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ESTIMATION OF STARSHAPED SEQUENCES
OF POISSON AND NORMAL MEANS!

By MOSHE SHAKED
Indiana University

A vector p = (py, - -, M) is said to be upper [lower] starshaped if
Pptl 2oy 20[0< .y < B, ]m=1---,n— 1, where ji, is a weighted
average of p,- - -, p,. Obtained is the maximum likelihood estimate of p

when the y,’s are the means of n Poisson or normal populations and p is known
to be starshaped. The method is applied to obtain estimators of IHRA (increas-
ing hazard rate average) distribution functions.

1. Introduction. Let p = (p,, - - -, u,) be a vector of n unknown parameters
and let w = (w,, - - - , w,) be n associated weights. Consider p and w as functions
on the set {1,2,---,n}. The function (or the vector) p is called isotonic if
w < py, < - -+ < p, and antitonic, if u, > p, > - - - > p, (Barlow et al. (1972)).
Denote p,, = 37 ,w,u,)/Z7 ,w; and i, = 0. We say that p is upper-starshaped if
1 2 Py m=0,1,-- -, n— 1, and lower-starshaped if 0 < p,, ., < @, m=
1,2,---,n— 1. Note that if w,, >p > 0 (respectively, 0 < g, < W), i =
1,2,- - -,n— 1 then p is upper-starshaped (respectively, lower-starshaped).

Starshaped vectors arise in a variety of applications. In reliability theory one can
be induced by any IHRA distribution ¥ (Birnbaum, et al. (1966)). Such distribution
satisfies
(1.1) t~'R(r) =t7'[ —log(1 — F(1))]1¢ > 0.

A lifelength of a coherent system has an IHRA distribution if each of its
independent components has an IHRA distribution—in particular, if each compo-
nent has an exponential lifelength. Let w, >0, i =1,-- - ,n be n lengths of
consecutive time intervals, w, = 0, and define p, = w,”'[R(Z}_ow)) — RCE!Zow)],
i=12---,n,then pis upper-starshaped. Similarly, if F is a DHRA distribution
then p is lower-starshaped. The method that is developed in Section 3 is applied in
Section 5 to estimate IHRA distributions.

The following paradigm includes a large class of potential applications for the
results derived here. Consider a species consisting of k£ individuals each of which
has a quantitative characteristic of interest X. Denote the expected value of X of the
population in generation 1 by g, > 0. Assume that £ new individuals are produced
in each generation and are added to the existing population and that the character-
istic of interest X is ‘improving on the average’—that is, let u, > u, be the expected
value of X for each offspring of the first generation, thus the expected value of X of
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the population in generation 2 is i, = %( u; + ). The expected value of X for each
offspring of the second generation is u, > 1, and the expected value of X of the
population in generation 3 is ji;. In general assume the expected value of X for each
offspring of the ith generation is g, , > jz; the expected value of X in the (i + 1)st
generation is ;. Clearly p = (p,, - - -, p,) is upper-starshaped.

In Section 3 an explicit expression for the least square estimators of p as a
starshaped parameter vector is derived; these are also the maximum likelihood
estimators (m.l.e.’s) if the y,’s are the means of » normal populations. In Section 2
the m.l.e’s when the p’s are the means of n Poisson populations, are obtained
explicitly. These two cases were the only ones we could work out explicitly. In
Section 4 we discuss the reasons for our good luck with the normal and the Poisson
extremum problem and conjecture a general method of obtaining starshaped
m.l.e’s. Some applications are discussed in Section 5.

2. The Poisson extremum problem. Let y,, - - -, p, be the means of n Poisson
populations and assume p is upper-starshaped with respect to the positive integer
weights w,, - - -, w,; that is,

BEC, ={(p s ) tmsr P Hym=0,1,---,n~1}.
From a sample X;;, - - -, Xowp i =1, 2, - - -, n designating the ith population, the

m.l.e. p* of p is to be obtained. The likelihood function is

n w,g; n W, -1
(2.1) L(p) = (II7-, 1®) exp{ _Wiau'i}Hi=l(Hj'—l’Y1j!) >
where g, = (Ef'.,X,j)/ w,i=12---,n Itis easy to see that this problem is
equivalent to
(22) maximize 37_,(g; log 1, — w)w;
subject to p € C,.

