained are applied to parameter estimation in autoregressive processes,
leading to strong consistency if the errors are quasi-independent up to the
fourth order.

.

1. Introduction. Let x, and ¢(z = 1,2, - - - ) be sequences of random K X 1
vectors and random variables, respectively, defined on some probability space
(2, F, P). We shall be concerned with the linear regression model

(1'1) n = xt'ﬂ + & t = l, 2, R

where B is a nonstochastic K X 1 parameter vector. Introducing the following
vectors and matrices:

’

yT=("71"""'7T)/’ uT=(el"""*r)’
Xr = (xp,-* +, x7),

(1.1) can be written in the form
(1.2) yr = XiB + up, T=12--.

The least squares estimator (LSE) of B8 based on the first T observations is defined
as solution of the normal equations

(13) XI"XTBT = Xpr
Consider the random time
T(w) = min{ T/ P,(w) nonsingular},
where P, = X;X,. Certainly, T is measurable. Actually, it is a stopping time with
respect to the increasing sequence of o-fields F,_,(r =1,2,- - - ) to be defined

below. For fixed 7, the LSE is well defined on the w-set given by T > T(w) through
the relation

(1-4) lér = PT_IX;'yT‘

Received May 1977, revised November 1978.
'This work was supported by the Sonderforschungsbereiche 21 and 72 at the University of Bonn.

AMS 1970 subject classifications. Primary 62J05; secondary 60F15.
Key words and phrases. Least squares estimators, linear regression, strong consistency, autoregressive

processes.
778

GTJ
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁl )2

The Annals of Statistics. MIKOIS ®
Www.jstor.org



STRONG CONSISTENCY 779

Henceforth, we shall assume that the random time 7 is finite a.e. This means that,
with probability one, the LSE is finally given by (1.4) as T increases.
In proving consistency we shall be concerned with the estimation error

(1.5) Br — B = P7'Xjur
(for T > T). With d2 = ST_,x2 = (P)u, i = 1,2, - - - , K, this may be written in
the form

(1'6) BT - B = PT-'l diag(d%]’ ct dlz'K)zT’
where the ith component of the random vector z; is given by
(1.7) 2y = dp 3T x,e,.

More generally, take a nondecreasing function g :.\R, - R, and put Dy :=
diag(g(d?,), - - - » 8(d7x))- Then

(1.8) Br — B = P;'Dyzy,
where now
(1.9) zy; = g Y (dF)ZT. 1 %8,

The assumptions to be made below will -ensure that these expressions are well
defined for T large enough (depending on w).

Starting from the representation (1.6), (1.7) Drygas [3] has shown that for
nonstochastic regressors x,,x,, - -+ -+ the LSE is strongly consistent under assump-
tions that are basically deterministic specializations of the assumptions we are
going to introduce. For the one dimensional problem of fitting a straight line a
necessary and sufficient condition for strong consistency of the least squares slope
estimator has been given by Lai and Robbins [4] in the case of i.i.d. error terms.
The case of stochastic regressors is considered in [2]. The assumptions are some-
what stronger than ours; in addition, Anderson and Taylor require that P, is
nonsingular with probability one for some nonrandom time. In our terminology:
T(w) = T, a.e. for some T,. In applications, e.g. in autoregressive models, where
the P,-matrix contains the lagged n-values, this will, however, generally not be the
case without further assumptions about the probability distributions involved.

2. The main result. Let us specify the assumptions.
(A). E(g,/F,_))=0fort=1,2,---, where F,_, is the o-field generated by
x’,' . . ,xl; e’—]’. . o ’el'
(B). ¢, € L,, and sup, E(¢?/F,_;) < oo a.e.
©.d?>waeast—>o0,i=12---,K
(D). Let g : R, — R, be a nondecreasing function satisfying
(eAY [PeTH(nydt = § <
for some ¢ > 0 and put
Dy = diag(g(d%l)’ T ,g(d%,()).
Then the matrices Py 'D(T > T) are a.e. bounded uniformly in T.
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Examples of such functions are g(d2) = d;;*® or

g(d}) = dpylog*®/2 4, for dp > 1,
=0 else,
with some constant § > 0. Here dy; denotes the positive square root of d7. The first
example with § = 1 is the case considered in [2] and [3].
The basic result is contained in

