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ASYMPTOTIC OPTIMAL SEQUENTIAL ESTIMATION: THE
POISSON CASE!

BY Y. VArDI

Bell Laboratories
Murray Hill, New Jersey

The problems of estimating sequentially the intensity parameter of a
homogeneous Poisson process and of estimating sequentially the mean of a
sequence of i.i.d. Poisson rv’s, are considered. The procedures suggested are
shown to perform well for large values of the parameter and/or for small
sampling cost. Having bounded regret, the procedure for estimating the mean
of the Poisson sequence is asymptotically Bayes w.r.t. any, sequence of a priori
densities, which spread mass in a suitably smooth manner.

1. Introduction and results. We consider the problem of estimating the un-
known intensity parameter, A(> 0), of a homogeneous Poisson process (HPP) with
right continuous sample paths {X(¢); ¢ > 0}, defined on a probability space
(@, ¥, P). Having observed the process for the time period [0, ] we estimate A by
X(2)/t, so the problem is, simply, that of choosing a stopping time (ST). The loss
plus cost incurred by stopping at time #(> 0) is assumed to be
(1.1) L =AX()/t =N + ¢,
where A(> 0) is known. With nomenclature as in Vardi (1978) the following is
easily seen. The best fixed stopping time (BFST) is (A}\)%, the ‘risk’ associated with
it is (2A}\)% and no fixed stopping time (FST) can have bounded regret. Denoting
the regret of a family of stopping times (ST’s) {»,} 40 say, by p, (4, A) = E\L,

- 2(A>\)2 we measure (following Robbins (1959)) the performance of the family i m
terms of its regret.

For the ST’s {§,} 45, that are of interest to us (defined in (2.1) and (2.2)), it is
impossible to absorb A4 into the parameter and thereby reduce the analysis of their
regret to a one dimensional analysis (as done, for example, in Starr and Woodroofe
(1972)). Here, we must analyze p; (4, A) in the (4, A)-plane. Facing this situation,
natural questions of interest are the behaviour of p, (4, A) as ATec0(A > 0, fixed) or
as Aloo(4 > 0, fixed). Instead of dealing with these two separate problems, we
shall investigate the behaviour of p, (4, A) as (AA) — co. Note, however, that since
pg, (A4, A) is not necessarily a function of (4A) alone, attention should be paid to the
path through which (4A) — co.

In Section 4 we prove the following property of the ST’s {£,} 4~,.
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THEOREM 1.1. For every ¢ > 0, as (AN) — 00 on (A > €) N (A > &) we have,
Ao, (4, A) < 0(1).

COROLLARY 1.1.
(D) pe, (4, ) < 0(1) as AT oo for fixed A(> 0), and
(i) pe,(4,N) < OA~") as Atoo for fixed A(> 0).

In Section 5 we extend our discussion to the problem of estimating the mean
A(> 0) of a sequence of iid. Poisson rv’s. Treating the sample size n as a
continuous variable, we see that the BFST and the ‘risk’ associated with it are the
same as in the continuous time Poisson process. We then introduce a family of ST’s
{n4} 4>0 for which we prove the following (again, the sample mean is taken as an
estimator for A).

THEOREM 1.2. For every € > 0, as (AX) > o0 on (A >€) N (A > &) we have
}\[pm(A, A) — d] < 0(1)
where d is any constant satisfying d > %

COROLLARY 1.2.
@) p,,(4,N) < 0(1) as AToo for fixed N(> 0), and
() p, (4,N) —d < O\~ as Moo for fixed A(> 0).

Asymptotic optimum properties of the procedure (n,, X(n,)/n,), for any fixed
A(> 0), follow from Vardi (1978). Specifically, the procedure is asymptotically
Bayes w.r.t. any sequence of smooth a priori densities. Details (and examples of
such ‘smooth sequences’) are given there and thus will not be discussed here.

2. The procedure. In analogy with the derivation of the BFST, (A}\)%, we
define a family of ST’s as follows. For each 4 > 0 let

2.1) ¢, = first time ¢ > r(A) for which X(¢) < A7,

Here r(A) is a positive real valued function whose choice will be discussed below.
Having observed the process until time £,, we estimate A by X(£,)/&,.

