The Annals of Statistics
1979, Vol. 7, No. 5, 1086-1105

BERNOULLI ONE-ARMED BANDITS—
ARBITRARY DISCOUNT SEQUENCES
!

By DONALD A. BERRY' AND BERT FRISTEDT*
University of Minnesota

Each of two arms generate an infinite sequence of Bernoulli random
variables. At each stage we choose which arm to observe based on past
observations. The parameter of the left arm is known; that of the right arm is a
random variable. There are two conflicting desiderata: to observe a success at
the present stage and to obtain information useful for making future decisions.
The payoff is a,, for a success at stage m. The objective is to maximize the
expected total payoff. If the sequence (a,, a,, - - - ) is regular an observation of
the left arm should always be followed by another of the left arm. A rather
explicit characterization of optimal strategies for regular sequences follows from
this result. This characterization generalizes results of Bradt, Johnson, and
Karlin (1956) who considered a,, equal to 1 for m < n and 0 for m > n and of
Bellman (1956) who considered a,, = a” ! for0 < a < 1.

1. Introduction. We have two mechanisms ¢ and £, called the right arm and
the left arm, each of which generates Bernoulli random variables having parameters
p and A, respectively.

Making an observation on an arm is called a pul/l. We are to pull & or £ at each
of an infinite number of stages. After pulling an arm we may pull that arm again or
we may switch and pull the other arm. Which arm we pull at any stage, say stage
m, may depend on the pulls and resulting observations at stages 1 through m — 1
(vacuous if m = 1). A strategy, often denoted by 7, with or without subscript, is a
function that assigns to each finite history of pulls and observations the symbol
or £ denoting the arm to be pulled at the next stage.

The objective is to maximize the expected value of =%, a,,Z, where Z equals
1 or O according as a success or failure is observed at stage m and A =
(ay, ay, + - + ), called a discount sequence, is a nonincreasing sequence of nonnega-
tive numbers such that 35 _,a, < co. Any 7 yielding the maximum is optimal. The
random variable £%_,a,,Z,, is called the payoff and its expected value under a
strategy 7 is called the expected payoff under .

Let X; and Y; denote, respectively, the observations on the ith pull of ¢ and jth
pull of £. For convenience we assume that the sequences (X, X,, - - - ) and
(Y,, Y,, - - - ) are nonterminating, whether or not we, in fact, make infinitely many
pulls on each arm.
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We hypothesize that the two sequences (X;, X,,- - -) and (Y, Y,,- - - ) are
independent of each other. Further, A is a known constant and (Y}, Y,, - - - )is a
sequence of independent random variables. Also, given the random variable p,
(X1, X5, - -+ ) is 4 sequence of independent random variables. Therefore, the
unconditional finite-dimensional distributions of (X, X,, - - - ) are invariant under
permutations of the subscripts; that is, (X, X,, - - - ) is a sequence of exchangeable
random variables.

Let R denote the distribution function, and also the distribution measure, of p.
The “information” present about % initially is given by R. At any stage, if s
successes and f failures have been obtained on %R, the information present about
@R is given by o°p/R,where o°p’/Ris absolutely continuous with respect to R, and

x*(1 — x)’ _ox*(1 = x)/

do’p’R _
fro.w*(1 — w)’R(du)  E[p*(1 = p)’]"

R )=

(In case the support of R is a subset of {0, 1} some values of (s, f) are not
possible.) Rather than write the conditional expectation E(p*X, + - - - +X,4s
= 5), for instance, we shall write E(p?|o’¢p’/R). In particular, we have the notation
E(p|R) in which the dependence of the expectation on the underlying probability
structure is made explicit.

For R, A, and a discount sequence A, let V(A, R, A) denote the maximum over
the set of all strategies, or supremum in case the maximum does not exist, of the
expected payoff. The maximal expected payoff is at least that of a strategy which
pulls the same arm at every stage and is no larger than if p is known at the outset.
That is,

(L.1) [AV Ep]S5o ey < V(A R,A) < EQAV p)S5e e

In Theorem 5.3 we assert that ¥ is a continuous function (of 3 variables). It is easy
to see that V' is a convex function of each of its three variables by considering an
optimal strategy (or e-optimal strategies) for the convex combination; these consid-
erations also show that V is not linear. If a; < B; for each i, then V(A, R, A) <
V(B, R, \) where A = (a;, ap, - - - ) and B = (8, B,, - * -+ ). The monotonicity of
V as a function of R is studied in Section 3. Arguments similar to, but easier than,
those used there show V(A, R, -) to be a nondecreasing function.

For the function V¥, and other functions, we shall often suppress one or more of
the dependent variables. For instance, we may write ¥(R) in a discussion where
both A and A are fixed. We use the term “(A, R, A)-bandit” to indicate the
particular situation under consideration and abbreviate this to “R-bandit” or “for
(R, A)” when there can be no confusion.

The decision of which arm to pull is governed by two possibly conflicting
desiderata: obtaining a success at that stage and obtaining information about R
that can be used for making decisions in the future. The decision problem is not
easy to resolve because these two desiderata cannot be separated and considered
one at a time.
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We shall need the following result in various proofs where, after an inductive
argument, a limiting procedure is needed. Dynamic programming is applicable,
though possibly cumbersome, for the discount sequence (a,: -, a,, 0, -)
mentioned there.

LemMa 1.1.  Suppose that, for each n, 7, is an optimal strategy for R, A, and the
discount sequence (ay,* - - ,a,, 0, - - ). Then for R, \, and the discount sequence
(ay, @y, -+ + ) there is an optimal strategy T that through any stage m agrees with at
least one T, (in fact, infinitely many t,).

Proor. Define 7 recursively. At stage m define it so that it agrees with infinitely
many of the 7, through stage m. An easy limiting argument shows 7 to be optimal.

i

PROPOSITION 1.1.  For any bandit there is an optimal strategy that is independent
of observations obtained by pulling £.

