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ASYMPTOTIC DISTRIBUTION OF L, NORMS OF THE
DEVIATIONS OF DENSITY FUNCTION
ESTIMATES!
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Let (¢,);%0 be a complete orthonormal system of functions on a interval
[a, b] and let w be a function defined on R with support [a, b] and strictly
positive on (a, b). Let (x;);2, be i.i.d.rv’s absolutely continuous with density
function f with respect to Lebesgue measure y on R. Let f, be the estimate of f
defined for x € (a, b) by f,(x) = 27 ¢a,(m)d,¢,(x)/w(x), where a,(m), (m =
0,L---,»=01,---,m)isasequence in R and d, = n~'Z7_,¢,(X)w(X)).
In this work the asymptotic distributions of the functionals 7, = n(m +
D7 SA(, — Efyw?dx and T = n(m + 1)™! f5(f, — f)w? dx are found.
These results are used to construct tests of goodness-of-fit analogous to those
proposed by Bickel and Rosenblatt. The basic idea in obtaining the results
consists in finding the asymptotic distribution of T,(7}}) with f, replaced by a
conveniently chosen Gaussian process and showing that the two functionals
converge to the same law. For this the normalized and centered sample
distribution function is approximated by an appropriate Brownian motion
process by using a Skorohod-like imbedding due to Brillinger and Breiman.

1. Introduction. Let (X));., be independent and identically distributed ran-
dom variables, absolutely continuous with common probability density function (p.
d. function) f with respect to Lebesgue measure on R. Let [a, b] be a closed interval
of R and (¢,);%, be an orthonormal basis for L,[a, b].

In this work we find the asymptotic distribution of L, norms of the deviations of
estimators of f(x) for x € [a, b] constructed from orthogonal expansions of f|y,
where f|;,  stands for the restriction of f to [a, b].

In order to avoid some technical difficulties caused by the end points a and b it
is convenient, previous to the estimation of f(x), to multiply f by a function w such
that f(x)w(x) tends to zero at an appropriate rate as x tends toa™* and b~. We call
w a weight function.

DEerFINITION 1.1. A weight function is a Borel function w: R — R such that
w(x) > 0 for x € (a, b) and w(x) = O for x & [a, b]. Throughout this work we use
the symbol w to represent a weight function and the symbol g to denote

(1.1) g=fw

where f is the common p. d. function of the random variables X, j=12---,n
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The orthonormal expansion of g is

(1.2) 8~ E:O-Odv¢r
where
(13) d, = [28(s)e,(s) ds = [; f(s)w(s)$,(s) ds.

Therefore it is natural to estimate d, by (see Kronmal and Tarter (1968), Rosen-
blatt (1971) or Viollaz (1976)),

~ 1
(14) = 1358, (X)w(X)
and then to estimate g(x) by
(1‘5) gn(x) 2v=oa (m)d:,¢,,(x)

where m = m(n) is a monotone increasing sequence of integers and a, (m) is a
sequence of real numbers. Since we have assumed that w is positive on the open
interval (a, b) we have f(x) = g(x)/w(x) if x € (a, b), and therefore replacing g(x)
by its estimator g,(x) we obtain the following estimator of f(x) for x € (a, b):

(1.6) F(x) = Z7o0a,(m)d,$,(x) / w(x).
After inserting (1.4) in (1.6) it follows that ‘
(17) £5) = = Sk, X)/w(x)
where
(1.8) kn(x, 5) = Z7_oa,(m)$,(x)e,(s)w(s).
In this paper we study the asymptotic distribution of the functionals
(19) T, = —= P[40 = BL(x) W) ax,
and
(1.10) Ty = 2 AL A3 = ) Pwi(x) dx.

Let us observe that 7, and T* can also be written as
(1.11) T,=— If”[g,,(x) ~ Bg,(x)]* dx

m+ 1 fb[ g,,(x) g(x)]2 dx.

The asymptotic distribution of the functionals 7, and 7} was found by Bickel
and Rosenblatt (1973) for density estimators of the form

(1.13) Slx) = b( ) J"‘K( b( ;()

A central idea in the paper by Bickel and Rosenblatt consists in finding the
asymptotic distribution of (1.9) and (1.10) with f, replaced by a conveniently

(1.12) T* =
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chosen Gaussian process, and showing that the two functionals converge to the
same law. The basic technique in obtaining the results consists of approximating
the normalized and centered distribution function by an appropriate Brownian
motion process on convenient probability space, by using a Skorohod-like imbed-
ding due to Brillinger and Breiman. In this paper we find the asymptotic distribu-
tion of the functionals 7, and T following closely Bickel and Rosenblatt’s
approach.

The reader is invited to read their paper for the parallels between the results for
estimators of the form (1.13) and results obtained in this paper for estimators
constructed using the trigonometric and Legendre orthonormal systems.

This paper is organized as follows. In Section 2 we construct approximations for
T, and T} using a Skorohod-like imbedding. In Section 3 we find the asymptotic
distribution of T, for the case that the orthonormal system is the trigonometric one.
In Section 4 we particularize the results of Section 3 for the Dirichlet and Fejér
estimators. Section 5 deals with the asymptotic distribution of 7, for estimators
constructed from Legendre orthonormal system. In Section 6 we find asymptotic
distribution of T;¥ for both trigonometric and Legendre estimators. In Section 7 we
study some tests of goodness-of-fit analogous to those proposed by Bickel and
Rosenblatt.

2. Approximations. Since for the cases we are interested in, the variance of
(g,(x) — Eg,(x)) is asymptotically equal to C(x)(m + 1)n~!, where C(x) is a
function of x independent of m and n (see Viollaz (1976)), it is convenient to
normalize g, by defining

1) Y, () = (57 ) (&%) = Eg,(x)).
Let
22) ZXs) = wi(E(F7'(s) - ),

where F is the distribution function of a random variable X with p.d. function f,
and F, is the empirical distribution function corresponding to a sample (X;)j=1 0of n
independent observations of X. Then (2.1) can be written as

(2.3) Y,(x) = (m + 1)"3 5k, (x, s) dZO(F(s)).
Approximations Y, and ,Y, for Y, are obtained by defining
24) oY (%) = (m + 1) 3tk (x, 5) dZO(F(s))

@.5) Yo (x) = (m + 1) 735k, (x, ) dZ(F(s)),

where Z stands for the standard Brownian motion process, and Z° is the Brownian
bridge process, i.e.,

(2.6) Z%t) = Z(¢) — tZ(1), 0<t<1
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The processes (Y, and , Y, are well defined if
@7 Sakn(x, $)f(s) ds < oo.