LEMMA 1. Let z; be defined by (1.9). Under assumptions (A)—(D)
zp; > 0ae as T — oo, i=1---,K

Proor. Note that by virtue of (C) and (2.1) z, is well defined for T large
enough (depending on w). For notational simplicity let us suppress the index i in
the sequel. Define

Hw) = min{¢/d}(w) > c}.
By virtue of (C), { is finite a.e. Moreover, it is a stopping time with respect to the

increasing sequence of g-algebras F,_,(t = 1,2, - - - ). In particular, the sets [f < 7]
are F,_,- measurable for all 7. Consider the random variables

§ = x[;<,]g“(d,2)x,e,,

where x , denotes the indicator of 4 and the convention 0 - co = 0 has been
adopted. ¢, is F,-measurable, and, since g ™! is decreasing on (c, ),

xgd?) <Jf.,87%s)ds < [2g7Hs)ds = Fae.
for ¢+ > ¢. Hence
$? < getae,
ie., {, € L,. Moreover,
E(S,/F,_y) = 0.
Hence the process (o7, F-)(T = 1,2, - - - ) defined by
T = xT-lfx

is a square integrable martingale. The associated increasing process (i.e., the
process A that makes w? — 4 a martingale) is given by

Ar = zzT-lE(frz/Fr—l)
= 2. 100x78 A d)X[i<rp
where o? = E(¢2/F,_,). With 2 = sup, 6%(< o a.e. by (B)) we obtain the estimate
S E(SP/Fl) < 3255787 (dY) < 2,508 87 (s) ds
< 027 (s)ds < oo,

which shows that lim, 4, < oo a.e. on @; consequently (cf. [5] Proposition
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VII-2-3) wy converges a.e. to a finite limit. By Kronecker’s lemma, using (C) and
(D) and lim,_,, g(¢) = oo,

zp = g (A2 ;i 1xe, >0 aeas T — co.
The assertion now follows from the observation that the asymptotic behavior of z,
and z7 is the same.

Strong consistency of the LSE is now an immediate consequence of Lemma 1
together with formula (1.8) and (D).

THEOREM 1. Under assumptions (A)-(D) the LSE converges a.e. to the true
parameter value.

Assumption (D) will in general be difficult to verify directly. In the following, we
shall give a sufficient condition for (D) to hold. To this end, let A, (T) and
Apax(T) denote the smallest and the largest eigenvalue of P, respectively. If
T>T , both are positive. Then, for the Euclidean norm

127 < Ko Aga(T),
ID7ll < Kimax,g(d). < K>g(Ama(T)),
hence || Py 'Dy|| < K- 8Ap0(T))/Apin(T)- Thus, (D) is implied by
(D). Let g : R, —» R, be a nondecreasing function satisfying (2.1). Then
suprs 7 8(Amax(7))/Amin(T) < o0 ace.
Choosing g(7) = 11+%/2 we obtain
COROLLARY 1. Suppose that assumptions (A)—(C) hold and that

SUprs 7 Ak A(T) A pin(T) < o0 ae.
Jor some § > 0. Then the LSE is strongly consistent.

For § = 1 this is precisely the condition required in [2].

Assumption (A) implies that e¢(r=1,2,---) is a martingale difference
sequence. As an example of a whole class of processes satisfying (A) and (B)
consider disturbances of the form ¢ = g,¢,, where the random variables a, and e,
are such that the following conditions are fulfilled:

(1) e, is independent of a, - - - , a5 €, -, ¢_,.

(2) ¢, € L,, E(e,)) = 0, sup, E(e?) < oo.

(3) a, is a.e. bounded uniformly in ¢ (where the bound may depend on w).

Then, if in addition the x, are predetermined, i.e., measurable with respect to the
o-field generated by €, - - -,¢_,, the processes x,, ¢(t=1,2,---) satisfy
assumptions (A) and (B).

Finally, let us have a short glance at the vectorial case:

n = B'x, + ¢,

where 7, ¢ are now random G X l-vectors and B is a K X G parameter matrix.