The existence of an optimal strategy is a consequence of Lemma 1.1. That it may
be chosen to be independent of observations on £ is an immediate consequence of
the following proposition, whose proof we omit, and which says that an optimal
strategy need only depend on the history through the current distribution of p
(conditioned by the history). This principle, familiar to researchers in sequential
decision theory, is valid in a variety of contexts; ours is a special case of the one
discussed by DeGroot (1970, Section 14.5).

PROPOSITION 1.2. Let 7 be an optimal strategy for the ((a;, ay, - - - ), R, N)-
bandit. For any history having positive probability under © and containing exactly s
successes and f failures on R, for stages 1 through m—1(s+f < m—1) it is optimal
to pull an armat stagem if and only if it is optimal to pull that armat stagel for the
(@ iy * * * ), 6°0’R, N)-bandit.

REMARK. When appropriate we shall say which results can be generalized to
baridit problems in which the distributions of the X;’s and Y;’s are arbitrary—not
necessarily Bernoulli. Then we can view p as a random distribution rather than as a
random variable; conditioned on p, the sequence (X, X,, - - - ) is independent, the
conditional distribution of each X; being p. The measure R is a probability measure
on the space of probability measures on the real line. Reasonable hypotheses are
that R is supported by a set of distributions p, each of which has a finite mean p,,
and that [|u,|R(dp) < co. While Lemma 1.1 applies only for discrete variables,
with appropriate natural changes, Propositions 1.1 and 1.2 are true in this more
general context.

The problem as described has been called the “two-armed bandit with one arm
known.” All such problems considered in the literature known to us are “optimal
stopping problems”: one only need consider strategies which never follow a pull of
£ with a pull of .. Such strategies are determined by the stage at which £ is first
pulled. Therefore, such problems have also been called “one-armed bandits.” We
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show in Section 2 (Theorem 2.1) that this term is appropriate if and only if the
discount sequence A is regular.

DErFINITION 1.1. A discount sequence (a;, ay, - - - ) is regular if, for each m,
YmYm+2 < Yos1 Where Y, = 27,0,

The sequence (y;, v,, - - - ) is always nonincreasing. If (a,, a,, - - - ) is regular
then

Ym+2/ Ym1 < Yms1/ Ym

whenever v,,,, > 0, that is, the sequence (v,/v;, ¥3/Y2 - - * ) is also nonincreas-
ing.

Bradt, Johnson and Karlin (Section 4, 1956) consider the regular discount
sequence (I,- - -, 1,0,- - - ). Much of Sections 2, 3 and 4 is a generalization of

their work. Indeed, Theorem 2.1 allows us to use many of their methods for the
more general situation considered here. Many of the current results also generalize
results of Bellman (1956) who considers the regular sequence (1, a, a2, - - - ) for

0<a<l
In Section 3 we explore relations between optimal strategies and the maximal

expected payoffs for two bandits (A, R;, A) and (A, R,, A) on the basis of an order
relation between R, and R,. These relations are exploited in Section 4 to obtain a
characterization of optimal strategies (Theorem 4.3). This characterization is then
used to obtain explicit formulas for optimal strategies in various special cases. In
Section 5 we obtain an explicit sufficient condition for the optimality of R
(Theorem 5.1) and also an explicit necessary condition for its optimality (Theorem
5.2).

Two references on the finite horizon, two-armed bandit, deserve mention here.
Fabius and van Zwet (1970) characterize Bayes strategies and admissible strategies
in the general case of dependent arms. Berry (1972) finds explicit solutions for
many cases in which the arms are independent and proves the stay-on-a-winner
rule for independent arms.

2. Regular sequences and one-armed bandits. Since pulls of } give informa-
tion about 4 it is a common phenomenon that optimal strategies require switches
from ® to £. The next example shows that £ may be uniquely optimal initially
and ¢ uniquely optimal at the second stage. This example can serve as an aid in
understanding the proof of Theorem 2.1.

ExaMpLE 2.1. Let A=(4,1,1,0,---), A =.6, and R({0}) = R({1}) = .5. If
% is pulled initially and an optimal strategy is followed thereafter, the expected
payoff is

S@+1+1)+.5.6)(1+1)=3.6.
If £ is pulled initially and an optimal strategy is followed thereafter, the expected
payoff is
6(4) +.5(1 + 1) +.5(.6) = 3.7.
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Therefore, the optimal strategy is: “pull £, then R —pull R, again on a success and
switch back to £ on a failure.”

In this example the discount sequence A is not regular. The next proposition says
that if the discount sequence is not regular there are always examples of the same
sort as Example 2.1 and if the sequence is regular there are no such examples.
Accordingly, the term “one-armed bandit” is appropriate precisely when the
sequence is regular since the problem can then be reduced to deciding when to stop
pulling }R..

THEOREM 2.1.  The following statements are equivalent:

(i) For every R and X there is an optimal strategy under which every pull of £ is
Jollowed by another pull of £ ;

(ii) The discount sequence is regular.

REMARK. Theorem 2.1 can be generalized to accommodate distributions on R
other than Bernoulli.

PrROOF. Part I, (ii) = (i). Let S, denote the set of all regular discount sequences
(ay, @y, - - - ) satisfying the condition a,,, = 0. The proof is by induction on n.
Clearly, (i) holds for every member of &,. Assume it holds for every member of
Sp_1- Let A= (aj, ap, - - - ) ES,; then (ap, a3, - - - ) € §,_,. Therefore, if it is
optimal to pull & initially, then, by the inductive hypothesis, there is an optimal
continuation which never switches back to 4R after a switch to £. If it is optimal to
pull £ initially, then the inductive hypothesis applies immediately to show (i) unless
the corresponding optimal strategy has the form 7*: “pull £ initially, pull ® at
stages 2, - - - , N, and pull £ subsequently.”