Condition (2.7) holds if f and w are bounded on [a, 5].

For convenience, let us suppose that all our processes are realized as random
elements taking their values in the space D[0, 1] or in the space D[a, b]. For
y € Dla, b}, let ||y|| = sup{|y(s)| : a <s < b}. Our approximations rest on a
result obtained independently by Brillinger (1969) and Breiman (1969) which we
now state.

THEOREM 2.1. There exists a probability space (R, @, P) on which one can
construct versions of Z? and Z° such that
(2.8) 1Z2 - Z% = OP(n‘T'(log n)%(log log n)%).

We will study first the asymptotic distribution of the functional

(29) T, = —— [5(8,(x) — Eg,(x))’ dx = [5Y2(x) dx

as n— oo and m = m(n) - oo.

Let (T, and T, be the approximations to 7, defined by
(2.10) oT = [2o¥2(x) dx
(2'11) lTn = fbalYnz(x) dx'

LEMMA 2.1. Let f be a p.d. function and w a weight function both bounded on
[a, b). Let us assume that the system (¢,) and the function w are such that:

(i) for every v, ¢,w is absolutely continuous on [a, b] with derivative
(d/ ds)(¢,(s)w(s)) square integrable on [a, b), and

(i)

(2.12) I

where O(m log m) is uniform in x on [a, b] and r is a positive function on (a, b) which

is assumed to be square integrable (this is needed later). Then

Yn - OYn
r

m

ok, 5)|ds = F(x)0(m log m)

(2.13) = OP(m%(log m)n"%(log n)%(log log n)%).

ProoOF. Since for every », (¢, w) is absolutely continuous, with a square integra-
ble derivative and, since f and w are bounded, integrating by parts we obtain

@14) 20, )w(s) dZ2(F(S)) = 8,(BI(B)ZIE(B)) ~ b,(a)w(a) Z3(F())
122 ({5 Z(F(s)) b,

and a similar expression holds for f5¢,(s)w(s) dZ°(F(s)). Because
(2.15) ZXF(b)) = ZX1)=0, ZXF(a))=ZX0)=0
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we obtain from (2.14)

@16)  [oa,(s)wls) dZO(F(5)) = — 52 (8,(s)W(s)) Z2(F(s)) ds
and similarly

@11) [ (sw(s) dZ°(F(s)) = = [ (9, (s)w(s) Z°(Fs)) ds.
From (2.3), (2.4), (2.16) and (2.17) it follows that

218) (%) = X, ()| = (m + )73 |2 2 k(3 Y Z2F(s) = ZOCF(s))

< (m + 1)7H1Z0 = 2012 5 Kl 5)| .

From Theorem 2.1, (2.12) and (2.18) the conclusion of the lemma follows. []

LEMMA 2.2. Let the p.d. function f and the weight function w be bounded on [a, b]
such that g = fw has Fourier coefficients d, satisfying the condition

(2.19) d, = 29,(s)g(s) ds = O(»~%17), e>0.
Let us assume that the numbers a,(m) are such that

(2.20) SUP,, SUPo<,<mla(m)| < oo.

Then

(2.21) T, = 1T, = 9,(m™%)  as m=m(n)— .

For the proof of the lemma we need the following two propositions.

PROPOSITION 2.1. If on [a, b, f is a bounded p.d. function and w is a bounded
function, then
(222) maXe, < 56, (5)W(5) dZ(F(s))| = 0,((log m)?).

PrOOF.
(223) P(maxog,n|/20,(s)w(s) dZ(F(s))| > x)

< Z7_oP(| /40, (s)w(s) dZ(F(s))| > x).

Now [56,(s)w(s) dZ(F(s)) is a normal random variable with zero expectation and
variance equal to [2¢X(s)w*(s)f(s) ds which is bounded by || f||[|w?||. Therefore,

using a known bound for the tails of the normal distribution function, from (2.23)
it follows that

(224)  P(marge, <l 26, (5W(5) dZ(F(s))| > )
< 2om+ DD} exp(_ x? )
@myix 2111w

from which the conclusion of the proposition follows. ]
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PrROPOSITION 2.2. If on [a, b), f is a bounded p.d. function and w is a bounded
Junction, then

1
(225) maXoq, < 20, ()W(s) dZ°(F(5))| = 0,((log m)?).

Proor. From the definitions of Z and Z° it follows that
(226) [ot,(s)w(s) dZ°(F(s)) = [i6,(s)w(s) AZ(F(s)) — Z(1)[o,(s)W(s)S(s) ds.
This random variable is normal with zero expectation and variance equal to

bo2(s)wA(s)f(s) ds — (f26,(s)W(s)f(s) ds)’

which is uniformly bounded in », so that using the same arguments used to prove
Proposition 2.1 the conclusion follows. []

PROOF OF LEMMA 2.2.

loT, = 1Tl = -——l—|fﬁ{(ff’.km(x, 5) dZO(F(s)))’ = (J5kn(, ) dZ(F(s)))’} dx|

2[Z70a,(m)e,(x) /50, (s)w(s) dZ°(F(s))]” dx

— JA[Z0-08,(m)é, ()5, (s)w(s) dZ(F(s)) ] ax].
~ By Parseval’s relation we have that

1
|0Tn - lTnl = m+ 1

S_oa2(m)( 56, (s)w(s) dZ°(F(s)))*

— 20 g (m)(13,(Iw(s) dZ(F(s)))'

p——l |=7a2(m) [50,(s)w(s) d] ZO(F(s)) — Z(F(s))]
(2.27)

><[ S, (w() dZO(F(1)) + [20,()w(8) dZ(F()) ]|

= 71 Z(D)Z5_oa] (m) f2$,(s)W(s)f(s) ds
X[ 28, ()w(2) dZO(F(0)) + [o8,()w(2) dZ(F(1)) ]I .