Throughout the rest of the paper the following notations and conventions will be
used: M(m) = Z7_ w;w,, W(m) = 27w, i, = M(m)/ W(m), similarly G(m), g,
M*(m) and ji} are defined; M(0) = j, = G(0) = g, = M*(0) = pp3 = W(0) = 0. By
convention 0/0 = 1 and a/0 = o0, a > 0.

The next theorem gives an explicit expression for the m.le. p*. In practice,
substitute the observed g’s in (2.9) and (2.10) to obtain p*. To gain some insight
into the nature of the solution of (2.2) note that u* can also be obtained using the
following algorithm: if

(2'3) gm+l>gm’ m=1929"'9n_1
then py = g,,m=1,2,- - -, n. If (2.3) does not hold then substitute in the object
function of (2.2)

(2.4) Pom 41 = Pl

for every ‘violation’ in (2.3)—that is, for every m such that g, , < g, substitute
(24) in (2.2) and thus obtain a function of » — v variables (v is the number of
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violations) and maximize it by equating its partial derivatives to zero. The explicit
formulas (2.9) and (2.10) have been thus obtained.

To illustrate, consider the problem (2.2) with n = 3 and assume g, > g, and
g3 < g;. According to the above algorithm substitute in the object function of (2.2)
by = (W, + wyp,)/(w, + w,). Now maximize the bivariate function

(25) (g logp — w)w, + (g, log puy, — w)w,

+ +
+[g310g(wlﬂl WZ:UQ)_(WI""I Wz#z)]wy

w, + w, w; + w,
By equating the partial derivatives to zero obtain
g g
pt = 8173’ pr = 8273
&2 &2
and
B = &
in agreement with (2.9) and (2.10).
Before stating Theorem 2.1, a sufficient condition for a vector u to be a solution
of (2.2) is introduced.

PrROPOSITION 2.1. If a vector u satisfies

(2.6) ueC,

(2.7) e 1Wm8m = Zm 1 Wil

and

(2.8) 2= 1Bt/ U — Pn)Wm < OV € C,

then u is a solution of (2.2).

ProOF. Since for everyy > 0, logy < y — 1 it follows from (2.7) and (2.8) that
(g log w — w)w, — Z7_ (g log u; — u)w;, < OWp € C,;
that is, u is a solution of (2.2). []
Note that as in Barlow, et al. (1972), page 44, it can be shown that a solution u
for (2.2) must satisfy (2.8). To see this, note that if p € C, then also pp € C,

whenever p > 0. Thus 3%_,(g; log py; — pu,)w; achieves its maximum as a function
of p at p = 1. On setting the derivative at p = 1 equal to zero (2.8) is obtained.

THEOREM 2.1. Ifg, > 0,i=1,2,- - -, n, then a solution of (2.2) is:
(29) it = max( g BTy min(L, 5/ 1),
m=12---,n-—1,
(2.10) pr = max(g,, 2,)-

The solution is unique.
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ProoF. The proof is written under the assumption that g, > 0 (then g; > 0,
i=1,---,n). Obvious, but tedious modifications are needed when g, = O (that is,

g = 0 for some i) and we omit it.
To prove that p* of (2.9) and (2.10) satisfies (2.6) use Identity (A.1) to obtain, for
2<I1<n-2,

B =2 Wbt/ W(1)
=9, (2.10)( w(l ))_l
X [zlr;;lwm max( g, g_m)H§=m+1 min(l, g_,/g_,—l) + w, max(g,, g_l)]
X0 4y min(l, £/ Z;-1)
= (a.ng min(l, §1+1/§1)Hj=1+2 min(1, g_j/gj—l)
Similarly, ¥, = &.,1l7-,+, min(l, g;/g;_,). Using these expressions it is easily

seen that if g, < g, then u* < ¥, and if g, > g,,, then g* = i ;. Thus, for
2<I<n—-2
@11) By >
The proofs of (2.11) for / =1 and / = n — 1 are similar. Inequalities (2.11) show
that p* satisfies (2.6).

