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DESIGN OF OPTIMAL CONTROL FOR A REGRESSION PROBLEM

BY DER-SHIN CHANG
National Tsing Hua University

Consider the realization of the process y(f) = I% .0,/ () + £(?) on the
interval T = [0, 1] for functions f,(?), f5(¢), - - - , f,(¢#) in H(R), the reproducing
kernel Hilbert space with reproducing kernel R(s, ) on T X T, where R(s, ¢) =
E¥(s)&(¢) is assumed to be continuous and known. Problems of the selection of
functions { f;(9)}% -, are discussed for D-optimal, 4-optimal and other criteria
of optimal designs.

Introduction. Consider a regression model

o) y(0) = Zho 0ufi(0) + £(2), teT,T=[01]

with the noise process £(#) having zero mean and known continuous covariance
kernel R(s, t) = E&(s)§(¢), (s, t) € T X T. Let H(R) be the reproducing kernel
Hilbert space (RKHS) with reproducing kernel (RK) R(s,?) on T X T, and
{fi(®), - - -, £,(¢)} be a linearly independent set of functions in H(R). Then, by the
Gauss-Markov theory of continuous time series (see [8]), we obtain for f' =
(fi(0), £(2), - - - , f,(¢)) the minimum variance unbiased estimate =M
Ky i ~, ,A<y,j;,> ~Y, and its convariance matrix Cov[d] = M ~\(f),
where 0 = (8, 0, - - -, 0,), M(H) = [ml ;s my = o SO {felOVimy
C HRR), and {y, i,y ~,k=1,2,- - -, n, are defined as if y(f) is an element in
H(R). In [1], the author has calculated the optimal functions { f(9)}}-, in some
special set X of functions to minimize Var(2"_,4,d,) and ="_,Var(,). This problem
is similar to that of optimal design of input signals for parameter estimation in
automatic control (see [S] and [6]). However, full investigation of model (1) in
RKHS and the analytic form of optimal solutions of {f,(¢#)}%-, were not given.

In this paper, we give some natural criteria for optimal designs which generalize
the idea of Kiefer and Wolfowitz (see [4] and [3]) to continuous realization of y(¢) if
it is possible to select the functions { fi(¢)}}~, from a set of functions X C H(R)
prior to the experiment; and discuss some problems of D-optimal, 4-optimal and
weighted optimal designs and their respective solutions. In Section 1, we give
criteria for designs of regression model (1). In Section 2, we solve the D-optimal,
A-optimal and weighted optimal design problems and give the optimal solutions of
{£(D}% =, in each case. In Section 3, some examples and special cases of Section 2
are discussed.

1. Design criteria. If (1) is given, then it is well known (see [8]) that the space
of functions generated by {R,(-), t € T|R,(¢) = R(?, t)} is a RKHS, denoted by
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H(R), with R(s, £) on T X T, where R(s, ¢) is symmetric and positive definite, and
by Mercer’s theorem (see [9], pages 242-246), we know there exists a set of
orthonormal functions {¢,(#)}2., in £%[T] and a corresponding sequence of
positive real numbers {A,}%_, such that

(2 R(s, 1) = 252 A0,(5)9,(2)
is uniformly convergent in T X T if R(s, f) is continuous; also that the inner
product in H(R) is

g.h
shop = 25,5,
{g DR 1 A

where g, = (&, $.)e2» h, = (h, ¢,);, for any g, h € H(R). That is, H(R) =
{hlzzo-lhf/Av < oo, ho = (h’ ¢o)32}‘

Assume further that a set of linearly independent functions {f(OYi=1in H(R) is
given. Then, by [8], we have for §’ = (4,, - - -, 8,) and f" = (fi(2), - - - , £,(1)) the

minimum variance unbiased estimate

(3) é= M_l(f)(<y9fl>~’, Tty <y9f;x> ~),
with Cov[d] = M ~\(f) and

Jow
<y9f;c>~= 20-1_}::'}’.,, k= l, 2’ ctt,n

with y, = (y, ¢,)e,, the stochastic integral of y(#) with respect to weight function
éy(?) € L[ T] (see [7] and [8]).

Now extending the idea of [4] and [2], we can define D-optimal, A-optimal and
weighted optimal design as follows.

DEFINITION.  In model (1), for an experiment with f* = (f*(¢), - - - , £*(¢)) and
X Cc HR) if
() max ;). x|M(f)| = [M(f*), it is called a D-optimal design in set X;
(i) min gy, _ptr M “If) =tr M~\(f*), it is called an A-optimal design in
set X;
(i) min ;. ytr WM TI(f) = tr WM ~I(f*), it is called a weighted optimal
design in set X for weighting matrix W.

The reasons that we take these criteria for designs are direct extensions of those
in standard optimal design work (see [2] and [4]). For instance, if W = ad’,a =
(@), @y, - -, a), then tr WM ~'(f) = Var[3"_,4,], so that the minimization of
(iii) has the statistical meaning which is discussed in other space of functions in [1].
Further, the reasons that we restrict X, our design space of functions, are based on
practical considerations (see [5] and [6]).