Using Propositions 2.1 and 2.2 and since d, = 0(v‘%“), e > 0, we have that

‘|0Tn - lTnl <

T 12(1)10,((tog m)* 2)ST_of 120, ()W(s)f(s)| dis
1

1
2 t+e

< 1Z(1)|0,(m ™ (log m)* )2,..1

14

<o, (m” 7). 0
To apply Lemmas 2.1 and 2.2 we make the elementary
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ReMARK. If (g,)is a sequence of functionals on D[0, 1] satisfying the Lipschitz
condition
(2.28) |8x(%) — g, ()| < M|Ix = |

and (4,), (B,) are sequences of stochastic processes realizable in D such that
|4, — B,|| = 0,(1/M,), then g,(4,) converges in law if and only if g,(B,) does,
and to the same limit. The proof of this statement is straightforward.

3. The trigonometric case. In this section we apply the results of Section 2 to
the estimators constructed using the orthonormal system on [ — 7, =),

3.1) do(x) = (2m)77, ¢,(x) = 77 cos wx, y=1,2---,

¢,(x) = 7”7 sin rx, v= -1 -2,

We change a little the definition of 7, as follows

(32) T, = I o (8a(x) — Eg(x))’ dx

2m +1

1 '
“gmri/m U
and, of course, the same changes have to be done in Y, ,Y,, ,Y,, o7, and ,T,.

(%, 5) dZJ(F(s)))’ dx

THEOREM 3.1. Let the p.d. function f be of bounded variation on [— m, ) and the
weight function w be bounded, absolutely continuous with derivative w’ square integra-
ble on [—m, 7). Let us assume that the kernel k,, satisfies conditions (2.12) and (2.20),
and also that,

(3.3) Jor all p, a,, ,(m) — a,(m) — O uniformly in v:
0K |y|<m asm— oo,
and a,(m) = a_,(m). Finally, let us suppose that there exists the limits

Q) =13 m 2
' (3.33) a == hmm—yoo 2m + 1 2v-—m (m)

@ = m 4
(3‘3b) a - hmm—»oo 2 + 1 2v-—m (m)
Then

- 1 1 T 2 2

G4 @m+ DT, = 5o g T W) T _pal(m)
is asymptotically normally distributed with mean zero and variance
(35) 0L [T FHIW(s) ds

provided that m = m(n) is chosen such that 2m + 1 = Kn%, 0 <8 < %, K constant.

PrOOF. Since the functions ¢, and w are bounded and absolutely continuous
with derivatives ¢, and w’ which are square integrable, (¢,w) is absolutely continu-
ous with square integrable derivative. Hence condition (i) of Lemma 2.1 holds.
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Condition (2.19) follows upon integrating by parts and applying the Riemann-
Lebesgue lemma to g’. Since the other hypotheses of Lemma 2.1 and Lemma 2.2
are clearly satisfied, we can apply these two lemmas. Hence,

ITn - OTn' = If”—w Ynz(x) dx - j’L,anz(x) dxl

(3.6) <Y, = oY)/ Pl Ya(x) + oY, (%)Ir(x) dx

< Op(m% (log m)n“%(log n)%(log log n)%)
xﬂw' Yn(x) + OYn(x)'r(x) dx.

Now, 7|0 Y,(x)|r(x) dx is a sequence of random variables with second moments
uniformly bounded. In effect, using Schwarz inequality and Parseval’s relation it
follows that

E(J" .,loY (x)Ir(x) dx)’
2(x) dxE(J™ 0 Y,(x) dx)

2m T/ (0) XE(- @l (m) (218, (5)W(s) dZ°(F(s))))

6N =5 +1 1.0P(x) dXZ5e_ @ (m) % $HIWH)A(s) di

< g 1P (2) dXZT _ paE(m)| 7 82(s) i
= 0(1).
Therefore, [T ,|oY,(x)|7(x) dx = 0,(1) and since
/2ol Ya(®)r(x) dx = [T loY,(x)|r(x) dx| < [T ,|Y,(x) = oY, (x)|r(x) dx
09 - e [ Do)
Y’l

Loz olel e i) ax

r}(x) dx

<

it follows from (2.13) that
(3.9) JZal Ya(x) = oY (X)|r(x) dx = 0,(1) as n—>oo

provided that m = m(n) is chosen such that the right-hand side of (2.13) is
bounded, and this will hold if 2m(n) + 1 = Kn® with 0 < 8 <§, which is one of
the hypotheses of the theorem. Hence from (3.8) and (3.9) it follows that

(3.10) [ Y ()lr(x) dx = 0,(1).
Finally from (3.6), (3.7) and (3.10) it follows that

|T, = oT,| = Op(m%(log m)n'%(log n)%(log log n)%)
asn-—>00,2m + 1 = Kn® with 0 < § <3.
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Because of this result and the remark in Section 2, we can replace 7, by o7, if
(3.11) m(log m)n"%(log n)%(log log n)% = o(1)
and this condition will be satisfied if 2m + 1 = Kn® 0 < 8§ <3. Also according to
the same remark and Lemma 2.2 we can use ,7,, in place of ,7,,. Therefore, for the
proof of the theorem it suffices to find the asymptotic distribution of ,7,,.

By Parseval’s relation we have that

1
- 2 = L4
lTn = fw—vrlYn(x) dx 2m+1’""

X [ET- —m (M), (x)[" b, ()W(s) dZ(F(s))]" dx

e s (M)[ I, ()W (s) dZ(F(s5))]*

2m +1
2m + 12’:"'”’ v
where
(3.12) Z, = a,(m)[" 4,(s)w(s) dZ(F(s)).

Let us write for short a,(m) = a,, g* = w’. We see that , 7, is a quadratic form.
The vector (Z,)).. _,, has a normal distribution with EZ, = 0 and covariance
matrix B, with components b;; given by

b, = E(Z,Z)) = a,a[" ,¢,(s)9;(5)g*(s) ds.

