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MINIMAX SUBSET SELECTION FOR
LOSS MEASURED BY SUBSET SIZE!

By ROGER L. BERGER
Florida State University

A subset selection problem is formulated as a multiple decision problem.
.Then, restricting attention to rules which attain a certain minimum probability
of correct selection, the minimax value is computed, under general conditions,
for loss measured by subset size and number of non-best populations selected.
Applying this to location and scale problems, previously proposed rules are
found to be minimax. But for problems involving binomial, multinomial and
multivariate noncentrality parameters, such as x2 and F, previously proposed
rules are found to be not minimax.

1. Introduction. A subset selection problem is a multiple decision problem
which has the goal of determining in which of k partition sets of the parameter
space the true parameter lies. Restricting attention to rules which insure a certain
minimum probability, P*, of making a correct decision, minimaxity is investigated
for loss measured by subset size. The minimax value is found to be kP* under
general conditions involving only the topological structure of the parameter space
and the continuity of certain functions of the parameter. These results include
problems involving nuisance parameters and (possibly unequal) sample sizes
greater than one. Using these results, rules proposed by Gupta (1965) are found to
be minimax in location and scale parameter problems. Other rules, proposed for
selection in terms of binomial and multinomial probabilities and multivariate
noncentrality parameters, are shown to be not minimax.

2. Multiple decision theory formulation. A subset selection problem may be
formulated as a multiple decision theory problem. The specific choice of the action
space sets the subset selection problem apart from other multiple decision theory
problems.

%X c R is the sample space. ® C R’ is the parameter space. The observation
X = (X}, -, X, is a random vector with cumulative distribution function (cdf)
F(x; 0). 1t is assumed that there exists a partition of ® denoted by {0;: i =
1,- - -, k} (k > 2). Often this partition is determined by the largest or smallest
coordinate of (some subset of) the parameter. If a particular parameter point could
be placed in more than one set of this partition, e.g., two coordinates of the
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parameter are tied as largest, then the point is arbitrarily put in one of the sets. This
is done so the partition is well defined and, in some problems, this insures the
continuity of the risk functions. The general goal of a subset selection problem is to
determine, based on the observation, which of the k partition sets contains the true
parameter. The action space @ consists of the 2¥ — 1 nonempty subsets of
{m, - - -, m .} where 7, is the statement 8 € ©,. So the action {x,, 7,} corresponds
to the decision 8 € ©, u 0,. The =,’s correspond to what have been called popula-
tions in the earlier subset selection literature. In this terminology, for a given 0, the
“best population” is the one true =; and the other (kK — 1)#’s are the “nonbest
populations.” So a statement like “the best population is the one associated with
the largest parameter value” means ©; = {0: 6, = max, . ;,0;} (with the exception
that if §; tied with other §;’s as the largest, that parameter point may not be in ©,).
By not assuming equality of k, g and r, this formulation covers problems involving
nuisance parameters and (possibly unequal) sample sizes greater than one.

A measurable function §: X X @ —[0, 1], is called a selection rule provided
that, for each x € X, Z8(x, a) = 1. 8(x, a) is the probability of selecting subset a
having observed x. The k functions defined by ¢,(x) = = (a: nea)d(X, @) are the
individual selection probabilities. {,(x) is the probability of including #; in the
selected subset having observed x. The risk of any rule, for the losses considered
herein, can be computed in terms of the individual selection probabilities. For this
reason, any two rules which have the same individual selection probabilities shall
be considered equivalent.

The selection of any subset which contains the best population is called a correct
selection, denoted by CS. Let P* be any preassigned fixed number such that
1/k < P* < 1. As is traditional, the only selection rules to be considered are those
which satisfy the P*-condition, viz., infgPg(CS|y) > P*. This is obviously equiv-
alent to the following k inequalities being satisfied,

infg Egy,(X) = infg Py(select 7|y) > P*, i=1---,k

The set of all selection rules which satisfy the P*-condition is denoted by ..