That p* satisfies (2.7) follows from Identity (A.1) with / = n.

For real numbers a and b define I(a <b) =1 if a <b and I(a <b) =0 if
a > b. To prove that p* satisfies (2.8) use Identity (A.3) with / = n to obtain

2':n=1(gmﬂm/au7: - :u‘m)wm

n— Em n g_.-l
=.9), (2.10)2m-ll{wmau'm max_(g - F; )Hj=m+1max(1’ jg )}
m> &m /]
&n
+wu,————— — 2" _ W,
"rmax(g, g) T

_ _ (W, W(m—1)
=(A.3)2’:n—ll{1(gm < gm—l)—G(;)—__

_ _ ) g
><(lu‘m—l o :u‘m)(gm—l - gm)Hj=m+1 max(l, J_ d )}

w,W(n —1)
G(n)
The last inequality holds since f,,_, < @, m = 1,2,- - - | n. This completes the

proof of the first part of the theorem.

To prove uniqueness of the solution let p* and p** be two solutions of (2.2).
Substitute p = p* and u = p** in (A.5) and then p = p** and u = p* and add the
two resulting inequalities to obtain S(pw* — u*)*(w*p**)” 'w,g, < 0. Thus p* =
pr*i=12,---,n [

+I(gn <g_n—l) (ﬁn-l - p’n)(g_n—l - gn) <O0.
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The next theorem gives the m.le. of a lower-starshaped p. It is clear that the
m.le. p* is the solution of
(2.2) maximize X7_,(g; log p; — p)w,
subject to p € G = {(py, * * * s ) oy > My >0, m=1,2,- -+, n}.
THEOREM 2.1'. Ifg, >0andg > 0,i=2,- - -, n then a solution of (2.2)) is:
(2.9') IL,: = m-ln( 8> g_m)Hy-m+l max(l, g_j/g_j_l)’
m=12---,n-1,
(2.10) pr = min(g,, &,).
The solution is unique.

The proof of this theorem parallels the proof of Theorem 2.1 and is omitted.
A slight modification of formulas (2.9°) and (2.10") is needed if g, =0. Let
ip = min{i : g > 0}, then for m > i, p* is given in (2.9) and (2.10") and uf

== P'i:-l = Mi:‘

3. Least squares estimation (the normal extremum problem). Let p, be the
mean of a normal population whose known variance is oiz, i=1,2---,n.
Assume that p is upper-starshaped with respect to the weights w where w, is a
positive integer multiple of ¢,7%, i =1,- - -, n. From a sample X;,- - -, X,;
(where w = w,0?), i = 1, - -, n, designating the ith population, the m.le. p* is

obtained. Let g, = w,~ 'Ef;lX,.j, then g is a sufficient statistic for p. The likelihood
function associated with g is

n —1/2.. 1o,
(3.1) L(p) = { i=1[(27’°i2) / Wil/z]} exp[ - 52i=1(gi — w)’w|-
Clearly p* is a solution of
(3.2) minimize 37_,(g; — F'i)zwi

subject to p € G, (the notations of the preceding section are used here, too).
Theorem 3.1 gives the unique solution of (3.2) when

(3.3) g >0, i=12---,n;

thus, if, in a particular experiment, some of the g’s are negative such that (3.3) does
not hold then (3.9) and (3.10) do not give p*. However, in many applications,
distributions of nonnegative random variables are approximated by normal distri-
butions—then g; > 0, i =1,2,- - -, n, hence (3.3) holds and (3.9) and (3.10)
apply. Further applications of Theorem 3.1 are given in Section 5.