The characteristic function of ,7,, is

m it \73_ m Voo = 2V
#ul0) =T ‘5;;:7) -exp[zf-—m(‘5)°g( T Imt 1)]

where A; are the eigenvalues of B,,. Using Taylor’s theorem we write

oy, (it 27 m(48)’
l¢m(t) = exP[”zm s lzj-—m}‘j o @em + 1) _'"Ajz + 4t )3 3(2 + 1)

where 0 < §; < 1. By Lemma A.2 of the Appendix

1 1 1

— = e o [T *
2 ¥ T = 3 T 5 178" B ()

Therefore the rv (3.4) has characteristic function given by

3

(it)2 ‘ 2 . 32;"-—m(}‘101')
—Sm A2 4 4 2|
Zm 4+ 120= 32m + 1)1

G13) ¢, =exp
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Because of Lemma A.2 of the Appendix

lim,, ,,~——37" _ A2=lim

1
-1 @ g2 4
. 37 T(B2) = 5 a7, fs)wi(s) ds

1
= Im + 1
lim,,_,2m + 1) _ (\8) < lim,,_.(2m + 1) IS _, A}

= lim,, ,.(2m + 1) 3tr(B2)
= 0. '
Hence the conclusion of the theorem follows passing to the limit in (3.13). []
REMARK. Under the additional condition
1
—_ 5m = 4@
S T 12,,_ —m@i(m) = a® + o(m~ 2)
it is easy to show that

@m + 1)‘5[ T, - a® 5 [T f(s)W(s) ds

has the asymptotic distribution stated in Theorem 3.1. Since in general it will be
easier to find the limit of 2m + 1)~ I3m__ .a%(m) than the value of this expression
for a finite m, this remark is useful.

4. The Dirichlet and Fejér estimators. In this section we discuss two particular
cases, namely, the Dirichlet and Fejér estimators.

The Dirichlet estimator arises when we take a,(m) = 1 form = 0,%£1,- - -, ||
< m and zero otherwise. The corresponding kernel is k,,(x, s) = D,,(x — s)w(s),
where
l sin((m + 1/2)¢)

4.1 D =
(4.1) () 27 sin(z/2)

The Fejér estimator arises when we take a,(m)=(1—(|»|/(m + 1)) for m =
0,+1,- - -, |v| < m and zero otherwise and the corresponding kernel is k,,(x, 5) =
F,(x — s)w(s), where

1 sin((m + 1)1/2) |?

. t) = .
(42) B =50 { sin(1/2)

In order to apply the results of Section 3 to these estimators we have to show
that they satisfy the hypotheses of Lemmas 2.1 and 2.2; specifically we have to
show that (3.3), (3.3a), (3.3b), (3.12) and (2.20) hold. That (3.3) and (2.20) hold is
obvious, so that we prove (2.12), (3.3a) and (3.3b). Let us consider first the
Dirichlet kernel. The weight function w is assumed bounded and with a square
integrable derivative. Hence, and after applying Schwarz inequality, we obtain
7] 2 b, 5) = D(x — 5)

s <[, w(s) ds + [T ,|D,(x — s)w'(s)|ds

< WIS | o D = )|ds + (7, (w(s))? ds) (7., D3(x — ) ds)*.
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Because of the periodicity of D,, we have that

(4.3) k m(X, 8)|ds < [[W||[Z | —D,,(s)|ds

+ (f"_,(w'(s»’ ds)* (™., D(s) ds)".
Since D,,(s) = O(m) it follows that the second term in the right-hand side of (4.3) is
O(m). Now,

Dy(9)]ds = 1217n| Gs Pa|do + (14 4 111)| -2 D]
It is known that #D,(s) =1 + cos s + cos 25 + - - - +cos ms, so that
w(d/ ds)D,,(s) = O(m?); hence
(45) 1, = 0(m).
Now,
. S
d m+3 cos[(m +§)s] 1 sm[(m +-;—)s]cos§
& Dnls) = — s 4 5
4 sini— ™ sm’i
Therefore,
d 1 1
‘Epm(s) = 0(m) 7 + 0=, as 50,
and then
(4.6) I, = 0(m log m) + 0(m) = 0(m log m).

From (4.4), (4.5) and (4.6) it follows that (2.12) holds.
Using a similar argument for the Fejér kernel, it can be shown that
f w

—-k (X, 5)|ds = 0(m),

whence (2.12) follows.
Now we write explicitly Theorem 3.1 for the Dirichlet and Fejér estimators. Let
us consider first the Dirichlet estimator. In this case

a® = 30 _nai(m) =1, 49 =lim !

mee2m + 1

hence conditlons (3.3a) and (3.3b) also hold. Therefore we can state the following

T ] 2v=—md “(m) =1

THEOREM 4.1. Let f be a p.d. function of bounded variation on [— m, 7) and w be
a weight function absolutely continuous with a square integrable derivative on
[—m, m). Let g,(x) be defined by

1
8:(%) = —Zj_1D,(x — X)w(X)).
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If T, is defined as in (3.2), then

@7 @m + V[ T, = 5/ f(s)wi(s) ]
is asymptotically normally distributed with 0 mean and variance
(48) 7 T fH(s)W(s) ds

as n— oo and 2m(n) + 1 = Kn® 0 < 8 <3, K constant.

For the Fejér estimator simple integral estimation gives that

a? = lim, L zm ( _ I )2 =1
Mmoo Im+ 1" m+1 3
. 1 7] \*
@ — — S m — =1
a llmm—>oo 2’" + 1 2v-—m(l m+1 ) 5°

Therefore we have proved the following

THEOREM 4.2. Let f be a p.d. function of bounded variation on [—w, 7) and w a
weight function absolutely continuous with square integrable derivative on [—m, 7).
Let g,(x) be the estimator

1
£a(%) = 2SI Fy(x — X)w(X).
If T, is defined as in (3.2), then
@m + 1)%[T,, - 31; /™ AS)WH(s) dr]
is asymptotically normally distributed with mean 0 and variance

(5m) 7T W (5)W(s) ds.

