The Annals of Statistics
1979, Vol. 7, No. 6, 1329-1332

A KIEFER-WOLFOWITZ THEOREM IN A STOCHASTIC PROCESS
SETTING!

By M. C. SprUILL AND W. J. STUDDEN
Georgia Institute of Technology and Purdue University

In the regression design problem with observations which are second order
processes the estimation of the mean function involves function space valued
random variables. The best unbiased linear estimator of the mean function is
found and an exact analogue of the Kiefer-Wolfowitz theorem in design theory
is proved.

Introduction. In the theory of optimal design of experiments with scalar ob-
servations Kiefer and Wolfowitz (1960) proved that the design which maximizes
the determinant of the information matrix also minimizes the maximum variance of
the best linear unbiased estimator of the regression function (see Karlin and
Studden (1966) or Fedorov (1972)). They also gave a convenient characterization of
the optimum design. Fedorov extended these results to the case of finite-dimen-
sional vector observations (see Fedorov (1972) Theorem 5.2.1).

In this paper the case of observations which are second order processes is
investigated. This necessitates dealing with function space-valued estimators. The
best linear unbiased estimator is found and a theorem which is exactly analogous
to the Kiefer-Wolfowitz theorem is proved. The reader is referred to Mehra (1974)
and Viort (1972) for information on optimum designs for estimation of finite-
dimensional quantities related to some different stochastic process formulations.
Spruill and Studden (1978) discuss some other minimax designs associated with the
model of the present paper.

In order to present a more precise statement of our results let f =
(fo f1s * = 5 fi.) be a vector of mappings from a set X onto a subset of functions on
the set T. That is, for each x € X, 6()&', -) is a real valued function on the set T
with value f(x,?) at + € T. The points x € X are possible levels of feasible
experiments. For each level some experiment can be performed whose outcome is a
stochastic process {Y(x,?): ¢t € T}. It is assumed that the process has mean
function

ko0 fi(x, 1), teT,
and known proper covariance kernel
K(s, t) = Cov[ Y(x, 5), Y(x, )], xEX,s,teT.
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The constants 6, - - - , 6, are unknowns. The mean function Ef,(ﬂjg(x, -) is to be
estimated on the basis of N uncorrelated observations {Y(x,¢):t€ T, i =
l,---,N).

Let K be as above and H(K) be the associated reproducing kernel Hilbert space
of functions on T with inner product (-, -)x (see Parzen (1959). The assumptions
are as follows.

(A1) The set X can be given a topology so that one point sets are measurable.
Arbitrary Borel probability measures will be admitted as possible designs. We
denote the class of designs by =.

(A2) The functions { fj}f_o, f; + X > H(K) are continuous on the compact set X.

It follows from (A2) that the matrix M(§) with i, jth entry

[M(©®)],; = [(f(x), (x)) ( d&(x)

exists and is well defined for each £ € Z. If £ concentrates all mass at x write M(x).

Associated with the experiment which takes observations {Y(x, 8) : t € T, i =
1,---,N} is the stochastic process Z defined on {x, - --,xy} X T=T by
Z(x;, t) = Y(x, ?). Let B be the covariance kernel of Z, H(B) be the reproducing
kernel Hilbert space of functions on I generated by B, and L,[Z(y) : ¥ € T'] be the
usual space of linear random variables defined on the process (see Parzen (1959)
and Spruill and Studden (1978)). If we denote the congruence which takes B(-, v)
into Z(y) by { -, >, i.e., Z(y) =<{Z, B(-, Y))5, then we may state our results as
follows. The best linear unbiased estimator of the mean 8'f(x) of the stochastic
process {Y(x,?):t € T} is

(1) = N"Z fop -+ +{Z: fis) M * (O)(x),
where ¢ is the design measure associated with the experiment. Furthermore,
indicating the dependence of the estimator defined in (1) by writing /#(§) and
defining
N~'d(x, & = E||m(§) — 0'8(x)|%

one has that d(x, £) = tr{ M *(§)M(x)} so that the conditions

(1) ¢* maximizes det[M(£)];

(ii) £* minimizes sup, c yd(x, £);

(iii) supyd(x, £*) =k + 1,
are equivalent.