782 N. CHRISTOPEIT AND K. HELMES

The formula corresponding to (1.6) is
B, — B = P \diag(d?, - - -, d%)Z;,
where Z, is the matrix whose components are given by

— g-23T
Zpy = dr; zt-lxtietj’

i=12-,Kj=12"--

Hence the proof of Theorem 1 carries over to the vectorial case.
In applications (cf. Section 3) it can often be shown that

(E) lTPT — Pae.asT — oo,

where P is some nonstochastic positive definite matrix. It is easy to see that (E)
implies (C) and (D) (take g(¢) = 7). But in this case we can considerably weaken

the assumptions about the stochastic independence of x, and ,.
(Al) g, € L, E(e) =0(t = 1,2, - - ). 3 = sup, E(e}) < oo.
(A2) x, € L,(t=1,2,---;i=1,---,K), and

32t 72E(x2)logk < oo.

(A3) E(x,¢e) = 0; E(x2e?) = E(xDEEN(t = 1,2, - - ). E(x,x,¢¢,) = 0fort #

s,i=1,---, K.

THEOREM 2. Under assumptions (A1)—(A3) and (E) the LSE is strongly consistent.

ProoOF. Starting from formula (1.5) we write

A 1 -1,
BT_ﬂ=("fPT) ?XT“T

1 -1
- (7)o
where now z; has the components
1
Zn < thr-lxn'e:
1 .
= ?zf-l ti> i=1-

By virtue of (A1)-(A3),
E(¢) = 0, E(4,) = Oforz # s,
and
E(&) = E(x)E(g) < 3°E(x7)
forallt=1,2,---,i=1,---,K. Hence
SR tT2E(E)logh < oo,
and by Satz 3.2.2. in [6], which we cite below for further reference,

zp; > 0aeasT — oo, i=1--:
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PROPOSITION 1. Let £(t = 1,2, - - ) be a sequence of square integrable random
variables such that
E¢) = E¢L) =0 (5,t=1,2,---;¢t55)
and
SRt E(EN)og? t < 0.
Then

1
"7'..23-_1£‘ - 0 a.c.

REMARKS. In Section 3 we shall work with the following condition which is
obviously sufficient for (A2):
(A2). x,; € L,, and E(x2) = 0(t%) for some 0 < & < 1.

3. Autoregressive processes. As an example let us consider the autoregressive
process

(3.1 M= oMyt tagn_g + Yz + g,
where ay(h = 1,- - -, H) are fixed numbers, y is a fixed N X l-vector, z(t =
1,2, - - ) are nonstochastic exogenous variables and e(t = 1,2, - - - ) are random
disturbances. We shall first give a proof of strong consistency of the LSE for
(ay, * -+, ag, ¥') which is based on Theorem 2.
The assumptions needed are the following:
(I) The errorse, € Ly(t = 1,2, - - ) and are quasi-independent up to order 4,
ie.,

E (H?- let?) = H?- E (et?)

for every (¢, - - -, t,) and every choice of exponents 0 < r; < 4 such that
n+---+r, <4

() E(g) = 0. E(g)) = o}; sup, 0} = 6 < o0 and lim;, (1/T)S7_ 02 = ¢°
exists and is positive. E(¢}') = 0(¢%) for some 0 < § < 1.

(IIT) All the roots of the characteristic equation

3.2) A —aqA#- - g, =0
are less than 1 in absolute value.
(IV) The limits
ZACERENES e
exist and are fiﬁite forA=0,1,2, --- Il_l_zz(O) is positive definite. Further-
more,

zt%=0(t6)’ i=l,'°',N,
for some 0 < 6 < 1.
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The concept of quasi-independent disturbances has been used in [7] to show
weak consistency of LSE for the coefficients (ay, - - -, ay, v). Note that the
exogenous variables z, need not be bounded.

Introducing the vectors

B=(ay oY), m_(t) = (- sm-n),
(33) x = (_(1), z)
and yz, ur, X; as in Section 1 we obtain the standard form (1.2).
The matrix (1/T)X7X7 = (1/ T)E7_,x,x, can be decomposed as follows:
0= o )
with ‘

1 , 1 ,
M, = —T-E,T.m_(t)n_(t), M, = 72f-1n-(t)zg,

1 ,
M22 = 7 23'= 1212+

Let us assume for simplicity that the initial values 1_(1) = 0. Then the solution
of (3.1) takes the form

(3‘4) '7; = 25r—-l()a‘rst—‘l' + 2:___'001,‘}’/2'_1,
=7 + w,.
The a(r =0, 1,2, - - - ) satisfy the homogeneous difference equations
a = oa_,; +- - taya._y T=12"---,

with initial conditions
a0= l,a_l = = al_H=0.