5. The Legendre case. In this section we apply the results of Section 2 to
estimators constructed using the orthonormal system of Legendre polynomials. Let
(P,(x))2o and (p,(x))s%, be the unnormed and normed Legendre polynomials,
respectively, as defined in Sansone (1959). Let g,(x) be the estimator

G 80 = 2T k(o X) = S0 ST, ()P, (X)w(X)

where w is a weight function absolutely continuous on [—1, 1] and such that
w(s) = O[(1 — s>)"], w'(s) =0[(1 — s»" '}, >3, as s tends to —1* and 1-.
Clearly condition (i) of Lemma 2.1 holds here We prove now that (2.12) also holds
with r(x) = (1 — x?~%.

PROPOSITION 5.1. If w has the properties above stated, then
(5.2) I k (X, 5)|ds

Proor. Let K, (x, s) =37 oD, (x)p,(s). From Christoffel-Darboux’s formula
(see Szegd (1939), page 41) we have
(53) K.(x5) = O(l)pmH(S)pm(xz :im(S)pmH(x) .

=(1- xz)_%O(m log m).
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Then k,(x, s) = K(x, s)w(s) and

(54) 11|55 o ]l < L] Ko, o) o+ 1L 5 /()]s

<A+ B.
Let A, (x) = {s :|]x — s| < 1/m}, and A}(x) be its complement with respect to
[—1, 1]. Then

(655 A= ol Ok (x, 5)|wls) ds + fA.(,,) K, (x, $)|w(s) ds
=1, + I,

Since (cf. Szego (1939))

(5.6) p(x) = 0(1)(1 — x?)

A(x) = 0)(1 — x)
we have that
(5.7 IL =7 Am(x)lzT-on(x)P;(SNW(S) ds

_1 _2
= 0(m)(1 — x?) 7% [y (1 = s7) 7 *w(s) ds.

But since w(s) = 0((1 — s»") with n > 2, it follows that (1 — 5%~ 4w(s) is bounded.
Hence the integral in the right-hand side of (5.7) is O(m '), and then
(5.8) 1, = 0(m)(1 — x?)"%.
Now, by differentiation of Christoffel-Darboux’s formula we have
S) O(])pm+l(s)pm(x) Pm(S)Pm+](x)

S — X

0(1)pm+l(S)Pm(x) pm(s)pm+l(x)
(s = x)’

P4 1()P(X) = Pp(8)Ppm s 1(X)

d
59) K

Saz0) w(s) ds

w(s) ds

— SZ)% |s — x|

= 0(m)(1 — xz)_%ﬁA:.(x)

(5.10) = (1 — x?)"%0(m log m),
P4 1()P(%) = Pp(8)Ppms1(* )l w(s) ds

Jago

(s — )’

(5.11) = 0()(1 = %)™ *[49r)

w(s) ds

(- s)i (s—x)
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Since s € A%(x) implies that |s — x| > 1/m, and since w(s) = 0(1 — s9)"), n >3,
it follows that (5.11) is bounded by

(.12) o(m)(1 — x?)~* fA;(x)l—s—ngl = (1 = %3~ %0(m log m).

From (5.10), (5.11) and (5.12) it follows that
L=(01- xz)"%O(m log m).
Considering B, we obtain
B = [ 1K, (x, s)w(s)lds = 0(m)(1 = x3)™*[L,(1 = 52) "4 |w/(s)]ds
(5.13) = 0(m)(1 — X)L (1 - )7 s
= 0(m)(1 — x4, i

THEOREM 5.1. Let the p.d. function f be of bounded variation on [—1, 1]; let the

weight function w be absolutely continuous with square integrable derivative both on
[—1, 1], and such that w(s) = O[(1 — s"], w'(s) = O[(1 — s>"" '], 7 >3 as s tends
to —1*%,17. Let g, be defined by (5.1) and T, by

(5.14) T, = p- :_ q S ga(x) — Eg,,(x)]2 dx.
Then
(5.15) (m + 1)%[7;, - % L As)WA(s)(1 — s2)7F ds

is asymptotically normally distributed with 0 mean and variance
2 4
(1-s%2
provided that m + 1 = m(n) + 1 = Kn% 0 <8 <3, K constant.

ProoF. From the hypotheses of the theorem and from Proposition 5.1 it follows
that all the hypotheses of Lemma 2.1 and Lemma 2.2 are satisfied. Condition (2.19)
follows from Sansone (1959), page 200 and the second theorem of the mean value.
Since all the arguments used in the trigonometric case to prove that ,7, can be
used in place of 7, are independent of the particular orthonormal system (¢,),
provided that for every », ¢, is bounded and absolutely continuous with square
integrable derivative ¢, we conclude that in the present situation we can use ,7,, in
place of T,.

The rest of the proof goes exactly the same as the proof for the trigonometric
estimators, so it is omitted. []

6. The asymptotic distribution of 7). The statistic 7} defined by (1.10) is
probably of greater interest than 7,. In this section we find the asymptotic
distribution of T}¥ in the trigonometric and Legendre cases. Let us consider first the
trigonometric case.

(5.16)



336 ALDO JOSE VIOLLAZ

Let us expand 7} in the form

(6.1) T*=T, +

[ZT-—-m(l aq (m))2 dvz + 2|v|>m dvz

2m
~237._na(m)(1 ~ a(m) 4(d, - 4)].

For the Dirichlet estimator we have

n
(6.2) T: =T, + Emzl,,bm d,,

and, therefore, T} will have the same asymptotic distribution as T, if

n _1
(6.3) IT: - Tn| = ir—n—+—l-lzl’l>m d,,2| = op(m 2).
The following theorem holds.

THEOREM 6.1. Let f be a p.d. function such that f|,_,, ., has a second derivative of
bounded variation. Let w be a weight function with a second derivative of bounded
variation on [—m, ), and such that w(x), w'(x), w”(x) are o(l) as x tends to
—a*,w”. Then T} has the asymptotic distribution given by Theorem 4.1, when n
tends to infinity and 2m + 1 = Kn® where ;27 <8 <3

Proor. We have to show that (6.3) holds. As before, let us write g = fw and let
g°, f¢ and w* be the periodical extensions of g|;_,, .y flj—n, ) and W|_, ., respec-
tively. Since (g°)” = (f¢)"w*® + 2(f¢)Y(w€) + fé(w°¢)" it follows from the hypothe-
ses that (g°¢)” exists for every x € R and it is a function of bounded variation.
Therefore the Fourier coefficients d, satisfy the equality

d, = [T .g(x)¢,(x) dx = [T g°(x)$,(x) dx = 0(» )
and

" -5) = -6
(6.4) m + 12|”|>m 2 + 10(m ) O(nm ).