To understand the choice of r(4), assume temporarily that r(4) = r for some
fixed positive r. Then, with the notation E[Y; A] = [, YdP (forA € ¥ and Y arv
defined on (2, ¥, P)), we have

AE(X(gA)/gA - >‘) > AE[(X@A)/& - A)Z; §4= "]
= Ar 3 RS Ar)ze_"’%,'!'—)f = AYe N

for all values of A larger than r3, where we used [x] to denote the integer part of x.
Now, if the procedure is to have regret bounded in 4 and A, the minimal sampling
time, r, must be an increasing function of 4. In what follows, we assume (unless
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otherwise stated) that r(4) satisfies the following

(i) a(e) > 0 Ve > 0, where a(e) = inf,, . r(4).
(i) r(A) is bounded on bounded intervals.
22) (i) r4)is an eventually increasing function of 4.
(iv) r(A) < A>3 for all large values of 4.
(v) r(A)/log A — oo as ATco.

ReEMARK. The conditions above give a great flexibility in the choice of r(4). As
a practical rule one might choose r(4) = A? for some fixed p € O, %]. Guidelines
for the choice of p can then be determined by a Monte Carlo study, when
consideration of the ‘relevant’ parameter space (the parameter space, in practice, is
always bounded) is taken into account.

3. Assumptions, notation and preliminaries.
(@) In order to exclude from our analysis the case where (AA\) > o but
min(4, ) — 0, we assume that 4 > e and A > ¢, where ¢ > 0 is arbitrary.
(b) The product AA appears very often in the computations and, for con-
venience, will be denoted .
(c) A word about our use of o(-) and 0(-) with functions of two variables is in
order. For such a function f(4, A) and any real number k we write
f(4, ) < O(¢™*) iff lim sup (AN)*f(4, A) < oo,
(A, ) < o(y~%) iff lim sup (AA)*f(4,A) <0
f4,0) = 0(4’_,() iff | A(4, A)| < 0(4’_")’
A4, 0) = O(y™*) iff | (4, M| < o(¥ 7).
The limsup above is taken for (4A) — 0 on (4 > &) N (A > ¢). Also if f(4, A <
o(y %) for all k > 0 we write f(4, A) < o(y~*). Similar notation are used, when
needed, for functions of only one variable.
(d) If f(4, M), g(4, A) are two functions satisfying f(4, A) — g(4, A) = oy~ %)
we shall write f(4, A) ~ g(4, A).
(e) Since the process {X(#); ¢ > 0} is continuous from the right, nondecreasing,
and has unit jumps, the following holds:
@) On &, > r(A), X(E) = A7'E]. .
(ii) &, assumes its values in the set {r(4)} U {[r(4), ©) N {ry, rp, - - - }}, where
ro=(A),i=1,2-- .
(i) On &, > r(4), [£, > f]=[X(E) > A7),
(iv) If 0 <s < £ then, [s < &, < f]=[X(s) <47'F].
(f) For ¢ > 0 we denote the o-field o[X(s); 0 <s <] by &,. If T is a ST, the
o-field %, is the collection of all sets prior to T (4 set 4 € % is said to be prior to
Tiff AN[T <t €Y, forallt > 0).
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(g) In the sequel, we shall use the following application of Markov’s inequality:
if X is a nonnegative rv and a > 0 is a real number, then for all # > 0 we have

3.1 P{X >a} < e %Ee®X,
P{X < a} <e®Ee~ %

(h) The subscript A (as in P, (an event) or E, (a rv)) will mean “under the
assumption that A is the true value of the parameter”. However, if there is no
ambiguity the subscript will be omitted. We shall often use the above (mainly e(i)
and g) without repeatedly citing them.

