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VARIANCE AND DISTRIBUTION OF THE GRAYBILL-DEAL
ESTIMATOR OF THE COMMON MEAN OF TWO NORMAL
POPULATIONS

By K. A1ryApPAN NAIR
Edinboro State College

Let x and y be two independent normal variables with mean p and

variances o? and o respectively. Also let S? and S? be two independent

estimators of o7 and o3 such that mS7; 2 and nS7o; 2 are chi-squares with m

and n degrees of freedom respectively. The Graybill-Deal estimator of p is
&=(5"%+ 8,%)/(S7% + S;7?). In this paper an expression for the vari-
ance of {1 is given. Also bounds for the distribution of 4 are studied.

1. Introduction. In this paper we consider some properties of an estimator of a
parameter u obtained by combining two independent estimators of u. Let x and y
be two independent normally distributed unbiased estimators of p with variances
02 and o? respectively. Also let S? and S? be two independent estimators of o7 and
o2 such that mS7e; 2 and nS70; % are chi-squares with m and n degrees of freedom.
The Graybill-Deal estimator of p is i = (S, % + S, %)/(S7? + S;72). Note that
i is unbiased. Expressions and approximations for the variance of this type of
estimator in more general cases are given by Meier (1953), Zacks (1966), Williams
(1967), and Bement and Williams (1969). The efficiency of i has been studied by
Graybill and Deal (1959). For a recent bibliography in this area see Norwood and
Hinkelmann (1977). An expression for the variance of i is given by Cohen and
Sackrowitz (1974) page 1277. It can also be calculated using a result in Khatri and
Shah (1974) page 653 (4.1). Brodsky (1977) indicates that sharp bounds for the
variance of [i are available. In this paper we give an expression similar to that of
Cohen-Sackrowitz and Khatri-Shah. Our method can also be used to study the
variance of the estimator 7,(1) proposed by Brown and Cohen (1974) page 969.

Also bounds for the distribution of i are given. This is a new result.

2. Variance of i. Let @ = no?/mo?2. In this and the next section we assume that
0 < a < 1. Note that there is no loss of generality in making this assumption since
this can always be achieved by naming the estimators x and y appropriately.

THEOREM 2.1.

2.1)

2gw (it DA =) m

V(R) = of ,.,,OW[ (2 +i,-g—+2)+,—:;ll-aB(—’£+i+2,ﬁ)].
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2 2

PrRoOF. Since mSfs; %> and nSjo;? are independent chi-squares, S2/S? =
aw/(1 — w) where w is a B(m /2, n/2) variable. Hence

. (1 =w)x + awy
‘L =
1-(1-a)w
Using the facts that x, y, and w are independent and E(fi/w) = u we get
V(i) = EV(fi/w) + VE(ji/w) = E[(1 — w)’e? + o’0dw?|[1 — (1 — a)w] >

= ofE[(l - w) + nm"awz]Z?io(i + 1)(1 — a)'w'.

Since 0 < 1 — a <1 and 0 < w < 1, term-by-term expectations can be taken in
the above. Using the fact that w is a B(m/2, n/2) variable we get (2.1). This proves
the theorem.

If 07 and o are known then the minimum variance estimator of p is (¢, % +
0;3)/(07% + a5 %) with variance ¥ = 6%(1 + am/n)~'. The efficiency of fi is
V/V(fi). An explicit expression for the case m = n = 2 is given by Zacks (1966)
page 473. Taking a =1, the efficiency E = .733. The first seven terms of (2.1) gives
E = 738 approximately. An upper bound for the error of approximation can be
found using the following theorem.

THEOREM 2.2. The remainder after r terms in (2.1) is bounded above by

af[B(m/Z, n/2)]'l[B(—2n1 + 7, —;— + 2) + -’%aB(% +r+2, ;)}

X (1= a)(1+ ra)a™2

ProoOF. Denote the remainder by R,. Since B(x, y) is a decreasing function of x
and y,

R, < o}[ B(m/2, n/z)]-l[g(ﬂ +r 0

2 2 2 2

+2) +%a3(ﬂ+r+2 ﬁ)]
X 3% (i + 1)(1 - a).

The result of the theorem follows from the fact that the sum in the above
expression is equal to (1 — a)"(1 + ra)a™2
Next we consider the asymptotic nature of V().