From (6.4) it follows that (6.3) holds provided that 2m + 1 = Kn® with § > -,27 0
Let us consider now the Fejér estimator. Let us expand 7} in the form (6.1) and

let us consider the fourth term in the right-hand side of (6.1):
=2 om L |»| _
U"_2m+12"""'(1 m+l)m+1d(d d)

We will prove that (6.1) cannot be used to find the asymptotic distribution of T}
because in general U, does not tend to 0 fast enough. Clearly E(U,) = 0. Let us
take the p.d. function

f(x) = 5= (1 + €08 1) _p, (%)
and
w(x) = Ii_, »(x) =1, X E[-—ﬂ, )
=0, x¢&[-mm).
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The function g = fw and its periodical extension g¢ are very smooth since they are
infinitely differentiable.
Since d, = 0 for |»| > 1 we have

4n || |1l
Var(U,) = s! __(1— )(1- )
() @m+ 1¥(m+172 7770 m+1 m+ 1
x |v|| pld,d, Cov(d,, d,)

= C(n, m)nm™*

where C(n, m) is bounded away from 0 uniformly in » and m. Therefore
U, = p(n%m"z).

In order to use (6.1) to find the asymptotic distribution of 7} we need to have
m%U,l = 0,(1) and this will hold if we take m = Kn® with 8 > 3. On the other hand
we have that § < }; hence it is impossible to find the asymptotic distribution of T*
using the approach of this work which is based on a Skorohod-like imbedding from
which the bound 8 < comes.

It should be of interest to study estimators constructed using other kernels, like
the de la Vallée Poussin and Jackson’s kernels, but we do not consider them here.

Let us discuss now the Legendre estimator.

THEOREM 6.2. Let f be a p.d. function with a second derivative of bounded
variation on [—1, 1]. Let w be a weight function with a second derivative of bounded
variation on [—1, 11. Then T} has the asymptotic distribution given by Theorem 5.1
when n tends to infinity and m = Kn® with % <8 <3.

Proor. Clearly all the hypotheses of Theorem 5.1 hold. Since f and w have
second derivatives of bounded variation it follows that g = fw has a second
derivative of bounded variation, and then d, = 0(» ~*). Hence [n(m + 1)~ ‘2y>md,,2
= 0(nm %) and (6.3) holds provided that m = Kn® with § > —127 0

7. Applications. An explicit confidence band is impossible to obtain from the
theorems of Sections 3-6. However we can test H : f = f, at (approximate) level a
by calculating 7,, for f = f, and rejecting when 7, > d(a), where, by Theorem 5.1
in the Legendre case,

1

4 2

(1.1) d@) = (m+ )31 ~ a)(%f‘_,—fi"—fds)
(1-5%2

2
W

1
(1-s%:
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by Theorem 4.1 in the Dirichlet case
1
(72)  d(a)=(2m + 1)“%¢-'(1 - a)(%f’i,,fzw“ ds')z + 51;1"_,, 2 ds

and by Theorem 4.2 in the Fejér case

(13)  d(a) = @m + 1)~ 3e=Y(1 - "‘)(s“lw [ ot ds)i+ o [T ds

where ¢(x) = (27) "7/ exp(— 12/2) d.

We also can test a composite hypothesis H : f = f(., ) where # is an unknown
vector parameter. For this if § is an estimator of § we may use 7, with f replaced
by f(., §) and d(a) with f; replaced by f(., @) provided that the following condition
holds: for each 8,, 3%(x, 8)/9,(i)9,(j) is bounded in absolute value for all § in a
neighborhood of 8, and all x, i, j. Moreover if 8, is true

(7.4) 8 —8y| = 0,(n~2m?2).

The proof goes exactly as in Bickel and Rosenblatt (1973) and it is omitted.
To make local power calculations of the test we consider the behavior of 7,
(calculated under f;) for a sequence of alternatives of the form

(7.5) (%) = fo(x) + Ya(n(x) + 8,(x)),

where 7(x) is of bounded variation, §,(x) is of bounded variation uniformly in »
and 0(1) uniformly in # and v,|0 at a suitable rate. Note that A, is of bounded
variation uniformly in n as required by Theorem 3.1.

THEOREM 7.1. Let h, as above, w and f, as in Theorem 3.1 and vy, = n—1+8/4,
Suppose that (a,(m)) satisfies conditions (2.20), (3.3), (3.3a), (3.3b), and, moreover, for
every fixed v, a,(m) tends to 1 as m tends to oo. Define T, in terms of f, by (3.2).
Assume that h, is the true p.d. function of the random variables (X)). Then if & <3
and 2m + 1 = Kn®,

e T a5 W) dS i)

is asymptotically normally distributed with mean K -z I™ ¥ (s)W(s) ds and variance
given by a(")-;r- ™ SUs)W(s) ds.

(16)  @m+ 1)%(T,,

PROOF. Let
d, = 1358, (X)w(X)
d, = Ed, = [T ¢,(s)h,(s)w(s) ds
do, = [™ 1,(5)fo(s)w(s) ds.

Let E, g,(x) be the expected value of g,(x) calculated under f,. Then by Parseval’s
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relation it follows that

Tn 2m + lf" (gn(x) E'O(gn(x))2 dx = 2m + IET-—m v(m)(d - d()r)
(17) =5 3r_ai(m)(d, - 4) + =30 aXm)(d, — dy,)?
ST a(m)(d, — 4)(d, — do,)
But
(18) 57 Z0n_nad(m)(d, — d,)?

= K~'n=*227 _al(m)[ [T [n(s) + 8,(s)]w(s)a,(s) ds]”.

