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SEQUENTIAL POINT ESTIMATION OF THE DIFFERENCE OF
TWO NORMAL MEANS'

BY MALAY GHOSH AND NITIS MUKHOPADHYAY

ITowa State University and University of Minnesota
and University of Missouri, Columbia

A sequential procedure for estimating the difference of two normal means
when the variances are unknown and not necessarily equal is proposed, and an
asymptotic expression for “regret” is given. This generalizes the corresponding
one sample result of Woodroofe.

1. Introduction. Consider two mutually independent sequences of random vari-
ables X;, X,,- - - and Y,, Y, - - - where the X;’s are i.id. N(p,, 0}) and the ¥}’s
are iid. N(u,, 03); —00 < py, gy < 00, 0 < 0, 0, < 0, p, and u, both unknown.
The problem is to find a point estimator of u, — u,. Taking samples of sizes r and s
from the X’s and the Y’s respectively, suppose the loss incurred in estimating
p=m by W=X - Y (X, =r'SiX, Y, =5" j=1Y)) 18

(1.1) L =AW = u) + c(r +s),

where A(> 0) is the known weight and ¢(> 0) is the known cost per unit
observation. Then the risk is

(1.2) v, (c) = A(r "o} + s7'02) + c(r + s).

For known o, and o0,, the pair (r*, s*) for which (1.2) is a minimum, is given by
(1.3) r* = bo,, s* = bo,,

where b = (4/ c)%. For this pair

(1.4) r*/s* = 0,/0, n* = r* + s* = b(o, + 0,),

and the corresponding minimum risk is

(1.5) v(c) = v,e o(c) = 2cn*.

When o0, and o, are unknown, no fixed sample size minimizes (1.2) simulta-
neously for all 0 < g,, 0, < o0. Sequential procedures determining r and s as
random variables were proposed by Mukhopadhyay (1975, 1977) as follows:

Define fori » 2,j > 2,

16) w=0-1)""So (X - %) =0 - 1) 'F(v - 7).
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Take m(> 3) observations on X and Y to start with. Then, if at any stage i
observations are taken on X and j observations are taken on Y and the process
does not stop, the next observation is taken on X or Y according as

(1.7) ifj <w/v; or ifj>ufuv,.

The stopping time N = N, is defined by N = first integer n(> 2m) such that if
R = r observations on X and S = s observations on Y are taken, with r + s = n,

(1.8) r>bu, s> bu,.
The risk involved in this sequential procedure is
(1.9)

R(c) = AE(Xy — Y5 — u)’ + cE(R + §) = AE(a?R ™" + 038 ~') + cE(R + S).

Following Starr (1966) and Starr and Woodroofe (1969), the “risk efficiency” and
the “regret” are defined respectively by

(1.10)  R(c) = R(c)/¥(c) = (0, + o)~ '[o,{r*E(R™") + E(R/r*)}
+o,{s*E(S ") + E(S/5%)}]

and

(1.11)  Ry(c) = R(c) — »(c) = ¢{E(R — r*)’/R + E(S — s*)*/S}.

Mukhopadhyay (1975) showed that R, (c) = 0(c) as ¢ — 0. Since »(c) = 0,(c'/?),
where 0, denotes the exact order, this implies that R,(c) - 1 as ¢ — 0.
In this note we prove the stronger result

(1.12) R(c)=c+ o(c)as¢ >0, whenm > 3.

To prove (1.12), we proceed as follows. Mukhopadhyay (1975, 1977) showed that
(R = r*)/(r)"* >, N, 1), (S — s*)/(s*)'/2 5, N0, 1) as ¢— 0. Also, it was
shown there that R/r* —1 as., S/s*—>1 as. as ¢—0. Thus, (R — r*)?/
R—.ix} (S — s*)?/S—,1x} as ¢ —» 0. Hence, for proving (1.12) it suffices to
prove the following result.

THEOREM. If m > 3, (R — r*)*/R and (S — s*)*/S are uniformly integrable in
¢ < ¢q for some cy > 0.

We shall only outline the proof of this theorem in the next section omitting most
of the details. Note that in the one sample normal case Woodroofe (1977) proved a
similar uniform integrability result by appealing to a more general theorem.
Woodroofe’s method can be used to cover the present situation as well. However,
although on similar lines, our method of proof is not quite the same as
Woodroofe’s. We can especially avoid the complicacies involved in his estimation
of entities of the type P(|R — r*| > x(r*)"/2, (1 — e)r* < R < 2r*) etc. where x is
sufficiently large, and 0 < ¢ < 1. It should be emphasized that the simplifications
in our proof are not merely the results of normality assumptions, because,
although, stated in terms of chi-squared random variables, our method of proof
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uses only the moment bounds for the tail probabilities of centered means of i.i.d.
rv’s having finite moments of order 2 + §(6 > 0), an assumption needed as well by
Woodroofe (1977). Also, unlike Woodroofe (1977), we need the starting sample size
m > 3 rather than m > 4.