2. Main results. In this section we state and prove the following

THEOREM 1.  Suppose model (1) is given, and X = {h|h € H(R), A% < L); L
is any given positive number. Then under the assumptions in Section 1,
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(1) max ;. x|M(f)| = L", which is attainable at f¥(t) = (L?\k)%q)k(t), k=
1,2+ ,n
(ii) min gy, _xtr M TY(f) = n/L, which is attainable at f¥(t) = (LA, (8),
k=12---,n
(iii) min gy, - xtr WM ~'(f) = Zin,/ L, if W is a known symmetric and positive
definite matrix with eigenvalues n, > n, > - - - 29, > 0.

Proor. (i) Since M(f) is positive definite, it is well known (Hadamard’s
inequality) that |M(f)| < [T;_,my, = 5., 2%, £i,>/N. Then, since {f}i-, C X,
that is, Zﬁlfka/kj < Lfork=12---,n, we have

|M(f)l < -\ L = L".
The maximum is attainable at the boundary of X. For example, we can take
1
) £ = (LA, (0), k=12 .n

Note that there are many D-optimal designs, the set of (4) being just an easy one to

select.
(ii) Suppose first that { f,}%_; be a set of linearly independent functions with

finite square norms, say ||fi||% = Li,k=1,2,---,n Then, by the Gram-
Schmidt process, we can get an orthonormal collection u,(¢), u,(¢), - - - , u,(¢) in
H(R) such that
) u(t) = ay fi(1) + - - - +a;£(0) and
J(#) = byuy(1) + - - - +bu(y), i=12---,n

Let

an by,

0 0
A =% 9 and B=|ba bz
an ay apn bnl b"2 .« . bnn |

Then, for v’ = (u,(¢), - - -, u,(¢¥)) and f' = ( fl(t)—, <o, £(9), (5) can be rewritten
as

(6) / u=Af and f= Bu.
Further, by (6), we have B = 4 ~!. Now since
M(f) = [mij]:j-l’ my‘ = <f;".6'>R9
then, by (5), we have
my = <2§c=lbikuk’ Ejl'=1bquI>R = Ellnﬂ(i’j)bﬂbﬂ = (BB’)U-
Thus,
M(f)= BB = (4'4)7,
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)
@) M~(f) = A’A.

Hence

® tt M~I(f) =trd4’4 = 2?—12;=iaz'2j > 27:1“3-

Equality in (8) occurs only if g;; = 0 for all i  j; that is,
{fsfPr=0 Vi #j.

Therefore,

1 1
min, ;. trM"‘(f)= Ay =2 —— =3 —.
Wfillk=Ly, k=1,2,---,n k=1%k k=1 D) k=1

R Il fell% Ly

Finally, since { f(f)}%~, must be in X,
. - . 1
ming gy, cxtt M7(f) =ming ¢; o120 ,n ';c=1fk =n/L,

which is attainable for any collection of orthogonal functions { f(9)};., with
square norms equal to L. For example, f*(¢) = (L)\k)%xpk(t), k=12---,n/isan
A-optimal design.

@ii) If W is a symmetric and positive definite matrix, then there exists an
orthogonal matrix P and diagonal matrix D such that W = PDP’, with

L 0
D= t. , m=2m2---21,>0
0 . M
By the proof in (ii) and (7),
M~I(f) = A'A.

Thus,
tt WM ~'(f) = tr PDP'A’A = tr DP'A’AP = tr DM ~(g)

=20 1"7.'(1‘2 - l)ii’

where g = (g,(8), - - -, g,(1)) = P’fand M ~'(g) = A’A with

All
0
A=4P =|4n Axn , by (6),
Anl An2 : Ann
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and
Ay =1/l1gll &>
1
Ay = —<{8» 81)r s
||81||3e I8 — <& g1>Rgl(l/”g1”2R)”R
Ay =1/8—<g» 81>Rg|(1/||81||§)||m and so on.
Hence
(M_l)ii = 'IlcsiAlfi’
and
- 1
tr WM~'(f) = Zj.mZh_4% > 2';-1"7(14:% > 27=117i———7
[FAlF
> 2i.m/L.
The lower bound is attainable if {g;, g;>g = 0 for all i , and lglx = L,i=
1,2, -, n. Thus, since f = Pg, P orthogonal,
k=0 i#j
=L i=]j.
Therefore,

min(fk}:-n cxtr WM*l(f) =3l.m/L,

and the minimum is attainable at any set of orthogonal functions with square norm
equal to L. [J

COROLLARY. The design {f*()}i=1 J*(O = (L}\k)zl¢k(t), is simultaneously D-
and A-optimal, and furthermore is weighted optimal for any symmetric positive
definite matrix W.

This result follows trivially from Theorem 1, and is similar to, but a stronger
result than, the discrete case (see [2], page 139).