Since the total variation of n(s) + §,(s) is uniformly bounded in n, and w is of
bounded variation, it follows that

SZa[1(s) + 8,(s) Jw(s)e,(s) ds = O(»~")

with O(» ~!) uniform in n. On the other hand a?(m) are uniformly bounded in » and
m. Hence that »th term of the series in the right-hand side of (7.8) is dominated by
0(» ~2) and therefore, by the dominated convergence theorem applied to (7.8) we
obtain

lim S7_ _ a2(m)[ 7 .(n(s) + 8,(s))w(s)e,(s) ds]’

(7.9) _ =32 _ [/ n(s)w(s)9,(s) ds]?
= [T (s)w?(s) ds.
Let us define
2n
Un = 2m + 1 v-m y(m)(d - d)(d

Then EU, = 0. Since Cov(d,, “) = O(n"") with O(» ") uniform in » and p, and
since

d, — dy, = v,["[1(5) + 8,(5)]w(s)8,(s) ds = v,0(» ")
with O(» ~!) uniform in n, it follows that

Var(U) < V22 002 - o i 2
@m + 1) nvp
< y20(m~n(log m)®) = 0(n~%*/*(log m)?).
Therefore,
(7.10) U, = 0,(n™3%/% log m).

From (7.7), (7.9) and (7.10) the conclusion of the theorem follows. []



340 ALDO JOSE VIOLLAZ

For the Legendre case we have the following

THEOREM 7.2. Let h, as above, f, and w as in Theorem 5.1 and y, = n=2+%/4,
Define T, in terms of f, by (5.14). Then if § <5 and m + 1 = Kn®

(.11) (m + 1)%(T,, - -‘7; L faw?(1 — 537 dv)

is asymptotically normally distributed with mean K -3 IY \m*(s)w(s) ds and variance
1
207 fAIWAH — )77 ds.

The proof is the same as that of Theorem 7.1.

It is interesting to compare the tests based on different estimators. However the
possibility of such comparison is seriously limited because f, and 7, are in fact
functions of » and m and we should denote them by f, ,, and T, ,, respectively.
Theorems 7.1 and 7.2 show that the asymptotic power of the tests are decreasing
functions of K which tend to one when K|0. Therefore, choosing K small enough
the asymptotic power can be done as near to one as we want.

The difficulty in comparing the asymptotic powers corresponding to two dif-
ferent estimators is due to the fact that the asymptotic powers are functions of the
constants K, which we have no reason to assume equal, or assume that they are
functionally related in some way. Given two estimators, with proper selection of
the constants K to use for each of them we can obtain for the relative Pitman
efficiency any prefixed number of the open interval (0, o).

The situation is the same with kernel type estimators. If, in Theorem 4.2 of
Bickel and Rosenblatt (1973), we take b(n) = Kn~°, then under the hypotheses of
that theorem

b=3(n)[ T, ~ [ ffuls)a(s) ds][ joX(z) dz]]

is asymptotically normally distributed with mean K -3 [n%(s)a(s) ds and variance
2(v » 5)Pfa*(s)f*(s) ds where v is the kernel function named w in Bickel and
Rosenblatt’s paper. Therefore, the asymptotic power is again a decreasing function
of the constant K.

From the above discussion we arrive at the conclusion that in general it is
meaningless to compare the asymptotic powers obtained using different orthonor-
mal systems, or using kernels, and it is so due to the fact that the asymptotic power
depends on the undetermined constant K.

There are some cases where some comparison is possible.

Consider, for example, the following two kernels

0y(s) =311, 11(5), 0y(s) = I[—%,%](S)

Here it is clear that b,(n) should be two times b,(n).

Bickel and Rosenblatt (1973) proved that their test with kernel function v =
L1 1(x) is asymptotically more efficient than the classical x2 test Of goodness-of-
fit. Here the asymptotic comparison has meaning since there are sound reasons to
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take the length of the cells of the x? test equal to the bandwidth b(n). Since there
are no clear equivalences between the number of harmonics of our tests and the
number of cells, it is difficult to obtain asymptotic relative efficiency figures with
actual meaning. However we feel that the tests proposed in this paper have promise
as competitors of the x? test.

From a computational point of view, our tests are more convenient than those of
Bickel and Rosenblatt. The latter involves the evaluation of an integral by numeri-
cal methods. On the other hand Bickel and Rosenblatt’s tests are more flexible
since they allow one to emphasize certain regions of the domain of f by choosing
an appropriate weight function.

APPENDIX

On the traces of powers of certain matrices.

A.l1. Let f and w be differentiable functions defined on [—1, 1] such that
w(s) = 0((1 — sA)"), w'(s) = 0((1 — s»"~ 1), n > 3. Let (p,)%%, be the orthonormal
system of Legendre polynomials. Define g*(s) = f(s)w?(s). Let B,, be the (m + 1)
X (m + 1) matrix with entries b,; given by

) by = [L1p(s)p(s)g*(s) ds.

LemMA A.l. If B,, is defined as above, then

::l(i m) fog"‘(cos 0)dd + o(m~ 2) m — oo,
w1, v,

fl
m + 1 ™ (1 _ 32)2

tr(B)) = 0(mlogm)  asm— 0.
ProOF. From Szegd (1939), page 189, we have

2 + 1)%3 T(» + DI(3) cos[(v+§)0—%]

) p,(coso)=( ) T 6 "

+0(»7Y) 0<f#<m.

(sm 0)2
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Then
b,; = fsp,(cos 8)p;(cos 8)g*(cos )sin 8 db
=.‘l(2i+ 1)%(2j+ 1)%I‘(i+ DI + 1)
™\ 2 2 T T +3)r(+3)
1 . B .
,2c08[(J— 98] .
X {[O—Z—W—g (cos 8)sin 8 do
gcos[(i +j+1)8 —1]
T 1 *
3) +/3 Y sin 8 g*(cos 8) df
*
+0( ()2 D) gy
sin%@

. * 0
+0(j " Y)/a cos[(z +1)6 - %]g—gg—;)dﬁ

+0(i~Y)f3 cos[(j +1)8 - %]%do}.

Now, for 7 > 1, g*(cos 8)/sin’ is integrable. Since f is assumed to be differentia-
ble it follows that for 5 >3, g*(cos )/sin § is differentiable with integrable
derivative; hence it is of bounded variation. Therefore (3) can be written as

=l(2i+ 1)%(2j+ 1)%r(i+ DIG + 1)

TR ) ) )

4 X {5 cos[(j — i)8] g*(cos 8) df + 7 sin[(i + j + 1)8] g*(cos ) do}
+0(i~hHo(i ).

From (4) it follows that

1o, 2i+1[TG+1)
tr(B,) = —=m
(By) 7m0 2 (I‘(i+§)

+ /5 sin[(2i + 1)8] g*(cos 8) db + O(m‘z)].