2. Linear estimators. Linear estimators taking values in an arbitrary Hilbert
space may be defined in a manner analogous to Parzen’s (1959) for real
valued estimators. However, for the sake of simplicity, we shall deal only with
the case that they are H(K)-valued and H(K) is separable. In this case the space
of linear H(K)-valued random variables defined on Z consists of elements
of the form X, ,<{Z, g)pd;, where {¢;} is a complete orthonormal system for
H(K), g are each in H(B), Z,,,{Z, gp$, is in H(K) with probability one, and
3i51EKZ, g}l < oo.
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In this context an unbiased estimator U of #’f(x) is one which satisfies the
following equivalent conditions.

|E[ U] — 01(x)||x =0
E[U(D)] = Zh_obf(x, 1) for tET.

A “best” linear unbiased estimator U of §’f(x) is one which is unbiased and for any
other unbiased estimator ¥ one has

Ep|V = 0'1(x)ll% > EpllU — 0f(x)II-

THEOREM. If an unbiased estimator of 0'f(x) exists, then the estimator in (1)
above is the best unbiased estimator.

Proor. Using extensions of Parzen (1959) or Lemma 2.2 of Spruill and Studden
(1978) it follows that the estimator in (1) is unbiased and for any finite set
T,={t, - ,t,) C T (ZaK(, 1), m) is the volume of (Za;K(-, t,), 8'f(x)). Let
U = m-0'f(x) and 1V be the corresponding quantity for any unbiased estimator.
For h € H(K) of the form h = Za,K(-, t)

E(h, U)* = a’ Cov( Ur)a.
Therefore E(h, U)? < E(h, V)? holds for a dense subset of # € H(K). From this it
can readily be deduced that E||U|% < E||V]|%-

The theorem has been proved here only for H(K) separable. The theorem has
been proved for general H(K) spaces in Spruill and Studden (1977).

3. D-optimum designs. In the previous section the designs had rational proba-
bilities at their finite number of support points. The following definitions are made
for arbitrary £ € =.

DEerFINITION. The mean f'(x)8 is said to be estimable with respect to the design £
if {(y, f(x))g 1y € H(K)} C R[M($)].

DEFINITION.  Let d(x, §) = tr{ M *(§ M(x)} if f'(x)0 is estimable with respect to
¢ and + oo otherwise.

DEerINITION. The design §* is said to be a minimax design if

inf, czsup, e xd(x, §) = sup, e xd(x, £*).
In this section an additional assumption is made.
(A3) There is a design ¢ such that [ ||Ef=0ajfj(x)||2,< d&(x) = 0 if and only if

a=a =" ---=aq =0

THEOREM 3.1. Under (A1)-(A3) the conditions
() &* maximizes |M(§)|;
(ii) &* minimizes sup,d(x, §);
(iii) sup, d(x, £*) = k + 1,
are equivalent. The set T of all £* satisfying these conditions is convex and closed and
M(£*) is the same for all £* € T.
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Proor. If there is an x € X such that f'(x)@ is not estimable d(x, §) = + 0.
By (A3) there is a design £, for which |M(¢y)| # 0. Thus R[M(£)] = R**! and
f'(x)0 is estimable for all x € X. Therefore attention may be restricted to those
£ € E for which |[M(§)| > 0. Except that the matrices M(£) differ, the remainder of
the proof is exactly as it appears in Kiefer (1960), Fedorov (1972), or Karlin and
Studden (1966). [

For finding D-optimal designs the iterative process of Fedorov, for example, can
be described and shown to converge in exactly the same manner as in Fedorov
(1972), Theorem 5.22.
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