In practice p* is found by substituting the observed g’s in (3.7) and (3.8). To
throw some light on the nature of p* note that p* can be obtained using an
algorithm similar to the one described in Section 2: if

(34) gm+l>g_m’ =1’2""an_1
then u» =g, m=1,2,- - -, n If (3.4) fails, substitute in the object function of
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(32) wp4+1 = i, for every m that violates (3.4) and get a function of n — v
variables (v is the number of violations). This function is maximized by equating its
partial derivatives to zero. Here the computations are neater than those in Section 2
since here one gets a set of n — v linear equations.

To illustrate, consider the problem (3.2) with n = 4 and assume g, < g, 83 > &,
and g, < ;. According to the above algorithm substitute in the object function of

(32) py = pp and py = (wypy + wypy + wyps)/(wy + wy + wy) = [(w; + wyp, +
w3 3]/ (W) + w, + wy). Now maximize the bivariate function

(3.5 wi(g — I“l)2 + wy(g, — #1)2 + wi(g; — F‘3)2

+W4{ 8a _[(Wl + w)p + Wsﬂs)]/(wl +w, + W3)}2‘

By equating the partial derivatives to zero obtain

B3 =83 — wy( W(4))_1(§3 - £4)
pt =g - wz(W(Z))_l(gl - &)~ W4(W(4))_1(§3 - 24)
and
B =i
pi = &

in agreement with (3.9) and (3.10).
Before stating Theorem 3.1 a necessary and sufficient condition for a vector u to
be a solution of (3.2) is given.

PROPOSITION 3.1. A vector u is the unique solution of (3.2) if and only if

(3.6) ueC,

(.7 2io(g — w)uw, =0
and

(3.8) Sn_(g — w)ww; < 0Vp € C,.

PrROOF. Since G, is a convex cone the result follows from Theorems 1.3-1.5 of
Barlow, et al. (1972). []

For every real a denote a* = max(0, @) and a~ = min(0, a) = (—a)™*.
THEOREM 3.1. Assume that (3.3) holds, then a solution of (3.2) is:
(3.9 P = max( 8m> g_m) - 27=m+1wj( W(j))_l(g_j—l - g_[)+ >
m=12-:--,n—1,

(3.10) pr = max(g,, &,)-

The solution is unique.
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Proor. First note that when either g, > g, or g,, < g,

(3.11) max(g,, g,) — W(m — )(W(m) " (g,_, — 8.)" = g,

Thus for m <n — 2
Srawpt = 27l w, max(g, g) — ST wEr (W) T w5, — g) "
— S WS (WO) wi(go, — g)"
= 37w max(g, &) — ZPNWG - Dw(W0U) (52, - g)°
=2 Wm)W() w5, — g)"
= =7 w[max(g, &) — Wi — D(WE) (8-, — &) "]
— WM e (W) (51— 8)" -
Using (3.11),
B = &n = Wt (W + 1) (2 = )" — e (W) (51 — )"

Using (3.9),
(3.12)

I":H—l - I'_"r: = max(gm+1’ g_m+1) - g_m + wm+1(W(m + 1))_1(g_m - gm+l)+ .
If 8,41 > Gpney it is clear that p%,, — % > 0. If g,,, < Z,,, then p%,, = k.
That uF > p¥_, is shown similarly, and the proof that pu* satisfies (3.6) is complete.
Using Identity (A.7) note that
2’rln=l(gm - “r:)”mwm
= 2:‘"_=llwm“’m|:(gm - gm)_ +2;=m+1w_vj( W(j))_l(g_j—l - g_/)+]
(3.13) +W,,(8, — 2,)”
=anSmetl(Zn-1 > )W, W(m — 1)
(W(m))_l(g_m—l - gm)(ﬁm—l - “’m) <0
where the last inequality follows from the restriction on w. Thus p* satisfies (3.8).
To show that p* satisfies (3.7) note that if g, _, > g, then from (3.12)
(314) ﬁ':—l - F7: = g_m—l - wm(W(m))_l(g_m—l - gm) - gm =0.
Substitute p* for p in (3.13) and use (3.14) to obtain that p* satisfies (3.7). [
If it is known that p is lower-starshaped then the m.l.e. is the p* that
(3.2) minimize 37_,(g; — F'i)zwi
subject to p € C,. The next theorem, the proof of which is similar to the proof of
Theorem 3.1 gives p*.
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THEOREM 3.1'. Assume g, > 0,i=1,2,- - -, n, then a solution of (3.2') is:
(.7) o = min(g,, £,) = s (W) (51 — g) 7,
m=12---,n—-1,
(3.8) pr = min(g,, £,)-

The solution is unique.