Assumption (IIT) implies that |a,| = O(A§), where |A .| <A, < 1 and A, denotes
the root of (3.2) with largest absolute value. This means in particular that

(3.5) 2 olal < o and 3% e < .

T=0

In order to abbreviate the notation let us introduce the following symbols for
real g, § §:

1
[g—hg—k]r ?zr-lgt—hgt—k’
(a’ g)t = zfr——l(')a'rgt—'r'
The next lemma is basic for the considerations to follow.

LemMMA 2. Let §,¢(t=1,2,---)and a, b(t=0,1,2,- - -) be sequences of
real numbers such that I3_gla,| < oo and ZF_o|b,| < . Suppose that the limits
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lim,_ . [é]; = mg(0), limy._, 81 = me(0) and
hmT—»oo th-l t{t+A = m“(A)

limy 72¢T:{’€t+A§: = m&{(_A)
exist and are finite for all A =0, 1,2, - - - . Then for all integers h > 0, k > 0
limz,, [(a, §)-n(b: §)-k]; = Z7u0Z5=0a,b9my((h — k) + (1 — 0)).

ProoF. Define finite signed measures F and G on Z* by putting F({7}) = a,,
G({0}) = b, and let H be the product measure. Then

(3.6) [(a, £§)_n(b, f)—k]T = ithr-lff«—h—l dF(T)ﬁ;—h—rfo«—k—1dG(0)§¢—k—a

/ dH(T’ 0) 2:-:‘(1 0)£¢ h=rSi—k—0

where ¢°(r, 0) = max(r + h + 1,0 + k + 1). The estimate

1
(zt=t* t—h— f) (zt-t*g‘t k—0)2
<[&]3[503
1 1
where ¢ is a constant, shows that the integrand in (3.4) is bounded by a constant

uniformly in T and (7, #). Hence by dominated convergence

. . 1
limg,o, [(a, &)-w(b §) k], = [ dH(,0) limp_, ?zf-x*(r,o)gt—h—ffx—k—o-

Forh+1>k+0,A=(h+1)— (k+ 0), we find

. 1 . 1 arnen
hmT—»oo '—fzr-t*gt—h—‘rg‘t—k—a = hmT—»oo ?zf-l(h-* )

zt-ﬂ* t—h— ,,.{, k—8

£t§t+(h+‘r)-—(k+0)

T-A

. 1
= limy 7'-2:-1 S

: = myg(4).
For k + 6 > h + 7 the limit equals mg(— A). This completes the proof.
THEOREM 3. Under assumptions (I)-(IV) the LSE of the parameters
(ay, « + + , ay, Y') is strongly consistent.

Proor. We shall verify conditions (A1)-(A3) and (E) of Theorem 2. (Al) is
obvious from (II). By (3.3),
Xy = My_; fori = 1,---, H;

=2,y fori=H+1---,H+N=K
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Let us first deal with 1 <i < H. Since 7,_; =0 for ¢ <i, assume ¢ >i + 1.
From (3.4), (I) and (II),

E(xue) = 0
E(x;xe6) =0  for t # s.
Further,
E(x2e}) = S0 "a2E (e &) + (2 ay' 2, - ,_,) E(e)

= [Ea e, ) + (S e e Y| B()

= E(x)E(e).
This shows (A3). From (II), (IV) and (3.5) we obtain the estimate

E(x}) = Zpy ekl + (25 a8 0,)

< 022,-00 + (21-0 I)( fr_-i()_lla'rllgt—x'—‘l'lz)
< const - (1 +[ 2425 a, |t ])
< const - (l + 12 [22la |])

= 0(1%),
where {, = y'z,, and the const is independent of ¢. This establishes (A2).

For H + 1 <i <K, (A3) is an immediate consequence of (I), and (A2) is just
the second part of (IV).