4. Analysis of the regret (large values of V).

LemMa 4.1.
(i) For every A > 0and A > 0, P\(§, < o) = 1.
(i) For0<a <l,asy—->00on(4d>e)N (A > e), we have

Pyt < ay?) = o(¥™).
Proor. Temporarily denoting r = r(4), we observe that for all # > 0 we have
P(£, < ay?) < P(X(r) < A™Y) + SP(X(r) < A7'r})
< exp{047 ' + Mr(e™? — 1)} + Sexp{047' + Mre™? — 1)}

where the summations above (and below) are on the set {i; r <7, < anp%}. It is not
difficult to verify that, for all sufficiently large values of { and for @ satisfying
0 < 2(1 — a?), max,[04 ~'x? + Ax(e™? — 1)] subject to r < x < ayt is attained at
x = r. Choosing 8 = 1 — a?, we get

41) P(r < <ayi) < (1+31) exp{(1 — a)A47' + Ar(e=! — 1)}
<(1+ A_laslP%) exp {(1 — a4~ + Ar(e* ! = 1)}

Now, from (2.2) (iv) we see that the last expression is o(y ~ ) provided )\r(A)(e"‘z‘l
— 1)+ klog A + k log A approaches — oo as (A\) > o0 on (4 > €) N (A > ¢), for
every positive k. However, this is easily seen to be the case upon observing that
Ar(4) < 1ha(e) + 3er(4) on (4 > €) N (A > ¢) and then using (2.2) (v). From this
the proof of (ii) follows. The proof of (i) is an immediate consequence of the strong
law of large numbers (SLLN), thus the lemma is proved.

LemMa 42. On l(A >l N >e),as ¢y —> o0 we get
() M E\[E, - )/ =00 k=12-""-,
() ExE, /v <0 k=1,2--- .
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Proor. For (i) we write

g - vi]”
L——] = /5P

112k

gA - \PE
ys
= 2 fEu* T P(8, > y7 + wh?)du

42 E >y|\dy

ye

+2k [P P(g, <y — wpi)du = I + II, say.

To bound I, we observe that for all § > 0
@3) Pt > i+ wp) < P[x(¢%+ wps) > A4~ (y7 + u¢:‘)3]

< exp{ —BA"(\IJ% + uxp%)3 +A(x[/% + u\p%)(eo - 1)}

= exp{(e? — 1 — B)AY? — 3Gurys

—30uPA — MY 5 + Mru(e® — 1)}
Choosing § = A‘%\p‘%, we see that § < e*%¢—%—>o as Y — o0, so we get
i) (—1-0Mi=(’—1—-0)8"2=1+0o()asy—> .
@.4) (i) —3ubAps = —3uhr.
(i) wApi(e? — 1) < uhps260 = 2ul?, for all large y.

Applying (4.4) to the appropriate terms on the right hand side of (4.3), we see that
the right hand side of (4.3) does not exceed exp {3+ o) — Azu}, as Y1 o0. Hence,

(2k)! exp(2 + o(l))
Ak

4.5) I< 2ke%+"(')f3°u2""e"‘i“du

For II of (4.2), let 0 < § < 1 and write

(4.6) I < 2k u®'P(§, <y — uﬁ)du
+2k f“;;;u”‘ 'P(£, < ¥ — wpi)du = I + 1V,

say. ,
From Lemma 4.1(ii) we have
4.7 IV < 2kp*2P(5, < (1 — 8)97) = o(¥ ™).

For III of (4.6), let y be such that § <y < 1, then, again by Lemma 4.1(ii), we
have

1
(4.8) 1 ~ 2kf8“"u2"“P[(1 - y)\p% <t < 4,% - u\lz%]du.

