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A CONVERGENCE THEOREM FOR RANDOM LINEAR
COMBINATIONS OF
INDEPENDENT NORMAL RANDOM VARIABLES!

By N. CuristoPEIT AND K. HELMES
University of Bonn

It is shown that under fairly mild conditions linear combinations of
independent normally distributed random variables with random coefficients
tend to zero almost everywhere. The result is applied to parameter estimation in
linear regression models.

0. Introduction. Let e(n) (n =1,2,- - ) be a sequence of random variables
and xM(n) (n=1,2,- -+ ,N; N=1,2,- - - ) a triangular array of K X 1 ran-
dom vectors defined on some probability space (2, ¥, P). Consider the linear
regression model
(0.1) Y(N) = X(N)B + u(N), N=12---,
where

u(N) = (e(1), - - -, e(N)),  X(N) = (x™(1),- - -, x™(N)y
and Bis a K X 1 parameter vector. Model (0.1) describes the situation of ‘sampling
without repetition’, i.e., when the sample size increases not only are new observa-
tions added but also former observations may change in value. Mathematically
speaking: the observation matrix X(N) may in general not be considered as a
submatrix of X(N’) for N’ > N. This situation arises typically when the error terms
are autocorrelated (compare Section 2).

The sampling error of the ordinary least squares (OLS) estimate B(N) of B
(based upon the first N observations) is given by

(0.2) B(N) — B =[X(NYX(N)]"'X(NYu(N).

The question of strong consistency of the OLS-estimator then leads to the investi-
gation of the limiting behavior of sums z(N) = S¥_,x®(n)e(n) in the sense of
convergence almost everywhere (a.e.).

Sums of this type have been investigated by Chow [2] and Tomkins [6] for the
case of nonstochastic coefficients x¥)(n). On the basis of Chow’s results Anderson
and Taylor [1] have shown strong consistency of the OLS-estimator in linear
regression models with deterministic regressors and independent identically distrib-
uted error terms which are generalized Gaussian. Our Theorem 1 may be regarded
as an extension of Chow’s Theorem 2 to the case of stochastic coefficients. If
specialized to the nonstochastic case the hypotheses made in [1] concerning the
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regressor matrices are obtained. The case of stochastic regressors and ‘sampling
with repetition’ has been dealt with in [1] and [3]. However, the techniques used
there do not seem to carry over to the setting of ‘sampling without repetition’.

In Section 1 convergence of z(N) to O a.e. is established for the case of
independent N(0, o) distributed disturbances. The proof is based on the observa-
tion that almost sure convergence of z(N) to a constant—say 0—is a property
modulo stochastic equivalence. This is to say: if Z(N)(N=1,2,---)is a process
defined on some probability space (SZ P) whose finite dimensional distributions
are the same as those of z(N) (N =1, 2, - - ) then Z(N) — 0 a.e. implies z(N) -» 0
a.e. and vice versa. This follows immediately from the definition of almost sure
convergence. In Section 2 this result is applied to show strong consistency of the
OLS estimator in linear regression models with ‘sampling without repetition’.

1. A strong law of large numbers. Consider a sequence en) (n=1, 2, s )
together with a triangular array a™(n) (n=1,2,--- ,N;N=1,2,---) of
random variables defined on some probability space (2, & P) Our object of study
is the sequence of sums

(1.1) z(N) = ZN_,a™)(n)e(n), N=12"---.
The assumptions are as follows:
(A) &(1),€?),- - - are independent N(0, ¢2) distributed.
(B) a™)(n) is measurable with respect to F{e(0), - - - , e(n — 1)} (the o-algebra
generated by €(0), - - -, e(n — 1), with the convention that ¢(0) = 0), n =
,2,---,NyN=1,2,---

(©) For every & > 0 there exists a sequence of positive numbers 8, N =
1,2,- - -, such that 3%_, exp(—82/82) < o0 and S%_,P[A(N)?* > 83
< 0, where we have put A(N)? = SV_,a™(n)?.