The stage N is random with P(N > 1) = 1, it may be infinite with positive
probability, and it may depend on the history of pulls and observations. Since, by
Proposition 1.1, we may assume that 7* does not depend on the observations on £,
{N > m} is, for each m, measurable with respect to the o-field generated by the
outcomes of the pulls of & at stages 2 through m, that is, the o-field generated by
Xy, -+ -, X,,_)). We may assume, with no loss of generality, that, under *, if s
successes and f= m — s — 1 failures have been obtained with R at stages 2
through m, then

(2.1) N = m= E(p|lo°p’R) < A.

We show that there is a strategy 7 which starts with R and is at least as good as
7. We choose 7 by modifying 7* in the following way: “pull % initially and
imitate 7* subsequently by pulling the indicated arm one stage earlier.”

Even though a,,; =0, the notational conventions I3_ a, = a, = v, =0
will be useful. Under 7* the expected payoff equals

(22) E(M‘l + 2’,",.=2Xm-1am + AE:-N+lam)’
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which, since 7* is optimal, is no smaller than Ay,. Hence,
(2‘3) 2or:-ZE‘[(‘va—l - A)]'(IV >m)]am = EEIrvn-2(Xm—l - A)am > 0.
The expected payoff under 7 equals

(24) E(zlrvn-ZXm—lam—l + 7\2::-N+1"m—1)-

We subtract (2.2) from (2.4) to obtain

(2'5) 20r:===2E'[(A,m—l - A)l(N >m)](am—l - am)'

We shall use (2.3) to show that (2.5) is nonnegative by showing that
(2’6) 20»ol-meam > 0= 2:-me(am—l - am) >0,
where

bm = E[(Xm—l - A)]‘(N>m}]'
We write the sums in (2.6) as follows:
2:-meam = 2‘:’rs-me('Ym - Ym+l) = b272 + 2:_2(1?,"_” - bm)Ym+];
2:--217m(am—l - am) = b2al + 2::2(l7m+l - bm)am'

The truth of (2.6) follows from two facts. The first is immediate for regular
discount sequences: v,,+; = 0 O @;/Y; < &p/Ypm+1»m =2, 3, - - . The second is
that the sequence (b;, b,, - - - ) is nondecreasing. To show this write

bm+l - bm = E‘[(A - Xm)l(N=m)] + E[(Xm - A,m—])(1 - 1(N<m))]
= E[(A - Xm)l(N-m}] > 0.
We have used the exchangeability of the X;’s and the fact that {N <m} is
measurable with respect to the o-field generated by (X, - - - , X,,_,) for the second
equality and (2.1) for the inequality.
We have proved (i) for any discount sequence belonging to U>.,S,. That (i)

holds for every regular discount sequence follows from Lemma 1.1.
Part II, (i) = (ii). Suppose that

2.7 YMYM+2 > Y§l+l

for some M. We shall prove the result by finding a pair (R, A) for which there isa

strategy 7 that follows a pull of £ with a pull of ® (on a history that has positive

probability under 7) and which is strictly better than every strategy that does not.
Choose & > 0 so that .

E¥M+1 Qpy — EQApr4
2.8 <
28) Yars1 =~ Yaez 20 — (1L + &)y,
and
(2.9) Ym+1 ~ E¥M+2 1

2Yye1 — (M +&)vpyye, 1+e '

Inequality (2.8) is always possible since oy, 1 = Yars1 — Yar+2 > 0, a consequence
of v,,4, > 0. Select R so that the probability that p = 0and p = 1 — ¢ are both 3



1092 DONALD A. BERRY AND BERT FRISTEDT

after M — 1 failures on 4R ; that is,
(@™ 'R)({0}) = (¢ 'R)({1 — &}) =3.
This can be accomplished by setting

R({1 = &) = 1= = 1 = R(OD).

For reasons that will soon be made clear, we choose A so that

[1 - s][aM - saM_l] <A< [1 - 3]['YM+1 - EYM+2]
2ap — (1 + &)y, 21 — (1 = &) Yrs2
That A can be so chosen is a consequence of (2.7).

Defined thus, A < 1 — &. Therefore, since (6R)({} — €}) = 1, we may restrict
attention to strategies under which a success with & is followed indefinitely by
pulls of ¢. Among such strategies the only ones having the property that no pull of
£ is followed by a pull of & are the strategies 7,,J =0, 1, - -, co: “pull R at the
first J stages; thereafter pull ¢ or £ according as a success was or was not
obtained at one or more of the first J stages.” Let 7 denote the strategy: “pull R at
the first M — 1 stages; continue indefinitely with %R thereafter if a success was
obtained at one or more of the first M — 1 stages, and, if not, pull £ at stage M,
pull R at stage M + 1, and thereafter pull ® or £ indefinitely according as a
success was or was not obtained at stage M + 1.”

We shall show that 7 is better than every 7,. A straightforward calculation shows
that 7 is better than 7,,_, if and only if the second inequality in (2.10) holds. That
Tp—1 is at least as good as 7, for J < M — 1 follows from A < (1 — ¢)/(1 + ¢), a
consequence of (2.9) and the second inequality of (2.10). A calculation involving
the first inequality in (2.10) shows 7 to be better than 7,,, which is, according to a
calculation wsing A > (1 — €)eYars1/(Yar+1 — Yu+2) (see (2.8) and (2.10)), at least
as good as 1‘; for J > M. (Depending on A, 7 may be optimal; we have only shown
that it is better than every 7,.) [J

(2.10)

On the basis of (i), and, therefore, (ii), in Theorem 2.1 we can generalize results
of Bradt, Johnson and Karlin (Section 4, 1956) who considered the special case
where, for some n, a,, = 1 or a,, = 0 according as m < n or m > n. The next
theorem is the first step in this program.

THEOREM 2.2. For each probability distribution R on [0, 1] and each regular
discount sequence A, not identically 0, there exists a A(A, R) € [0, 1] such that the
only optimal initial actions are “pull R if A < A(A, R)” and “pull £ if X >
A(A, R).”