Let r=(1 — y)‘p% and s = \p% - u\p%. Then the event in question implies that
Y(?) = A"t 'X(7) < ¢~ 's? for some ¢ € [r, s]. The right hand side of (4.8) is thus
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bounded above by
1
(4.9) 2k + f3¥° uz"“P[max,e[,,,](l -Y@)>1- \p"sz]du
1 m
<2k + f?""‘uz""P[max,E[,,s](l — Y(0))" > (wp=3)" ]du,

where we used the fact that for u € [0, &3], 1 — ¢~ s> > uy~%. Applying the
maximal inequality to the backward submartingale (1 — Y(£))*", the right hand
side of (4.9) can be bounded above by

1
(4.10) 2k + Y™/ ey —2m=R-1E(1 — Y(r))*"du
1
= 2k + Y™/ () TP0(() ") w20
=2k +0(y~"/?),
for all m > k. Combining (4.8) through (4.10) we get
(4.11) IIT < 2k + o(y~>) = 0(1).
Expressions (4.2), (4.5), (4.6), (4.7) and (4.11) combine to prove (i). For (ii) we write
1Nk Nk :
E(6/43)" = 5P| (64/93)" >y ]a
< 2%+ kfgur P X(wy7) > 47wy |du
< 2%+ kfpurlexp{M[ —u® + u(e — 1)] }au = 0(1),
which completes the proof.
The following lemma is similar to related results contained in Y. S. Chow, H.
Robbins and H. Teicher (1965). Nevertheless, since they deal only with sequences

of rv’s and since the proof for the homogeneous Poisson process is short, we
present the proof here.

LemMA 4.3. Let U(t) = X(£) — At, V(£) = (X(¢) — At)> — At and W(t) = (X(?)
— At)® = 3A(X(f) — Af) — At. Then,

@) U(), V(¥), W(t) are all martingales w.r.t. %, t > 0 and E\U(f) = E,\V(t) =
E,W(t) = 0.

@) {UQ©), UE)), {V©O), V(£)), {W(0), W(,)} are all martingales w.r.t.
{%> %}

ProoOF. The proof of (i) is a straightforward computation and will be omitted.
To prove (ii) we have to verify the conditions of the optional sampling theorem. We
demonstrate it for W(§,); the proof for V(§,) and U(£,) is analogous and will be
omitted. Thus, we need only show

(@) E|W(E| < oo,

(b) liminf, . ¢ <4l W()|dP = 0. From the Schwarz inequality, we have

Sl WP < (EW(YPLE, > 1])7.
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Now, E(W(t))* = O(t*) for some positive k and
P[g, >t] <P[X(t) >A7'P] <exp{ A7 + (e — 1)} = o(+™*);
thus (b) follows. The proof of (a) is standard and will be omitted.
LEMMA 44. On (A > e) N (A > ¢€), as Y —> o0 we have
E\i <y + o(y™®), for i=1,2,3.
ProOF. From Lemma 4.3 we have
AE¢, = EX(§,) = E[X(r(4)); & = r(4)] + AT'E[£2; £, > r(4)]
~AT'EE}
(by Lemma 4.1(ii)). Hence, YE, &, ~ E, 2. Also the Jensen inequality implies that
(&) < EE < (B&) ~ (WEE)T.
Thus, the result follows.
LEMMA 45. Asy —>o00,0n (4 > &) N (A > ¢€), we have,
AYT3 B, (N — X)) = 0().

Proor. From Lemma 4.3(ii) we have

(4.12) E(\y — X(£) = —3AE&,(X(£,) — AL,) — AEE,
and from Lemma 4.4
(4.13) AYTINEL, <yTi(YT + oY) = 1+ o(y~*).

Also, from Lemma 4.3(ii), the Schwarz inequality and Lemma 4.2(i), we have
(4.14) AP~ BNEE(XE) — M)l = 3973 |E(E, — v3)(X(E,) — AEy)]
<3073 B(e - WV EGKG) - M)

) 1
< 3YTHATYIO(DA(YE + o(y ™)) ]
= 0(1).
Applying the triangle inequality to the absolute value of (4.12) and using (4.13) and

(4.14) the result follows.
We are now ready to give the

PrROOF OF THEOREM 1.1. From Lemma 4.4 we have A(EL, — ¢7) <
e “'Yo(y~). Thus, we need only show that on (4 > &) N (A > &) as Y — o0, we
have

(4.15) MAE\(X(4)/80 — N — 47} < 0(1).
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Write

(416) N[ AB(X(€,)/4 — N - 7] = E[(f - 1)(X(£A) - MA)Z}
A
+E[X(£A) - >‘£A]2 - A‘ﬁ?
then from Lemmas 4.3(ii) and 4.4 we have
E[X(§,) — M, ] — M2 = N(EE, — ¥2)
<e No(y™=) = o(¥ ™).