Having insured a high probability of correct selection through the P*-condition,
one would prefer a rule which selects small subsets. To reflect this, the loss used in
this paper is the number of populations selected, S. So the risk of a selection rule,
R0, ¢), is given by the expected subset size, E4(S|y). Other reasonable loss
functions are discussed by Bickel and Yahav (1977), Chernoff and Yahav (1977)
and Goel and Rubin (1977).

3. Minimax value for the loss S.

THEOREM 3.1. Let ©,={0E€©:0€ ©, foralli=1,- - - , k} where @ denotes
the closure of @. Suppose there exists 0, € O, such that Py(select m|y) is upper
semicontinuous at O, for all ¢ € Dp. and all i = 1, - - -, k. Then infq_supgEq(S|y)

= kP*.
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ProoF. The risk at 0, is
3.1 Eo (Sl¥) = Z’E_IPoo(select m,|Y).
The “no data rule” defined by y*(x) =P*, i =1,- - - , k, has Py(select =,|y*) =
P* for all 0 and all i. So Ei(S|y*) = kP* for all @ and the minimax value is no
greater than kP*. _

On the other hand, since 8, € 0, and Py(select «;|y) is upper semicontinuous at
0,,

Py (select m|y) > infg Py(select 7,|y) = infg Py(CS|y) > P*

for any ¢ € 9. So
(32) supg E¢(S|¥) > Eg(S|¥) > kP*
for any ¢ € 9,p.. Thus the minimax value is no less than kP*. []

ReMARK 3.1. If ® =1 X I X .- - X[ (k times) where I is an interval on the
real line and if the best is defined in terms of the largest or smallest coordinate of
the parameter, then ®, = {6 = (6,6, - - - ,8): § € I}. If X has a multinomial
distribution, ® = {(0,,- - -, 6,): 6, > 0, ZX_ .0, = 1} and @, is the single point
(1/k,---,1/k). It may be argued that in problems like these any action is
acceptable to the experimenter if @ € ©,. In this case, one could set the loss to
zero, not S, for @ € ©,. This would yield R(8, ) = 0 for 6 € ©,. But, even allowing
this, Theorem 3.1 remains true, in the usual case (see Remark 3.2) where Py(select
m,|¢) is continuous in 0, for (3.2) can be replaced by

supe Eg(S|¥) > limg_q E4(S|Y) > kP*.

REMARK 3.2. The upper semicontinuity assumption of Theorem 3.1 is much less
formidable than it appears. For example, Chung (1970) (problem 10, page 100) can
be generalized to state that if X has a density f(x; 6) with respect to a sigma finite
measure p and if f(x; 0) is continuous at @, (as a function of 6) for almost all (u)x,
then Py(select ,|y) is continuous at 6,

REMARK 3.3.  Another loss, closely related to S, which has been considered in
subset selection problems is S’, the number of nonbest populations selected. Under
the assumptions of Theorem 3.1, the minimax value for S’ is (k — 1)P*. Under the
assumptions of Theorem 3.1, if Y € 9p. is' minimax with respect to S, then y is
minimax with respect to S’ since

supgEy(S'|Y) = Supe{Eo(Sl‘P) - Po(CSItI/)} < Supe{Eo(Sl‘P) - P*}
= kP* — P* = (k — 1)P*.

Theorem 3.1 will be used to show that in location and scale parameter problems,
two rules proposed by Gupta (1965) are minimax. Consider the case in which the
population associated with the largest parameter value is best. With the appropriate
modifications, analogous results could be obtained if the population associated
with the smallest value is best.
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Gupta (1965) proposed and studied the following two rules. For a location
parameter problem, define the rule R, by

(3.3) R,: select m; iff x; > max, ;. x;, — d i=1---,k

where d > 0 is the smallest constant such that the P*-condition is satisfied. For a
scale parameter problem, define the rule R, by

(34) R;: select m; iff x; > ¢+ max, ¢ ;,%; i=1---,k

where 0 < ¢ < 1 is the largest constant such that the P*-condition is satisfied.