ReEMARK. Theorem 2.2 can be generalized to accommodate distributions R
other than Bernoulli.

PrROOF. Let A; and A, be two values of A with A, < A,. Suppose that an optimal
strategy specifies a pull of R at the first stage when A = A;. We want to show that
no optimal strategy specifies a pull of £ at the first stage when A = A,.
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Let 7, be an optimal strategy when A = A, that pulls & at stage 1. Let N denote
the last stage at which @ is pulled using 7,; N = oo if there is no such stage. Since
7, is no worse than pulling £ at every stage,

V(R, ) > A2,
Let V*(R, A,) denote the expected payoff from using 7, when A = A,; clearly,
V(R, A;) > V*(R, \y).
We have:
(2.11) 0 < V(R A) — AZFa, = E[(p — A)ZVa,,]
< E[ (o — AZ)E{"am] = V*(R,\) — \,2,,

and, therefore, :
(2.12) V(R, \,) > A2,
Strict inequality holds in (2.11), and therefore in (2.12), since, under r,, P(N > 1)

= L. If £ is an optimal first pull when A = A, then, from Theorem 2.1, an optimal

strategy is to pull £ at every stage. But mequahty (2.12) shows that this strategy
cannot be optimal. []

The function defined in Theorem 2.2 completely determines the set of optimal
strategies when the discount sequence is regular. If A < A(A, R) then } is
uniquely optimal initially; if A > A then £ is uniquely optimal; and if A = A then
both ® and £ are optimal initially. At the second stage A is similarly compared to
A((ap a3, - - ), R), A((ay, @y, = - - ), 6R), or A((ay, @3, - - - ), R) according as £
was pulled initially, ® was pulled initially yielding success, or R was pulled
initially yielding failure; and so on for subsequent stages.

A consequence of Theorem 2.1 is that

A(ay az ), R) < Aoy ez -+ +), R)
for all R and regular (;, a, - - - ). The continuity of A is asserted in Theorem 5.3.

A “weak type of convexity” holds for it with respect to each of its variables. If
p €0, 1), then

A(A,pR, + (1 - P)R;)) < A(A, R)) VV A(A, Ry);
strict inequality i§ possible. A similar statement holds for a convex combination
PA; + (1 — p)A, of regular discount sequences provided that pA; + (1 — p)A, is
also regular. The easy proofs of these assertions depend on the convexity properties
of ¥ mentioned in Section 1. It can also be proved that the function

c>A(ay, - - -, Oy €Oy gy €Oy gy * * ), R)
is nondecreasing. Monotonicity with respect to R is studied in Section 3.

3. Comparing bandits with common left arm. Theorem 2.2 indicates that the
desire to pull £ is not decreased by an increase in A. It seems reasonable to expect
a similar result regarding a pull of @ and the random variable p. One way of
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“increasing” a random variable is to make its distribution function smaller. This
concept is embodied in the following definition.

DerFINITION 3.1. A distribution function R, is to the right of a distribution
function R, if R,(x) < R,(x) for every x.

REMARK. If two random variables are defined with distribution functions R,
and R, with R, to the right of R,, then the first random variable is said to be
stochastically larger than the second.

The following examples show that pulling ‘@ may be optimal for the (R,, A)-
bandit but not for the (R,, A)-bandit even though R, is to the right of R,.

ExaMpLE 3.1. LetA = (1, a,a% a% - - - )and R,({0}) = R({2}) = R({3) =
R,({2)) =3. Clearly, R, is to the right of R,. It will be seen (by application of
Examples 4.2 and 4.4) that for these two bandits,

A(A, R,) = 43(%—:5%))

and .
[1+0- 3a2/4)%] — 3a/4
2[1+(1-30%/4)2] - 2a

A(A,R) =

As atl, both expressions approach 2 and their respective derivatives approach 1
and 3. Therefore,

A(A, R) < A(A, R)

for a sufficiently large. For such an a, select A € (A(R,), A(R,)). Then, for the
(A, R, M)-bandit it is optimal to pull £ at every stage and, therefore, V'(A, R, A) =
A/(1 = a). For the (A, Ry, A\)-bandit ¢ is uniquely optimal initially, and so
V(A, Ry, M) > A/(1 — a).

ExaMpPLE 3.2. The distributions R, and R, in Example 3.1 provide a counterex-
ample in the finite horizon case as well. Leta; = - - - = aj, =landa;;3 = -+ =
0 and A =2. Then £ is uniquely optimal for (A, R,, A) and & is uniquely optimal
initially for (A, R,, A).

While R, is to the right of R, in these examples, this inequality is not necessarily
preserved after R is pulled. In fact, in these examples success on R reverses the
inequality; oR, is to the right of oR;. The next definition strengthens the concept of
“to the right of” to include all possible measures derived from R; and R, by pulls

on R.

DEerFINITION 3.2. Let R, and R, denote distribution functions on [0, 1]. R, is
strongly to the right of R, if o°p’R, is to the right of o°p’R, for every pair (s, f) of
nonnegative integers for which o°¢p’/R, and o°p’R, are defined.
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The following two easy lemmas are given without proof. The first lemma says
that the probability of success is at least as large on R, as on R, when R, is to the
right of R,. The second says that “strongly to the right” is preserved by a pull of
R..

LEMMA 3.1. If R, is to the right of R, then E(p|R,) > E(p|Ry)).

LeMMA 3.2. For any R, oR is strongly to the right of @R. If R, is strongly to the
right of R, then oR, is strongly to the right of both 6R, and @R, and @R, is strongly to
the right of eR,.

Though we will apply the next theorem only for R, = 6R and R, = pR we will
prove it in its full generality. (For a version of Theorem 3.1 for many-armed
bandits see (Berry and Fristedt, 1979).)

THEOREM 3.1.  Suppose the distribution function R, is strongly to the right of R,.
Then, for each regular discount sequence A, not identically 0, and each A € [0, 1],
V(A, R, A) > V(A, Ry, A) and A(A, R)) > A(A, R)).