In the proof of the theorem we shall need a powerful bound for the integral of a
simple nonanticipating functional with respect to Brownian motion. Let
{w(9}o<:<1 be a Brownian motion defined on @, {@:}KKI’ P) where {5},} is an
increasing sequence of o-fields. For a simple nonanticipating functional f let [{ f dw
denote the stochastic integral in the sense of Ito (cf. McKean [5] for these notions
and for a proof of the following lemma).

LEMMA 1. For every nonanticipating simple functional f and arbitrarily chosen real
numbers «, B

(12) Pl maxo,ci(fof dw = 5 fof* ds) > B < ™
The main result is contained in

THEOREM 1. Under assumptions (A) — (C) z(N) >0 a.e. as N — o0.

PROOF. As pointed out in the introduction it suffices to show that Z(N) — 0 a.e.
for some stochastically equivalent process Z. Consider therefore a probability space
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@, {55,}0«@, P) carrying a Brownian motion {(w(D}oci<1 With E{w()} = 0 and
E{w(2)*} = o for all # and put

- 1 1 1
= 2 —_— — —_ — —
é(n) = (n(n + 1)) [w(l s 1) w(l n)]
Since a®)(n) is measurable with respect to F{(0), - - - , e(n — 1)} there exist Baire

functions g : R" — R such that
a™(n) = gl (e(0), - - -, e(n — 1)),
n=12---,NyN=12,---,
(cf. [4]). Defining
a™(n) = g (&0), - - -, &n = 1))
we find that the process {Z(N)} with
Z(N) = 25,8 (n)é(n)

is equivalent to {z(NV)}. Relabel the tilded variables and define simple nonantic-
ipating functionals

1 1 1
= (N) LI T S
Sv(®) (n(n + 1))2a™M(n) for ¢ E[l Pl 1 — 1),
n=12,- , N;
1
= 0 for t>1—N+l.
Then
(13) J6Si(s) ds = A(N)?
and
1
(1.4) fofy(s)dw (s) =z(N) for t>1-— Nl
Fix § > 0 and define a sequence
ay = 8/83, N=12---

of positive numbers and sets
Qy =[A(N)'2 < 82).
Then
P([maxoc, <, fofy aw > 28] N Qy) < P[max0<,<1f{,f,v aw > 8 + %A(N)z]

[44
< Pl:max0<,<1(f6f1v dw — ?N'ff)fzs dg) > 8] < e—saN = e—sz/sﬁr‘
Repeating with —a®)(n) in place of a'™(n) we obtain the estimate

(1.5) P([maxg,,|fofy dw| > 28] N Q) < 2e 7575,
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Since

P[maxy, | f6fy dw| > 28] < P([maxgg, o /5 fy aw| > 28] N Q) + P(Qy),

where S—ZN denotes the complement of ©,, and by virtue of (C) the right hand side
of the inequality can be estimated by the general terms of convergent sums, it
follows from the first Borel-Cantelli lemma that

P(lim supy .| maxoc, <.lfbfi dw| > 28]) = 0.
Hence
maXyc,<lfofy dw| —>0a.e. as N - oo,

and the assertion follows from (1.4).
For nonstochastic coefficients assumption (C) reduces to the condition

S2_ e /AN < o forall >0
in Chow [2]. A sufficient condition for (C) (and often easier to check) is
(C’) For every 8§ >0 S%_,P[A(N)*log(N) >8] < co. For nonstochastic
a™(n) this simply means that A(N)? log(N) — 0.
2. Linear regression models. Let us return to the model (0.1) in the introduc-

tion. Suppose first that the x*)(n) are nonstochastic. Following the idea of proof in
[1] we write (0.2) in the form

(2.1) B(N) = B ==} 1a™(n)e(n)
with

(2.2) a™(n) =[X(N)X(N)] ~IxM(p).
Then

SN_1a™M(n)* =[X(NYX(N)]

forj=1,2,- - -, K, and the nonstochastic version of (C’) yields

-1
i

PROPOSITION 1. Suppose that in model (0.1) the regressors are nonstochastic and
assumption (A) holds. If tr((X(N)Y X(N)]™") = o(log(N)™"), then the OLS-estimator
of the parameter vector B is strongly consistent.