4. Discussion. Both solutions given in Theorems 2.1 and 3.1 can be obtained
by similar algorithms that were described above. According to these algorithms,
one substitutes u,,, , = i, in the objective function whenever g, , ; < g,.. One then
has a function of m — v variables and one gets the desired solution p* by equating
partial derivatives to zero.

Maximization of expressions such as (2.5) and (3.5) usually reduces to solving
n — v equations with n — v unknown. It is fortunate that in the two cases which
are discussed in this paper the solution p* can be obtained explicitly.

Once the explicit expressions for the p*’s are given one can proceed as in the
proofs of Theorems 2.1 and 3.1 to show that the p*’s are indeed the maximizing
constants. However, in problems such as (4.1) and (4.2) below we have not been
able to obtain explicit expressions for the constants that maximize functions such
as (2.5) and (3.5). Thus, we have not been able to show that an algorithm such as
described above applies to problems such as the “geometric extremum problem”:

4.1 maximize 27_,[ g log g, — (1 + g;) log(1 + p)]w,
subject to p € C,. And the “gamma extremum problem”:
4.2) minimize 27_,[log y; + &/ W,

subject to p € C,.
We conjecture, however, that such an algorithm applies to (4.1) and (4.2), too.

5. A numerical example and an application. Clevenson and Zidek (1975) give
the 36 numbers of oilwell discoveries in Alberta for the 3rd month of each half year
from 1953 to 1970 (Tables 5.1 and 5.2). They assume that each of these random
variables has a Poisson distribution. The accumulated experience in oilwell dis-
coveries throughout the years may be expressed by the assumption that the
parameters vector A = (A, - -, A3) is upper-starshaped (this assumption is
weaker than the possible alternative assumption that A\; < A, < - - - < A4¢). The
m.le. A¥*, computed from (2.9) and (2.10), is compared in Table 5.1 with the
unrestricted m.l.e. X. To be able to compare the performance of the two estimates
using the loss function 3% (A, — A,)%, where A is some estimate of A, we need to
know the actual values A, i = 1,- - -, 36. Clevenson and Zidek (1975) give a
vector of “actual values” which is not upper-starshaped. Transforming it to an
upper-starshaped vector using (2.9) and (2.10) with g; = A; (the A; of Clevenson and
Zidek (1975)) and w; = 1, i =1, - - - , 36 obtain the “actual values” A;’s in Table
5.1. It is seen that the loss incurred using A* is much smaller than the loss using X.
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Comparison of X and an upper-starshaped A*
as estimators of population monthly means

TABLE 5.1

for 36 selected months.

i X; A A X, =AY A - N
1 0 .49 0 .2401 2401
2 0 49 0 2401 .2401
3 0 .49 0 2401 2401
4 1 58 .36 1764 0484
5 2 51 12 2.2201 0441
6 1 51 .36 .2401 0225
7 0 .69 24 4761 2025
8 2 54 .84 2.1316 .0900
9 0 .54 32 2916 .0484
10 0 54 32 2916 .0484
11 0 54 32 2916 .0484
12 1 .54 58 2116 .0016
13 3 1.16 1.74 3.3856 3364
14 0 .58 45 3364 0169
15 0 93 45 .8649 2304
16 3 1.05 2.00 3.8025 9025
17 0 .66 54 4356 .0144
18 2 75 1.42 1.1025 2209
19 1 .65 71 1225 .0036
20 2 .65 1.42 1.8225 5929
21 0 1.12 .64 1.2544 2304
22 0 .70 .64 .4900 .0036
23 0 .68 .64 4624 .0016
24 1 1.30 .82 .0900 2304
25 5 1.15 4,08 14.8225 8.5849
26 0 72 .78 5184 .0036
27 1 72 .85 .0784 0169
28 0 72 .79 5184 .0049
29 0 72 79 5184 .0049
30 1 72 91 0784 .0361
31 0 72 .79 5184 .0049
32 1 .78 94 .0484 .0256
33 0 72 .79 5184 .0049
34 1 12 97 0784 10625
35 0 72 .80 5184 .0064
36 1 72 1.00 0784 0784
Total 29 26.02 29.02 39.5152 12.8426