PrOOF. As in Part I of the proof of Theorem 2.1, let

S, = {A: Ais regular and a,,,; = 0}.

The major part of the proof is the use of induction on n to prove that V(A, R)) >
V(A, R,) for every A € U;%,S, and every R, and R, for which R, is strongly to
the right of R,.

By Lemma 3.1, ¥(A, R)) > V(A, R,) for A € §, since V(A, R) = E(p|R;). For
the remainder of the induction assume A € §,,.

Write A = (a,, as, - - - ). By the induction hypothesis and the fact that A
gn b

(3.1) V(AD, T,) > V(A®, T,)

whenever T, is strongly to the right of T,.

If £ is optimal for the (A, R,)-bandit, then V(A, R,) = Ay; < V(A, R)). Accord-
ingly, we assume that @ is initially optimal for (A, R,) and obtain (cf. Proposition
1.2)

3.2)
V(A, R;) = a,E(p|R;) + E(p|R,) V(A('), "Rz) + [1 - E(P|R2)] V(A“), ‘PR2)~

One strategy for (A, R,) is to pull R initially and thereafter act optimally. Thus,

(3.3)
V(A, R)) > o,E(p|Ry) + E(p|R)V(A®, oR)) +[1 — E(p|R)) ] V(AD, gR,).
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Subtracting (3.2) from (3.3) yields

V(A, R) — V(A R,) > al[E(lel) - E(P|R2)]

+ E(p|Ry)[ V(AD, oR,) — V(A, oRy) ]

+[1 = E(p|R) ][ V(AD, R,) — V(AD, 9R;) ]
+[E(o|R,) — E(p|Ry) ][ V(A®, oRy) — V(AD, Ry)].

(3.4)

By Lemma 3.1, the first term on the right side of (3.4) is nonnegative; it represents
the immediate advantage at stage 1 of the R,-bandit over the R,-bandit provided
that ¢ is pulled at stage 1. By Lemma 3.2, (3.1) is valid for these choices of
(T}, Ty): (6R;, 0R,), (pR;, 9R,), and (oR;, pR,); hence, the last three terms in (3.4)
are nonnegative and the induction is complete. (The last three terms in (3.4)
represent the advantage for stages after the first of the R,-bandit over the R,-bandit
when & is pulled initially for both. The term weighted by E(p|R,) is the advantage
resulting from an initial success with both bandits. The term weighted by 1 —
E(p|R,) is the advantage resulting from an initial failure with both bandits. The last
term is weighted by the probability of an initial success with the R,-bandit and an
initial failure with the R,-bandit. This interpretation requires that the two bandits
be placed on a common probability space so that an initial success with the
R,-bandit entails an initial success with the R;-bandit as well.)

That V(A, R,) > V(A, R,) for every regular A follows from Lemma 1.1.

The second conclusion, A(A, R;) > A(A, R,), follows from the first conclusion
and Theorem 2.1. ]

REMARK. A slight modification of the proof of Theorem 3.1 shows that
V(A, R;, A) > V(A, Ry, A) even if A is not regular.

4. The nature of optimal strategies. Bradt et al. (1956) prove a stay-with-a-
winner-rule for the finite horizon one-armed bandit. The following theorem gener-
alizes that result to arbitrary regular discount sequences. It says that whenever a
success is obtained with ® while using an optimal strategy, then a pull of ®R is
optimal at the next stage as well—uniquely optimal unless the prior distribution R
concentrates its mass on A.

THEOREM 4.1.  Suppose that A = (a,, ay, - * * ) is a regular discount sequence with
a, > 0. Let AD = (ay, a3, * * ). Then, for all R,
4.1) A(A, R) < A(AD, oR),

with equality only if R is a one-point distribution.

ProOF. We will show that A < A(A, R) = A < A(AD, 6R); that is, if R is
optimal for (A, R, A), then it is also optimal for (A", oR, N). Consider two cases:
(@) A < E(ploR)[= E(p*|R)/E(p|R)],
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(@ii) A > E(p|oR).

In case (i) we assume A(A", oR) < A. Then V(A", 6R) = y,A by Theorem 2.1.
But the expected payoff of the strategy that pulls R at every stage for (A", oR) is
v,E(p|aR) > V(AY, oR), which is a contradiction.

In case (ii) assume A > A(A®, 6R). By Theorem 3.1, since oR is strongly to the
right of R for all R, A > A(AY, pR) as well. Theorem 2.1 applies to show that £
is optimal at all stages subsequent to the first, independent of the initial result.
Therefore, V(A, R) = a;E(p|R) + v,A. But the expected payoff of the strategy that
pulls £ at every stage, including the first, is y,A = a,A + v,A > a, E(p|oR) + v,A
> a,E(p|R) + v,A, provided R is not one-point. []

The complementary result,

4.2) A(AD, pR) < A(A, R)

holds for all R and every regular A for which a, # 0. For, in view of Theorem 3.1,
AAD, R) < AAD, R), and, in view of Theorem 2.1, A(AY, R) < A(A, R).
Inequalities (4.1) and (4.2) generalize results of Bellman (1956, Theorem 2) who
considered A = (1, a, a% -

The next theorem specifies a class of strategies among which there is at least one
optimal strategy when A is regular. It is an immediate consequence of the

preceding development.

THEOREM 4.2. Suppose that the discount sequence A is regular and not identically
0. If A > A(A, R) it is optimal to pull £ at every stage. If A < A(A, R) there is a
sequence K = (k\, ky, -+ - ), k; € {0, 1, - - -, 0}, for which the following strategy is

optimal. Pull R until i failures have occurred, i = 1,2, - - -, then switch to £ at the
next stage (and all subsequent stages) if and only if the total number of successes
obtained thus far is less than k, + - - - +k,.