It remains to show that

(4.17) E ( g—‘ﬁ - 1)(X(£A) -, <‘0(1).

A

From Lemma 4.1(ii) we have, for 0 < a < 1,

(;’i - 1)(X(£A) Y

A

(418) E

~ E[ (—"’; - 1)(A-‘£3 —A)S g > aus

= A7E[(¥ — &)’ &4 > ov?]
= ATE[() — AX(E)/50)"s 4 > av?]

= ayiE %0\& — XE) £, > it .
A

Using the mean value theorem (MVT) on U ~3 we write
3
(4.19) L - s (T
&
where d lies between £, and ;[ﬂl. Applying (4.19) to the right hand side of (4.18) we
see that it can be written as

(4.20) A‘I"-%E[(MA ~ X&)% £, >mlﬁl]
~34E[d (g — v)0d — X &4 > v
= I + 1], say.

From Lemma 4.5 we have
(4.21) : |Z] = 0(1).
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For the computation of II, observe that on §, > a\lﬁl we have d > a\pil and also
1
sign (2 — §,) = sign (A, — X(§,)). Therefore, we get

@2) I 3: E[ (8 — ¥2) M0 — XE)s &4 > vt ]

= — 2[5 - )0k - £ £ > o]

a4ll/4
( 114
=§}\—42E G-v (g_,,l) (g—"+1) £y > ay
a ‘P? ‘PE ;pz
( 1316 % 12 |3
[T
a \1,2 ] ‘[ﬁ
: 1273 .
X E(—A— + 1) [P(g,, >a¢%)]z
Y2 .
3A2

- ?[A_SO(I)]%O(I) = 0(1).

Here we used the Holder inequality and, for the last step, Lemma 4.2. Relations
(4.20)-(4.22) combine to prove (4.17) and thus the proof of the theorem is
completed.

5. The case of i.i.d. Poisson rv’'s. Let Y,, Y,,- - - be a sequence of iid. rv’s
having Poisson distribution with mean A > 0. For the problem of estimating A we
choose the estimator X7Y;/n (whenever n observations are available) and we
assume the loss plus cost function (1.1). The BFST is either [ l] or [y? l] + 1, where
[x] denotes the integer part of [x] Nevertheless, we shall take the BFST to be :,bz so
that the resulting ‘risk’ is 24/2 Note that the ‘risk’ associated with either [{2 ] or
[\[/ ]+ 1 is always > 24/2, which makes our bounds for the regret somewhat
conservative. It follows that the regret function p, (4, A), for a ST 7, is the same
as defined in Séction 1. The model we consider here is a discrete analogue of the
continuous case described in the previous sections and thus, naturally, we will use
some of the results obtained earlier.

Let {X(?);t > 0} be a HPP with rate A > 0; then, restricting the process to

integer times, the resulting sequence {X(n); n = 0, 1, - - - } has the same probabil-
ity law as the sequence {Z7_oY;n=0,1,---} with Y,=0. We therefore
assume in what follows that the sequence {27_oY;; n =0, 1, - - } emerged from
the HPP {X(?); ¢t > 0} restricted to the time points O, 1, 2, - - - . Naturally we

then write X(n) = 23Y; and we continue working within the same framework laid
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out in the previous sections. In particular, the assumptions of Section 3 apply to

this section as well.
We define the following family of ST’s. For each 4 > 0 let

(5.1 n, = first integer n > r(A4) for which X(n) < A~ 'n,
where r(A) is given by (2.2). It is clear from the SLLN that for every A > 0 and

A >0 P <o)=1
Before proving Theorem 1.2 we need two lemmas.