737

The columns A and A* of Table 5.1 are typical numerical examples of Theorem
2.1. To obtain numerical examples of Theorem 2.1’, Table 5.2 is given. This table is
constructed as Table 5.1 under the assumption that A is lower-starshaped. As noted
after Theorem 2.1’ here A}, - -, A} are computed from (2.9") and (2.10') and
A¥ = A¥ = A = A}. Also in this example, the loss using A* is smaller than the loss

using X.
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TABLE 5.2
Comparison of X and a lower-starshaped \*
as estimators of population monthly means

for 36 selected months.
i X; A At X; = Ny A - N
1 0 1.74 223 3.0276 2041
2 0 1.23 223 1.5129 1.0000
3 0 .74 223 5476 2.2201
4 1 1.24 2.23 0576 .9801
5 2 1.18 2.23 6724 1.1025
6 1 1.18 2.23 .0324 1.1025
7 0 1.22 0 1.4884 1.4884
8 2 1.12 1.91 7744 .6241
9 0 .90 0 .8100 .8100
10 0 23 0 .0529 0529
11 0 0 0 0 0
12 1 44 1.39 3136 .9025
13 3 93 1.39 4.2849 2116
14 0 .62 0 .3844 3844
15 0 91 0 .8281 .8281
16 3 91 1.21 4.3681 .0900
17 0 57 0 3249 3249
18 2 .89 1.14 1.2321 0625
19 1 .55 1.14 2025 .3481
20 2 .55 1.14 2.1025 .3481
21 0 .86 0 71396 71396
22 0 .86 0 7396 7396
23 0 .35 0 1225 1225
24 1 .84 .99 0256 .0225
25 5 .84 .99 17.3056 0225
26 0 .67 0 .4489 .4489
27 1 .67 95 .1089 0324
28 0 .33 0 .1089 .1089
29 0 33 0 .1089 .1089
30 1 .33 .88 .4489 .3025
31 0 .50 0 .2500 2500
32 1 .76 .86 .0576 .0100
33 0 .67 0 4489 4489
34 1 33 .83 .4489 2500
35 0 0 0 0 0
36 1 .50 .81 .2500 .0961
Total 29 25.99 29.01 44.6301 16.8242

5.2. Estimation of IHRA distribution functions. Assume that the lifelength of a
device has an IHRA distribution F (see Section 1). Suppose that, due to logistical
reasons, samples of n, devices, i = 1, 2, - - - , n are put on a life test simultaneously
at n different locations. Suppose further that there is only one instrument (or
person) that can detect failures and this instrument is used at time 7; to determine
the number, r,, of devices that are still functioning at time 7; in the ith location,
i=1,2,- - -, n, (this is the situation, e.g., if the information concerning failures of
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the devices is ‘top secret’ and only one person has the necessary clearance). It is
desired to estimate F(T)), - - - , F(T,) subject to restriction (1.1). It is complicated
in this case to obtain the m.le.s. A naive method is to estimate F(7;) by
(n; — r)/n, but these estimates may give rise to an F which is not IHRA (in fact,
if, for some i, r,/n; > r,,_,/n;,, then the estimates do not give even a distribution
function).

Estimates of F(7;),i = 1,2, - - -, n can be obtained by minimizing some sum of
squares, subject to restriction (1.1). Denote h;, = — log(r;/n;,), w; = T, — T,_,, and
let g =w '(h,—h_), i=12---,n(hy= Ty=0), then g; is the naive esti-
mate of w, =w,” (R(T;) — R(T;_,)). From (1.1) it follows that (p, = 0)

(5.1) TR TN i=12---,n
The estimate p* of pu can be obtained now from (3.9) and (3.10) and the estimate of
F(T) is

FXT;) =1 — exp{ ==, Wik }» i=12---,n
Note that it is possible that some of the g’s are negative. However, for all i,
& = h;/ W(i) > 0, and thus Theorem 3.1 applies.