Not all optimal strategies are described in Theprem 4.2. We will now mention
several other possibilities. If a,, = 0, then every continuation from stage m is
optimal. Similarly, if R is concentrated at A, then every strategy is optimal. The
only interesting optimal strategies not described in Theorem 4.2 occur when
Y Yae2 = Yi+1 > 0 for some M. From Part II of the proof of Theorem 2.1 we see
that it may also be optimal to pull R at stage M — 1, £ at stage M, and R at stage

M+ 1. 5
Henceforth, besides the strategy “pull £ at every stage,” we will only consider

strategies that correspond to a sequence K. The next theorem gives an expression
for the “break-even” value of A.

THEOREM 4.3. For every R and regular discount sequence A not identically 0,
Ex 3= 1Xm % }
ExZh o1,

where E, denotes expectation with respect to the strategy corresponding to the
sequence K and N equals the (random) number (possibly + o) of pulls of R.

43) A(A, R) = maxK{
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Moreover, if A\ = A(A, R) then those K’s which correspond to optimal strategies are
exactly those for which the maximum in (4.3) is attained.

PrOOF. The proof of Theorem 4.1 in (Bradt et al. 1956) applies in this more
general setting with evident modifications. []

While (4.3) is an expression for the break-even value of A for an arbitrary
one-armed bandit, it is not easy to apply. The number of sequences K that have to
be checked, even using a clever searching algorithm, can be very large. The next
four examples are applications of the theorems in this section for three kinds of
restrictions on the distribution R in which the solutions can be given explicitly.

ExAMPLE 4.1. Suppose A is a regular discount-sequence and the support of R is
a subset of [0, A] U {1}. Once a failure occurs with ®, a switch to £ is optimal
since po°R([0, A]) = 1 for all s. According to Theorem 4.2 (or Theorems 2.1 and
4.1) we need only compare two strategies: “pull £ at every stage” and “pull R
until it fails (if ever) and £ thereafter.” The result of this comparison is that £ is
optimal if A > A* and @R is optimal initially if A < A*, where A* (a quantity that
appears as A% in Theorem 5.1) is defined by:

2:- 1% E p "
2:= lamEpm_ 1’
it being understood that 0° = 1. The calculations of expected payoffs yield:
V(R, \) = Ay, if A>A*
= Ay, + 22_,0,E(p™ — Ap™Y) if A<A*

It follows that A(A, R) = A* if the support of R is a subset of [0, A*] U {1}. If on
the other hand, the support of R contains a member of (A*, 1), then the condition
A < A* is incompatible with the condition that the support of R is a subset of
[0, A] U {1} and, hence, all that can be immediately concluded about A is that the
support of R contains a member of (A, 1). However, from using K =
(0,0,0,- - -)in Theorem 4.3 it follows that A > A* with equality holding if and
only if the support of R is a subset of [0, A*] U {1}. Accordingly, characterizing
optimal strategies using only Theorem 4.3 avoids calculating expected payoffs
under the two strategies. The necessary and sufficient condition for A = A*
appears again in Theorem 5.1.

A* =

ExaMPLE 4.2. Suppose A is a regular discount sequence, the support of R is a
subset of {0} U [A, 1], and R({0}) > 0. Among those strategies described in Theo-
rem 4.2, the only ones we need consider are 7, M =0, 1, - -, 0o, where: 7,
denotes “pull £ at every stage”; 7,, for 0 < M < oo denotes the strategy given by
K=@---,0,1,0,---), the Mth coordinate equalling 1; and 7 denotes the
strategy “pull R at every stage” given by K = (0,0, - - - ). The expected payoff
under 7,, is

(4.4) E{ov; + (1 = 9™\ = p)Yars1}-
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Since, as a function of M, (4.4) is continuous at oo, it achieves a maximum. We
shall show that (4.4) increases to its maximum and then decreases, the possibilities
of a maximum at 0 or at oo or at more than one value of M not being excluded.
We assume that the expected payoff under 7,,,, is larger than the expected payoff
under 7,, and show that the expected payoff under 7,, is larger than the expected
payoff under 7,,_,. That is, we show

E{(p = N1 = p)"(aprs1 + pYa42)} >0
= E{(P -1 - P)M_l(aM + PYM+1)} > 0.
This follows since, for regular discount sequences,
(1 - x)M(aM+l + XVpr42)

(1 = )" Waps + X13041)

is a decreasing function of x.
Set the expected payoff under 7,, (from (4.4)) equal to the expected payoff under
Tpr—1- Solving for A gives, for 0 <M < oo, -

~ E[p(1 = p)" oy + pYVars1) ]
M - — .
E[(l - P)M ](aM + P'YM+1)]
Define Ay = 1. The sequence {A,,} is monotonic and lim,, , A,, = 0. The above
argument shows that, except for arbitrary continuations from stage m when
a,, = 0, the only optimal strategies of the type described in Theorem 4.2 are as

follows: If A,, > A > A, then pull R at each of the first M stages and thereafter
pull £ or & according as all failures occur or not in the first M stages. The

maximal expected payoff is

(4.5)

V(A, R,N) = v,Ep + var  E(A — p)(1 — 0)™).

Of course, if A =0 then 7, is optimal; moreover V(A, R, 0) = y,Ep. The
preceding statements do not imply that the condition A,,_; > A > A,, for some M
is necessarily compatible with the support of R being a subset of {0} U [A, 1]. If
these are compatible for M = 1 then our arguments show A = A,. If the support of
R contains a member of (0, A,), then, according to Theorem 4.3, A > A,.

If, instead of appealing to Theorem 4.2, Theorem 4.3 is applied directly, in case
the support of R is a subset of {0} U [A;, 1], we can conclude only that A = A, or
the support of R contains a member of (0, A). However, we can rule out the latter
possibility in the following way. Define R, = (1 — w)R + wd,, where §, denotes a
unit mass at 0, and use Theorem 3.1, Theorem 5.3, and (4.5) to deduce that
A(A, R,) is a decreasing, continuous function of w and A, is, when defined with R,
playing the role of R, a strictly decreasing function of w.