The motivation behind the use of the sampling scheme (1.7) or the stopping rule
(1.8) originates in the work of Robbins, Simons and Starr (1967) who considered
the fixed length interval estimation of the difference of two normal means in the
presence of unknown and possibly unequal variances.

2. Proof of the Theorem. We prove only that (R — r*)?/R is uniformly inte-
grable in ¢ < ¢, when m > 3. A similar proof works for (S — 5s*)2/S. First show
that for m > 3, (R — r*)?/r* is uniformly integrable in ¢ < c,. In what follows K
is a generic constant, positive but not depending on ¢, and I is the usual indicator
function. Write for any a > 0,

(2.1) E[{(R -— r*)z/r*}I[(R-r‘)éazr‘]]
= a?P(|R — r*| > a(r*)%) + 2/xP(|R — r*| > x(r*)%)dx.
Since, (r*)'% = (A/c)‘%ol‘% = Kc%, choose ¢, such that a > 2(r*)‘% for ¢ <¢,.
1
Write k = [r* + x(r*)2], where [y] denotes the integer part of y. Then for x > a
1
and ¢ < ¢;, one has the inequalities (i) k — 1 > r* + x(r*)2— 2 > r* and (ii)
1
k2r*+x(rv)z2—1>r*+ %x(r*)%. Using (i) and (ii) and Markov’s inequality,

for x > a,
2.2)

P(R > 7%+ x(r)%) = P(R > K) < P(K* <b%) = P(-1 > (k = 1(k/rY)
< P(G_y — (k= 1) > x(*)?) < K(k = 1P(r%) 7?5~
< Kx~%.

Again, for any a > 0, choose ¢, such that (r*)% > 2a for all ¢ < c,. Then, for
X 2 a,

[ExP(R < r* = x(r))dx = [T xP(R < r* = x(r*)})ds
<3 [ P(R < 1) + P(3rt <R <t = () e

1
(23) + [UDIxP(R < 3r*)dx

HGk
1 i 1
= [072xP(R < Lr¥)dx + [3C ”xP(%r* <R<r*-— x(r*);)dx.

Now, following the lines of proof of lemma 5 of Ghosh et al. (1976), one gets for
c < ¢y

(24) P(R < 1r*) < Keit™=),
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Hence, for ¢ < ¢, = min(c,, ¢;) and m > 3,

1
(2.5) fl(r')zle(R < %r*)dx < K(r*)P(R < %r*) < Kc%("“z)

2(r)?
1
< Kc;™™D < K(a%) "2,

Also, for a < x < %(r*)%, ¢ < ¢4, writing k, = [3r*], ky = [r* — x(r*)7], one gets
by using the Kolmogorov inequality for sum of i.i.d. rv’s,

P(%r* <R<r*— x(r*)%) = P(Uff-klﬂ(r > bur))
@6) < P(Uk . {xio, = (r = 1) < —2xk, (%) 72})

< E(x,-1 = (ky = D)/ (Kx(r*)2)* < K(k, = 17x7%(*) " < Kx 2.
Combining (2.2) — (2.6) it follows from (2.1) that for ¢ < ¢y = min(cy, ¢,), p > 1
and m > 3,

E[ {(R - r*)z/r*}l[(R—r‘)2>a2r‘]]

2.7) < K[a2—2p + f:oxl——bdx + (a4)-%(m—2) + fffx"z"dx]

—0asa— oo.
This shows that (R — r*)?/r* is uniformly integrable in ¢ < c,. Next observe that

28) E[{(R = r*Y/RH[r> 1 x-rPsarm |
<2E{(R- r*)z/r*}l[(R_,.)g%az,.].
Also, choosing a > ¢, ! for ¢ < ¢,
E[{(R = P/ RH[x <3 ix-rmownl
(2.9) < E[{(R - r"‘)z/R}I[R<%,.]]
< Kr*P(R < 3r*) < Ke§" =9/ < Ka= "=/,

The uniform integrability of (R — r*)?/R in ¢ < ¢, now follows from (2.8) and
2.9).
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