3. Some other optimal designs and examples. In Section 2 we restricted our
discussion on weighted optimal design to that for positive definite matrix W. There
are many cases of W nonnegative definite in which it is very complicated to

construct the optimal solutions f*(¢), k = 1,2, - - , n. But if W = aa’ with @’ =
(a, ap, -+ ,a,) and |a,| < |a,| < - -+ < |a,|, then we can follow [1] and obtain
the following

THEOREM 2. Suppose a,, a,, * * + , a, are given real numbers such that |a,| < |a,)|
< --- <|al|. Let X ={hlh € HR), |h|% < L}, W = aa’, where a’ =
(a,  * * , a,). Then, under model (1), we have

ming gz xtt WM ~'(f) = a}/L,
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which is attainable if we take f*(f) = sign a,,(L% / nzi)E',.'_,()\,.)% ¢o(t) and
(0, - - L 1) any functions such that (f*, udy = a,.L%/la,,I, i=12---,n
1
— 1, where u(r) = (1/n3)27.,(A)36,(0).
PrOOF. Letn = 37,46, and |a,| < |a)| < - - - < |a,|. Then, by (3)
i =3af = af = Zi 00 f> ~,
where
a'=(al,...,an), 0’=(0l’02"”’0n)

and

¢, k=12, -, nare functions of {m,.j}fj'l.
Since 4 is the minimum variance unbiased estimate of 8, we have
Eq = Xi_,E), = 37,00, =,

which in turn implies

%) E'L_leE<y, f}c> ~=nn.
Next, by [7] and [8], we have

(10) Ey, fiop ~=<Z1=10ufp fior
and

Var(y, fip ~= {fis fior-
Thus, (9) can be rewritten as
1=10 2% =16 lfp fiOr = 2198,
That is,
(11) =16l fior = a I=12---,n

Now, let g(1) = Zi_ 6fil(1) = Zho 1622, fiyb (D) = 22, go,(H), where g =
(8 ®)esj =1,2,- -+, sothatf = I} 0y, f,) ~= <y, g> ~. Thus,

Var[4] = Var[E',-’_,a,.é,.] = Var[<{y, g) ~]
= {g, g)r = 07 say, by (10).

Finally, we investigate the lower bound of ¢ > 0. Since, by (11), we have

<g’f}>R=a1, ) [=1’2,...,n.
Let u(t) = (l/ﬂ)g(t). Then <u, u>R = l, and
a<u’f}>R=aI’ l=1,2’°°',n.

That is, by linear independence of { f,(9)};_,, we have, for/ =1,2,- - -, n,
o =a/ufior > a/|lfillg
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by Cauchy-Schwartz inequality. Therefore, if { f,(£)}%-; C X, we have

trWM"(f)=Var[ﬁ]=02>a—3>a'?_' > .. >flz
L L L’

which implies that ¢ cannot be smaller than a2/ L, and the optimal choices of
{fi(0)} =1 are
f¥(t) = sign a,,L%u(t)
with (u, udg = 1 (for example, u(f) = (1/n7)S"_,(A\)2¢,(1)), and
{fi¥(®), - - -, f;x((1)}are any linearly independent functions satisfying
, f*or = 417 /|a, J=12--,n—11
We now give two examples to conclude our discussion.

ExaMPLE 1. Suppose that in the interval [0, 1] it is possible to observe a
realization of the process
() = 0, f,(1) + 0, £,(1) + &(2)
with E£(#) = 0 and known continuous covariance function E&(s)é(f) = R(s, ¢) =
=% A¢:(s)¢,(?). Then an optimal solution of {f,(£), f,(#)} to minimize Var(a,d, +
a,0,) with |a,| < |a,|, in the set X = {h: ||h|% < L} is:

(1) = —’;—f(al)%.(o + (\)Po,(1))sign a,

#() = L (4 (@ - @)oo + 59%( — (@ - a@))a0).

22|a,)| 2]a,

SoLutioN. By Theorem 2, if we take
1 1 1
u(t) = 1/22((>\1)2¢1(t) + 0\2)2952(’))
and
F3(0) = sign a,Lzu(1),
then f*(¢) is any function linearly independent of £;*(¢) and satisfying {f¥*, f*>r =
1
L and {f*, upg = a,L?/|a,|. Let
(1) = ¢191(2) + c0,(0);

then, from considerations stated above, we get
1 1
= (L>‘1)2(‘11 + (a? - a12)2)/ (2%1‘12')’
1 L 1
€= (L>\2)2(al = (a? - 012)2)/ (2;|a2|).

For this solution it can be checked that tr aa’M ~!(f*) = a3/ L as claimed in
Theorem 2.
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ExaMPLE 2. Here we consider the same model and assumptions as in Example
1, but we want to minimize Var 6, + Var 6, in X = {h : |||} < L}. An optimal
solution for {fi(¢), f,(¥)}, by Theorem 1 (i), is fi**(¢) = (L)\l)%xpl(t), ¥
)= (L)\z)'i¢2(t), t € [0, 1], which, by the corollary, is also weighted optimal for
any symmetric positive definite matrix W. This solution is orthogonal and is
different from the f*(¢), k = 1,2, in Example 1, which is not orthogonal but
linearly independent only. This illustrates that (iii) of Theorem 1 cannot be
extended to Theorem 2 for W nonnegative definite matrix.
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