The distributions R considered in this example are shown in Theorem 5.1 to be
extreme in the sense that A > A, for arbitrary R. In Theorem 5.1, A, is denoted A}.
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ExampLE 4.3. For some ¢ > 0 and a € [0, 1] suppose that A is the regular
discount sequence (¢, ca, ca?, - - - ). Also, suppose that R is supported by {p1> P2}
with p; < p, and let R({p,}) = r. Since A is proportional to (ca”, ca™*!, - - - ) for
all n, .
A(A, R) = A((ca”, ca™, - - - ), R), n>0.
Therefore we suppress the dependence of A on A. Since 6°p’/R depends on R only
through r (for p, and p, fixed), we write A(r) for A(R) and o’¢’r for (a°p’R Y{p2 D).

From Theorem 3.1 the function r — A(r) is nondecreasing. Therefore, when
A = A(r) an optimal strategy is to pull R at stage 1 and to keep pulling it until
o°p’r < r, where s and f denote the current numbers of successes and failures, and
then switch permanently to £. When A = A(7) it is also optimal to pull £ at stage 1
and thereafter. The expected payoff of the latter strategy is Ay,. To calculate the
expected payoff of the former strategy directly we introduce some additional
notation.

For p, x €0, 1] let S,(p, x) denote the nth partial sum of a random walk, each
of whose individual steps equals

1 — x with probability p
— x with probability 1 — p.

Let

(4.6) N(p, x) = inf{n: S,(p, x) <0},
possibly + 0. For a € [0, 1), let

4.7) g(a, p, x) =1 — Ea®,

where the dependence on p and x has been suppressed on the right side of (4.7). By
a theorem of E. Sparre Andersen (Feller 1971, XII (7.3)),

48) 8(a. px) = exp( -3, L P (5, < 0})

'Using Bayes’s theorem,

(1 — 1 -
éswfr=[pl( P])j( - r) +1
p2(1 — p)’r

-1

Now define

x = 108[(1 —-p)/ (1 — Pz)]
108[(1 -/ (1 - Pz)] + log[pz/pl] .

(4.9)

The following four statements are equivalent:
o'l < r; p3(1 — )’ < pi(1 — py)’;

?i—j<x; (1-x)s+(—x)f<0.
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Accordingly, either N(p,, x) or N(p,, x), defined by (4.6), is the last stage at which
% is pulled. Thus, the expected payoff under the first optimal strategy given above
is

(1 - nNE{pZ5®i»ca™ " + AZ 5 Ny my+162™ 1)
+ rE{pzzx(.P’ix)ca"’_l + }\Zfz_N(pz’x).,.lca'"_l}.
uating S 10 Ay, and solvin Ves
ting this to Ay, and solving gi

(1 = npig(a, py, x) + rpyg(a, py X)
(1 - r)g(aa P1s x) + rg(a’ P2 x)
where g is defined by (4.7), or by (4.8).

(4.10) A(A, R) =

ExaMPLE 44. In addition to the conditions in Example 4.3 suppose that
p, = 1 — p,. Then (4.9) gives x =3, and Feller (1968, XI (3.6)) gives the explicit
formula:

N=

1-[1—4a%(1 - )]
2pa

g(a’ Ps %) =1- .
With r, = rand r; = 1 — r, (4.10) becomes

1
[ory + Pz’z][l +(1- 40‘2P|P2)2] = 2app,

A(A, R) = 5 T
1+ (1 - 4d%,0,)* — 2a(pyr, + pyry)

5. Bounds for A. In this section we obtain lower and upper bounds for A, the
break-even value of A. We then prove that A and ¥ are continuous.

Theorem 5.1 gives a sequence of lower bounds for A. This sequence may be
increasing, constant, or decreasing, but, more typically, it increases to a maximum
and then decreases. The quantity A* defined below in (5.1) is also considered in
Example 4.1 where it is denoted A*.

THEOREM 5.1.  Suppose that A = (a,, a,, * + * ) is a regular discount sequence, not
identically 0. Then for each k € (1,2, - - , 0}, A(A, R) > A} where

oo mA(k+1
(5.1) A = Zm=1%EP *
| S5m0, B0 O
In case a,, > 0 for every m, A(A, R) = N} if and only if the support of R is a subset
of {0, 1} or k = 1 and the support of R is a subset of {0} U [A¥, 1] or k = oo and the
support of R is a subset of [0, A%] U {1}. In general, the sequence (\\}, A}, - - )
achieves a maximum on a subinterval of {1,2,- - - , o0}.

Proor. The inequality A > A} follows from the use of K = (k, 0,0, - - ) in
(4.3). If k£ = 1 and the support of R is a subset of {0} U [A}, 1], then, according to
the discussion in Example 4.2, A = A}. The other conditions for A = A} follow
easily from Theorem 4.3.
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To prove the last assertion of the theorem we note the continuity at k = co, and,
hence, that a maximum is attained. We will show

M_I—MN>20=M - N, >0,
or equivalently,
(52) E{(o = M)Za,,p" PNETDY > 0= E{(p — A})Sa,p™ DAY > 0.
Subtracting
E{(p ~ N)Zaup™ "N} = 0
from both of the expressions in (5.2) reduces the problem to showing that

(53) E{(p=AM)p*"'(1-p)} >0
implies : )
(54) E{(p = M) (1 —p)} > 0.
Subtracting A} times the left side of (5.3) from the left side of (5.4) yields
E{(p — A’ "1 - p)} > 0. i

The next theorem gives an upper bound for A. The result is not as readily
applied as any of the lower bounds in Theorem 5.1 since the solution of equation
(5.5) will usually require iteration.

THEOREM 5.2. Suppose that A = (a,, ay, * - + ) is a regular discount sequence, not
identically 0. Then A(A, R) is less than or equal to the unique solution in [0, 1] of the
equation
(5.5)

Ma, + v,Ep) — (“1EP + YzEPZ) + 2‘:no-ao‘mE[P()\ -0t (- Pm_z)] =0.