It remains to investigate the asymptotic behavior of the matrices (1/7T)P,. To
begin with, let us calculate the matrix M,, = lim,._,  M,,. The elements of M 11 are
of the form [n_,m_,, h=1,---,H; k=1,- - -, H. (For notational simplicity,
the time index will often be omitted in the sequel.) Inserting (3.4) and multiplying
term by term, we arrive at four terms which we shall investigate separately. The
term [n%,9*,] = [(a, €)_,(a, €)_,] is of the form considered in Lemma 2 with
§ = § = ¢(w) for every w. Let us show that m,,, . (8) exists and is finite for
almost all wand all A= 0, 1,2, - - - For A > 0, put e* = ¢, ,. Then, by virtue of
@,

E(ef) = 0, E(efet) = Ofort #s, E(e?) = o%2,, < &
hence, by Proposition 1,

mg(8) = lim_ iTE,T:,Ae, = Oae.
For A = 0, consider the random variables e, = ¢ — o2. Again, it is easily verified
that E(e) = 0 and E(ee) = Ofort +# s.
Moreover, by (II),
B(e) < B(e!) = 01,
hence, by Proposition 1,
1

T
TE,_,e, — Oa.e,
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and, again using (II),
m,(0) = oa.e.

Now we apply Lemma 2, obtaining

: * % = 2500 = - F
limy,, [92m2s], = 0 2708y = ¢ Fy ae.

As to the term [n*,w_,], put £ = |a,|%e,, $, = v'z,. Then again Proposition 1
applies, yielding m,.(0) = 0. m(0) exists and is finite by virtue of (IV). For A > 0,
consider the random variables ¢ = £, ,. Then E(el) = 0, E(ele?) = 0 for 1 # s,
and

2 E(e?) = Z2|aloX2 s < const - (1+Z2,A1%) < o0
hence )
re;

mg(8) = lim;_, %,E,T_' = Oa.e.

Similarly, m(—A) = 0. By Lemma 2 (with 4, replaced by sign(a,)la,l% and b, = a,)
limy, [n%,w_i], = Oae.
For { = { = z, Lemma 2 is applicable by aésumption; hence
littro [ Wi -]y =SS0t a0t Mu((h = ) + (7= )y = Gy
So we arrive at
M, = F +G.
Next, writing z, = (b, z), with by = 1,5, =0 for 7 > 1, Lemma 2 together with
Proposition 1 show that [n* ,z'] -0 a.e. and [w_,2’] converges to some finite limit.
Hence M, converges a.e. to some finite nonstochastic limit M,,.

Collecting the results obtained so far we find that (1/T) P, converges a.e. to the
finite nonstochastic matrix

— |F+G M,
HIZ Ez(o)
Introducing the vector w_(¢) = (w,_,, - -+, w,_p)’ We can write

G My, [[w-w'-] [w-z'-]},
(W] [22]

Hence

(v'v) A_f _.I_W,z (u:) = limT_m[(u’v’)( wz— )(WI'Z,)(z)]

oy
N
P
(=)
~

limT_,m[(u’w_ +v’z)2] > 0,



788 N. CHRISTOPEIT AND K. HELMES

i.e., the matrix
G M,
H 1,2 A-Zzz (0)
is positive semidefinite. F can be shown to be positive definite (compge Anderson
[1]), and M,,(0) is positive definite by assumption (III). Hence M is positive
definite.

If the ¢ do not possess finite moments of the 4th order, but are independent and
identically distributed, then Theorem 1 may be used to derive strong consistency of
the LSE. Strictly speaking, replace (I) and (II) by

(I') The errors ¢(¢t = 1,2,- - - ) are independent and identically distributed;

g € L,, E(¢g) = 0. .

THEOREM 4. Under assumptions (1), (III) and (IV) the LSE of (ay, - - - , ay, ¥)
is strongly consistent.

For the proof, note that assumptions (A) and (B) of Theorem 1 are satisfied by
virtue of (I') and the representation (3.4). The proof that (1/ T) P, converges a.e. to
a nonstochastic nonsingular matrix—from which (C) and (D) will follow—runs
along the same lines as in the proof of Theorem 3: every time reference is made to
Proposition 1 use Kolmogoroff’s law of large numbers for i.i.d. random variables
instead.
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