As pointed out in the introduction a typical situation in which sampling without
repetition arises is the transformation of a model with autocorrelated disturbances
into a standard white noise model. Suppose that in the linear regression model (0.1)
the disturbances at stage N are of the form

(23) u(N) = (e™(1), - - -, e™(N)y
with nonsingular covariance matrix $2(N), and consider the transformed model
(24) P(N)y(N) = P(N)X(N) + o(N),

where P(N) comes from

(2.5) P(NYP(N) =Q(N)~!
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and
v(N) = P(N)u(N).
Assumption (A) written down for the transformed model becomes
(A) Q(N) is nonsingular, and the transformed disturbance vector has the form
o(N) = (§(1), - - -, §(N)), where §{(n) (n=1,2,- - -) is a sequence of indepen-
dent N(O, 1) distributed random variables.

Since the OLS-estimator of B in the transformed model is just the generalized least
squares (GLS-) estimator in the original model we find

COROLLARY 1. Suppose that the regressors are nonstochastic and (A’) holds. If
tr((X(N)QUN) "' X(N)]™") = o(log(N)™"), then the GLS-estimator of B is strongly
consistent.

Let us now turn to the case where the regressors xY)(n) are stochastic. The
attempt to handle the sampling error in the same way as above, i.e., by considering
the sums (2.1) with coefficients a®(n) defined by (2.2), will not prove successful
due to the measurability condition (B) (e.g., we would have to require that a¥)(1)
be constant, which would practically lead us back to the case of constant
coefficients since a®)(1) involves X(N)). Instead, we take a sequence §(N) (N =
1,2, - - ) of real numbers and write the sampling error in the form

B(N) = B =[8(N)X(NYQN)™'X(N)]™'2(N)
with
z(N) = 8(N)X(NYP(N)Yo(N) = Z]_,a™(n){(n),
a™(n) = 0(N)[X(N)’P(N)’]jn.
Suppose now that P as defined by (2.4) is chosen lower diagonal-—which is

always possible—and that for this specific P the transformed disturbance vector v
satisfies (A’). Then

at™(n) = O(N)Z7_\P(N),xM(i), j=12,---,K.
Hence, in order to comply with the measurability condition (B), it suffices to
require that x"Y)(n) be measurable with respect to F{{(l), - -, {(n — 1)}.

Assumption (C’) takes the form

@) 233_1P{0(N)2[X(N)’SZ(N)"X(N)]j,- log(N) > 8} < oo for every & > 0.
By Tschebyscheff’s inequality a sufficient condition for (i) to hold is:

(i) The sequence O(N)’E {[X(NYQUN)"'X(N)E;} (N = 1,2, - - ) is bounded
and

©_8(N)* log(N)* < co.

The last property is trivially satisfied for sequences of the form #(N) = N ~# with
B > 1/2. With the final assumption

(i) The sequence [A(N)X(NYQUN) 'X(M)]"' (N =1,2,- - - )is a.e. bounded,
we can formulate
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PROPOSITION 2. Suppose that for the linear model (0.1) with autocorrelated error
terms (2.3) a lower diagonal matrix P satisfying (2.5) can be found such that (A’)
holds and x™(n) is measurable with respect to F{{(1), - -+ - , {(n — 1)}. If (i) and (ii)
are fulfilled for some sequence O(N) (N =1,2,- - - ) of real numbers, then the
GLS-estimator of B is strongly consistent.

An important example where this set of assumptions is satisfied is provided by
models emerging from autoregressive processes whose error process {&(n)} is itself
generated by an autoregressive scheme with independent N(0, 1) distributed dis-
turbances {(n) (and with the characteristic polynomials of both processes having all
roots inside the unit disk). In this case the matrix P transforming u(N) =
(e(), - - -, e(N)) into o(N) = (§(1), - - -, §(N)) is lower diagonal, and the re-
gressors x)(n), which are just the lagged values of the observation process, are
F{&(), - - -, §(n — 1)}-measurable provided that the initial values are constant.
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