THEOREM 2.3. Let m = n. Then
Vip 1 1+« +(1+3a)[l+a-—a(l—a)](l—a)
o? l+a  40*(m+ 1) 8a’[1 — a(l - a)]z(m + 3)

- -1
where g = 271+

0<

Proor. The first inequality is true since 6%(1 + a)~! is the minimum variance.
To prove the second inequality note that

32+ 1)(1 = a)(27"2 + 27" =(1+a)"!
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so that from (2.1) we get

V(i 1 . i
(2.2) -——%L) “Tra= 23+ 1)(1 ~ a)[P(m) + aQ,(m)]
o} a
where
= —~lpfm . m —9-i-2
P(m) =[B(m/2,m/2)] B( i, 2) 2
and
= -ig(™m my _p-i-2
Q(m) =[B(m/2, m/2)] B( it 2 ) 2
Using a property of the beta integral we get
_ m/2+i —i=2] _ A—i-3
Pi+l(m)—m+i+2[Pi(m)+2 ] 2
. m+2i i—2 i3
—2(m+i+2)P"(m)+ m+i+2
Taking absolute values
li = 2| —i-3
|P; 4 1(m)| < |P(m) + m+ i+ 22 .

Using the inequality i < 2/¢22™" we get, for i > 0,
li — 2| a'

[Brai(m)] < [B(m)] + £ s

-1
where g = 2712 " Hence

i

Pras(m)] < [(m)] + grs
Since
Po(m) = —— and P,(m) = — ————
4m + 1) 8(M + 1)
the above inequality holds for i = 0 also. Therefore
1-—a't!
[Bra(m)] < Polm) + g
which is true for i = — 1 also. Thus fori > 0
23) |Fi(m)| < 4(m1+ D+ 3m i 3)(al ~
Similarly
(24) 0.(m)| < 7 A a)

Am+ 1) Bm+3)1-a)
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Using (2.3) and (2.4) in (2.2) we get, after some simplifications, the upper bound
given in the theorem. This completes the proof of the theorem.

The bound given in the theorem is not very useful for small values of a.
Calculations given in the table below indicate that for a >3 the bound is good
even for small values of m. Denote the bound by 4(a, m).

TABLE 1
Values of A(a, m)

a\m 5 10 20 50

1 11.2942 6.6298 3.6437 1.5630
S5 0.3217 0.1805 0.0964 0.0402
9 0.1129 0.0626 0.0332 0.0138

3. Distribution of j.
THEOREM 3.1. If m = n,
0 < ®(z) — P[0y (1+ o)2(ji —p) <z]

—(—l—iilA(a, m)z¢[za(l + a)'%], z>0

< i
1+ a)?+ a2

and the inequalities are reversed for z < 0 where ® is the standard normal distribu-
tion, ¢ is the standard normal density and A(a, m) is the upper bound given by
Theorem 2.3.

Proor. The conditional distribution of i given w is normal with mean p and
variance o2[ f(w)] "2 where
1-(1—-a)w
T
[(1 = w)® + aw?]?

fiw) =

Therefore Plo; (1 + a)2(fi — ) < z] = E®[zf(w)1 + a)~3]. Since 0 < w < 1,
1
az < fw) < (1 + &)?, and if z > 0,

0< 8(2) — B[ H(W)(1 + @) 7#] <zE[1 ~ fw)(1 + ) 7|9 za3(1 + o) F]

= zE{ £ (%) —[f7%w) - (1 + a)-‘]}qb[za%(l +a)77]
1+ f(w)(1+ a)" 2

1+ a)%

A, m)z:p[za%(l + a)'%],
1+ a)’+ a2

<
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The bound for z < 0 can be established similarly. The proof of the theorem is
complete.

The bound given in Theorem 3.1, as in Theorem 2.3, is good for a > 3. Some
idea for the sharpness or nonsharpness of the bound can be obtained from the
following table. The bound is denoted by B(a, m, z). Calculations are given for
z = 1. For z = 2 the calculations indicate the same pattern.

TABLE 2
Values of B(a, m, 1)

a\m 5 10 20 50

1 0.5038
.5 0.1032 0.0579 0.0309 0.0129
9 0.0400 0.0222 0.0117 0.0049
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