Proor. The left side of (5.5) is nonpositive when A = 0, nonnegative when
A = 1, and continuous and strictly increasing as a function of A. Accordingly, we
need only show that the left side of (5.5) is nonpositive when A = A.

We fix A equal to A. Then, since one optimal strategy is “pull £ at every stage,”
the maximal expected payoff is Ay,. This expected payoff can also be achieved by
an initial pull of ¢ and optimal pulls at stages 2, 3, - - - . According to (4.2) it is
optimal to pull £ at stages 2, 3, - - - in case a failure is obtained with R at stage 1,
and, according to the stay-with-a-winner rule (Theorem 4.1), it is optimal to keep
pulling ® until a failure is obtained. Let = denote this latter strategy. The
conditional payoff using 7 is
(5.6)

E (e, Z™p) = (1 — pAy, + Z5210"(1 — p)[ 2510y + B35 4200 Z,00) ]
S (1 =pAvy + Z2_10"(1 = p)[ 21 + (0 V AN)Vps2 ]

if p < 1 and it equals vy, if p = 1. The maximum of p and A occurs in (5.6) for the
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same reason it occurs in (1.1). In view of (5.6),
Ay, S Ay (1 = Ep) + EZ3_10"(1 = 0)[Zhci@m + (0 N ¥pa2]-
The result follows from straightforward calculations that are omitted. []

At stage 1, R is optimal if A < A} for some k and £ is optimal if the left side of
(5.5) is nonnegative.

ExampLE 5.1. Suppose the support of R is a subset of {0, 1}. Then A equals
every lower bound in Theorem 5.1 and the upper bound in Theorem 5.2—namely,
v:Ep/(a; + v,Ep), which is also obtainable as a special case of either Example 4.1
or Example 4.2.

ExaMPLE 5.2. Suppose that a;=:-- =aqa, =1 and a,,.; =0. We give the
lower bound offered by Bradt et al. (1956) via their special case of Theorem 5.1:
E?n-lEpm/\(k+l)
2':n-lEP(m-l)/\k ’

A(A, R) >

which for k > n — 1 becomes .
E{p(1-p")/(1=p)}
E{(1-p")/(1-p)}
Equation (5.5) for an upper bound on A becomes
A1+ (n—1)Ep] —[Ep + (n — 1)Ep?]

+E{pA —p)*[n—2—p(n—1) +p"']/(1~-p)} =0

A(A, R) >

ExamPLE 5.3. Suppose that A = (1, a,a? - -+ ). The lower bounds for A
described in Theorem 5.1 are

. _ Efe[(1 - a*")(1 = ap)™" + a¥p*(1 - ) 7'}
© EB{(1- a**)(1 - ap) " + a¥p*(1 - @) 7)

In particular,

-1
A = M’
* a(a)
where the generating function ¢ is defined by y(a) = E{(1 — ap)~'}. Equation
(5.5) for an upper bound becomes:
A[(1 - @) + aEp] —[(1 — a)Ep + aEp?]
+a?E[p(1 — p)A —p)* (1 —ap)”'] =0.
At various places in the paper we have discussed functional properties of ¥ and
A. The continuity of A given in the next theorem has been referred to in Example

42. We use the /' topology on the space of regular discount sequences;
the distance between A = (aj, a, - --) and B=(B,, B, ) is [A—B| =
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2 -ila, — B,|- We use the topology induced by convergence in distribution for
the space of distributions of p.

THEOREM 5.3. Both V and A are (jointly) continuous functions.

PrOOF. Itis easy to see that | F(A, R, N) — V(B, R, A)| < € whenever |A — B| <
e and |V(A, R, A\)) — V(A, R, \))| < &€ whenever |\, — A;| <¢&/|A|. We can com-
plete the proof that V is continuous by showing that V(A, -, A) is continuous for
each A and A.

As in the proof of Theorem 2.1 we prove it for A € §, by induction on » and
use Proposition 1.1 to prove it for a general regular A. For the induction step we fix
R, and consider a variable R close to R,. If it is optimal to pull £ for both bandits
then V(R) = V(Ry). If it is optimal to pull & initially for both bandits then

[V(A, R) — V(A, Ry)| < oy|E(p|R) — E(p|Ry)|

+|E(p|R)V(AD, oR) — E(p|R) V(AY, o)

+|E(1 = p|R)V(A®, R) — E(1 = p|R)) V(AD, @R,)|.
Let ¢ > 0, N, a neighborhood of Ry, and N, a neighborhood of ¢R,. By choosing
R in an appropriate neighborhood of R, one can ensure |E(p|R) — E(p|Ry)| < &,
oR € N,, and gR € N, If it is optimal to pull & initially for the R-bandit but £
for the R,-bandit then V(A, R) > Ay,, but not much larger, for the above calcula-
tion shows that it is not much larger than the expected payoff for the R,-bandit
when @ is pulled initially and an optimal strategy followed thereafter. Similar
reasoning holds in case it is optimal to pull ¢ initially for R, but not for R. The
continuity of V is proved.

Suppose that (A,, R,) > (Ay, Ry) as n — oo, and, for some ¢ > 0 and every n,
A(A,, R,) > A(Ay, Ry) + & Let Ay = A(Ay, Ry)) and A = Ay + &. Clearly,
V(Ag Rpy Ag) = A2 510 0 and V(A,, R, A) > A2 0 _ @, , where a,, , denotes
the mth coordinate of A,. Since it is optimal to pull @ initially for both (A,, R,, A)
and (An’ Rn’ AO)s

V(An’ Rn’ A) - V(An’ Rn’ }‘0) < ez:-dam,n'
Hence,

V(An’ Rn’ }‘0) - V(AO’ RO’ >‘0) > ey , — }‘OIAn - AOI
for every n, which contradicts the continuity of V. Similar reasoning yields a
contradiction from the hypothesis A(A,, R,) < A(Ag, Ry) — &. [
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