LEMMA 5.1. As in Lemma 4.3, let U(f) = X(1) — M, V(1) = (X(£) — A1) — L.
Then {U(§,), U(ny)}, {V(§4)s V(ny)} are martingales wr.t. (%, , ¥, }.

The proof is a standard application of the optional sampling theorem and will be

omitted.
In the following lemma we consider the rv

zZ¢,) = EA("?AI(’}&) - &,
LEMMA 52. On (4 > &) N (A > ¢), as Y — oo we have
E[ZE)] < b+ o(y™=)

where b is an arbitrary real number satisfying b > 3.

Proor. To simplify the notation we shall use the following abbreviations:
§=4§, n=n, Z=2¢,) From Lemma 5.1, E[X(nm) —An|%;] = X(§) — A,
therefore

AE(1|F) = E(X(m)|F) — X(§) + A&
>E(A7'(n—1)’F,) - A7E + M
> A7V E(n - 1|5))’ — 47'€ + AL
Hence,
YE(n — 1|%) > (E(n — 1|F,))’ — £ + v& — 4,
from which we conclude, after some elementary algebra, that
(5.2) 0>(Z-1D)(E+Z- 10+ @E+Z-1i+¢)—yz
Now, on Z > s > 1 (5.2) implies
v s

s—1

SYmTr > (E+Z P+ G+ Z - DE+E
S@E+s—1)2+(@E+s—DE+E2>382+3(s — )&
Hence, for s > 1, we have

(5.3) P(Z >5) < P(3£2 +3(s = DE << = 1 ¢).
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Using this and the fact that s/(s—1) is a decreasing function of s we have

EZ' < bi +ifPs""'P{Z >s)ds

<b+ iffsi-lp{3g2 +3(s — 1)E < — : ¢}ds
<b + if,°,°si"P{£2 +(s—1E< ——-———3(bb_ 0 xp}dv

s

(5.4) '
=b"+ i3 (s + 1),-—1p{§ A _%+[(%)2 * 3(bb— l)l‘sz}dg

i . o0 1 1 i— . b % 1
= b' + lf(b_l)/2¢i(24/2u + l) IP{g < (_u +[u2 + mjl )‘Pz}du.

Now, (—u + [u? + (b/3(b — l))]%)\[/% is a decreasing function of » which attains
the value r(A4) at

u = y/4r(4) =} <yi/a(e).

Therefore, the rightmost member of (5.4) does not exceed

1 i — —
(5.5 b+ i2"—1¢<f-'>/2ft;1f§;;¢;(u +27Yy2 'P{g < _b-1

2
1
2
}du
b—-1

<bF+ i2TNYED2(Y1 fa(e) + ey "'P{g < -2

2
1
(b—1)2+ b z}

2 3(b-1) v
Now; b was chosen to satisfy 0 < b/3(b — 1) < 1, so by Lemma 4.1 (ii) the second
term on the right hand side of (5.5) is o(~*). (5.4) and (5.5) combine to give
EZ' < b’ + o(y ™) as desired.

+

()

+

REMARK. Using Lemma 5.2 (with i = 1) and Lemma 4.4 we get Exn, < ¥ + b
+ 0(y~*) (b >2 arbitrary). One can use, however, Theorem 2 of Starr and
Woodroofe (1968) to get a slightly better approximation. Specifically,

(56) Emy <1+ {¢+ (r(4) — 1)*P[X(n,) <A™ "> Vn > r(A)]}%

=1+ y7+ o(y™%).
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PROOF OF THEOREM 1.2. Let M, = A(t~'X(#) — A% Then, with the abbrevia-
tions § = §¢,,n = n, and Z = Z({,), we have

(7))  E{M,|%) < AE{£~X(X(n) = M)!|%;)
= AE{£72[(X(n) — A)* = M]|F;} + v{¢ T}
= M, + £ Z.
E{M,) < E{M,;} + E{4£7°Z; £ > ay?} + o(4™%),
<E{M} + a7’E(Z) + o(y™™),

where a € (0, 1) is arbitrary. Lemma 5.2 (with i = 1), (5.6) and (5.7) combine to
complete the proof. .
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