THEOREM 3.2. Suppose X,, - - -, X, are independent. Suppose 0 is a location
(scale) parameter and X; has density fy(x;) = f(x; — 6)(f(x;/6,)/6,) with respect to
Lebesgue measure, ., on the real line ((0, ©)). Suppose fy(x) has monotone likelihood
ratio. Then R,(R,) is minimax.

PrOOF. Gupta (1965) proved that under these assumptions,
supgEq(S|R (Ry)) = SuPeoEo(SlRl(Rz)) = kP*.

The continuity assumption of Theorem 3.1 is satisfied (see Royden (1968) problem
17, chapter 4). The result follows from Theorem 3.1. [

Theorem 3.2 generalizes a result of Gupta and Studden (1966). They proved that
R|(R,) is minimax among all permutation invariant rules in ..

REMARK 3.4. A natural question is which minimax rules are also admissible.
For example, the no data rule, y*, of Theorem 3.1 is minimax but inadmissible
since it is dominated by R, (under the assumptions of Theorem 3.2, for example).
Berger and Gupta (1977) showed that R, is admissible in a class of invariant rules
when loss is measured by the maximum probability of an incorrect selection. But
the question of admissibility in the class %,. for loss measured by subset size
remains an open question.

4. Necessary conditions for minimaxity. Any minimax selection rule must
satisfy certain equalities on the set ©,. These necessary conditions are principally of
use in proving that certain rules, in violating these conditions, are not minimax.
Theorem 4.1 provides the necessary conditions for minimaxity.

THEOREM 4.1. Let { be a minimax rule. Suppose Py(select ,|{) is upper semicon-
tinuous for all i = 1,- - - , k at 0, € ©,. Then

(a) Py select m|y) = P* = infgPy(CS|y) for all i =1, - -, k;

(b) Po,(CS|y) = P* = infgPy(CS|y);

() Eg(S[¥) = kP* = supyE¢(S|Y).

PROOF. As in the proof of Theorem 3.1, it follows that
4.1) Pg(select 7|y) > P*  forall i=1,--- k.
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By considering the “no data rule” y*(x) = P*, it follows that the minimax value is
no greater than kP* so, since ¢ is minimax and (4.1) is true,

kP* > supgEg(S|¢¥) > Eq(S|¥) = Zh_ Py (select m|y) > kP*.

All the inequalities are equalities and (a) and (c) are true. (b) follows from (a) since
Py (CS|y) = Py (select 7,|y) where 8, € ©,. []

REMARK 4.1. Gupta and Nagel (1971) found that a condition related to condi-
tion (b) of Theorem 4.1, viz., infgPg(CS|y) = infg Pe(CS|y), was an important
property of just selection rules. Conditions (a) and (b) of Theorem 4.1 have long
been recognized (cf. Gupta and Studden (1966)) as intuitively appealing properties
of selection rules. Santner (1975) gives conditions under which supgEy(S|y) =
supg Eq(S |¢) which from condition (c) of Theorem 4.1 is a necessary condition for
minimaxity.

REMARK 4.2. If Py(select m;|y) is a continuous function of 6, condition (a) of
Theorem 4.1 requires that Py(select 7;|y) be constant on 0, if ¢ is to be minimax.
Rules which do not satisfy this condition and so are not minimax include the
following: the rule R, (see (3.3)) proposed for the binomial selection problem by
Gupta and Sobel (1960); the rule R, (see (3.4)) proposed for the noncentral x? and
noncentral F selection problem by Gupta and Studden (1970); and the rule R,
proposed for the multiple correlation coefficient selection problem by Gupta and
Panchapakesan (1969). Gupta and Panchapakesan (1972) studied a general class of
rules and gave conditions under which Pg(select ;|¢) will not be constant on ©, for
rules in their class.

REMARK 4.3. Gupta and Nagel (1967) proposed using rule R, in the multi-
nomial selection problem. They found that for some values of kK and P* the
infg Po(CS|R,) did not occur at (1/k, - - -, 1/k). So R, is not minimax for these
values of k and P*.
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