,
) [ /2 cos 6 g*(cos 8) df

Hence
t(B,) 1., 1 o, 2i+1[Ti+D]
(5) m+1—;fog (cosﬁ?)dl)m_|_l fm0—% [I‘(i+§) + O(log m/m).
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Using Stirling’s formula it can be proved that

1 2i+1[TG+1) | 1
6 ¥ =14 o(m~2
( ) m+ 1 0 2 l: I‘(z + %) ] (
and, therefore, from (5) and (6) it follows that
tr(B,, 1 _1
@) oy i = ;fgg*(cos 0) df + O(m 5).
From (4) it follows that
t(Ba) 1 n s 21+12,+1 TG+ DG+ 1) |
LT ) 2| T )
X[ /5 cos[(j — i)8] g*(cos §) d0]2 + o(1)
o . 2 2+ 1 TG+ 1))
®) " a¥(m + 1){[ng (cos ) ] 2"°( 2 ) r(i +2)
_’_22,,,_12,;,__:2(1' +2k) +12r+1
2
T'(v + k+ I'(» + 1) . )
(v + k + 2)1,(” " 3) [/58*(cos 8)cos kb df |
+o(1).
Since W
o =smk 20+ R+ 120+ 1[ T + k+ DI +1) 2
fom - Sv=0 2 2 T+ k+2)r(p+2)| m+1

is uniformly bounded in k and m and for every fixed k lim aq;,, = 1 as m — oo,
from dominated convergence theorem applied to (8) it follows that

r(B2) _
moo o+ 1

7 {[fog*(cos ) dl)] + 237, [ /58*(cos B)cos k0]2}

= 55 ([72m s (cos 0) ] + 3. [ 2.~ dge(eon con ')

©) = 5o /7] 8*(cos 0) > b

27
= lfl—l *2(S)
To(-s )
f’(S)W“(S)
- L1 -3
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To prove the third equality of the lemma let us write
(10) tr(B,) = 2,2,2 b, byby
Replacing (4) in (10) and since

f58*(cos B)sin[ (i +j + 1)8] df = O((i + /)~ N < 0(1?

izj2
J58*(cos @)cos[(j — i)8] db = O((j — )~
it follows after some computations that

tr(B2) = 0(m log m). I

A.2. Let f be of bounded variation on [—#, #) and the weight function w be
bounded, absolutely continuous with derivative w’ square integrable on [—, 7).
Define g* = w’f. Let (¢;) be the orthonormal system defined by (3.1). Let B,, be the
matrix with components b; ; given by

b, = ai‘{,'f’-’-w‘l’i(s)#’j(s)g‘(s) ds

where the g, = g,(m) satisfy the conditions (2.20), (3.3), (3.3a) and (3.3b). Define
a® and a® by (3.3a) and (3.3b), respectively,

LEMMA A.2. If B, is defined as above, then

tr() 1

—_ m 27r *
2m+1 2712m+12""” T .8"(s) ds

lim,, 5o 2‘:,(, & )1 S a O[T fHs)wH(s) ds

tr(B2) = O(m log m) as m — o
where tr(-) stands for the trace.

Proor.
tr(B,,) = Efl_maffi,,%sinz(is) g*ds + a‘z’ft"_l.,_,-g* ds
+32na} " %cos’(is) g* ds
= _2.—--". a?[" (3 =3 cos(2is) g*) ds + __f,, ,g* ds
1 o )
+ ;2,-,0 " (4 +4 cos(2is) g*) ds

1 ” * m 2
2,” f—yrg dszi- —mai
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tr(B2) = S _, S _ a7 byg* ds]’
= ——{2,-, T a7 [ JTqcos[(i — j)s] g* ds + 2f”cos[(z +j)s]g* ]
+2i0 2l a7 cos[ (i — j)s]g* ds — 37 cos[(i + j)s] g* ds]’
+37n 35 ala 17 sin] (i + j)s] g* ds — 3/7 sin (i — j)s] g* ds]”
+ 2 2@ 37 0] (i + j)s] g* ds + 7 sin[ (i - j)s] g* s’
+2-——2;"_ m[ ST at8* ds]*-
Using the condition ¢, = a_, we can write
tr(B2 = {zi_l Te1a?a?[ (/7 qcos[ (i — j)s] g* ds) + (J=,cos[ (i + j)s] g* ds)’
+ (Jpsin[ (0 = j)s]g* ds)’ + (JLsin[ (i + j)s] g* ds)’])
a3 2
+ —;E;?'__,,,[f"_,,@g* ds]".
Since g* is of bounded variation

(1 peos[ i + /)s] g* do)* = 0(G + ) = 2

i

7 sin[ (i + j)s] g* ds)’ = O((i +J)" 2)=9%—).

Therefore, using this in the expression for tr(B2) we have
tI'(B ) _-—El-] _]-l [(f” COS[(I j)S] g* d")z

+ (f"_,,sin[(i ~ J)s] g* ds)*] +0((log m)’)

)
BT ik U cos(ig® &)+ (/7 sin()g" ']
+ 0((log m)?).
Using (3.3) it follows that
) limm_,wgn—l-_'_—T ;f':l'_;a,2+1af=lim,,,_m[2,_l 4+ o()Z_a 2]

=144
=sa".

Since by hypotheses g* is of bounded variation and since (2.20) holds the series in
the right-hand side of (1) is dominated term by term by the convergent series whose
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mth term is

(SUPnSUPo< i< mla(m)])'[ (ST ,cos(is)g* ds)* + (/™ sin(is)g* ds)’].
Hence, applying the dominated convergence theorem to (1) and using (2) we obtain
. (BZ:) 1 @ (o2
lim s+ 1~ 279 Ja(87) ds.
Let us now consider tr(B?).
te(B) = 27 k= - m@ @[ 058" dS[T Gbe8* d5[ bhi8* ds

1 1 1
= Ot T = T = A

= 0(m log m). 1]
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