APPENDIX
The Appendix consists of statements and proofs of three identities and an
inequality which are used in the proofs of Theorem 2.1 and 3.1.

Identity A.1. 1If g, > O then

(A‘l) 2Irr:-ll‘vm max(gma g_m)Hj‘-m+l min(l’ g_j/g__/-—l) + W ma‘x(gl’ g_l) = G(l)’
=2,3---,n
ProOF. The proof is by induction. If / = 2 then the left-hand side of (A.1) =
w, 8, + w,8, = GQ2) if g, <g, and the left-hand side of (A.1) = w, g, + w, g, =
G(2) if g, > g,- Assume now that for some / 2 </ <n—1)
(A2) 302 Wy, max( g, 8,) 12} min(l, £,/8_1)
+w_y max(g_y, §-1) = G(/ — 1);
then '
LHS(A.1) = (LHS(A.2)) min(1, g, ,_,) + w, max(g; &)
=2G(l — 1) min(1, g, g_,) + w, max(g, )
=G(I—-1)+ wg = G(I) if g2>g_,
=G(l - 1Dg/g-, +wg = G() if g <g_,

and the proof of (A.l) is complete. []
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Identity A2. If g, > 0and p € C, then
8m
2m--l{ m”‘m(_——_———) j= m+1maX(l g_/ l/g_[)}

ma’x(g”p gm)
+ W1I‘1(“‘£I—_‘) = 2 e Wl
W max(g,, 2)
I m (m — 1)
A3) =211(g, <g.- 1)_-“5(7)—
X (g1 = o) (& — gm)Hl'—m+l max(l, g_j—l/g—j)
_ w,W(l
+I(81<81—1)_1‘(%( P‘I)(gl 1 g,), I=2---,n

ProoF. The proof is by induction. When / = 2 then the left-hand side of
(A.3) = 0if g, > g, and the left-hand side of (A.3) = w,w,(G(22)) (g, — g)(1; —
uy) if g, < g,. Assume now that for some / 2 </ <n-—1)

- Em
A B2 s Y max(1,5-1/3)

8i-1 -1
+w_ | —————— ) -2 "W
1—1 M l(maX(g,_,,g,_l)) m=1Wnln

2m-l[l(gm <§m—1)w_m%£(r:ln—)—l_)(ﬁm—1 - I‘m)

X (Zm-1 gm) Zmt max(l gj“l/gj)}

Y%l_%z(ﬂl 2 7 M- 1)(81 2~ 8- )-

Thus, if g, > g,_, then the left-hand side of (A.3) = the left-hand side of (A.4) and
the right-hand side of (A.3) = the right-hand side of (A.4) and if g, < g;_, then

+I(81—1 < §1—2)

81 W81l

LHS(A3) = [LHS(A4) | 8L 4 BoLsiot gy b St + 22y,
& 1 g
g le 1
=[RHS(A4)] == + ( )(u - w)(&-, — &) = RHS(A3),
g G(l?

and the proof of (A.3) is complete. []
Inequality A.1. If u is a solution of (2.2) then
(A5) Sowil(w — w)(gu~ ! — 1) < 0vp € C,.

PrROOF. An argument of Barlow, et al. (1972), page 25 is used. Let u be a
solution of (2.2) and p € C,. If 0 < a < 1 then (1 — a)u + ap € C,. Therefore

(A.6) 2?=1{gi log[(l -y + a”‘i] "[(1 - auy + al"i]}wi
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assumes its maximum at a = 0. Thus, the derivative of (A.6) at a = 0 is nonposi-
tive, that is (A.5) holds. []

Identity A3. 1If (3.3) holds and p € ©, then
il Wbt (8 = 8) ™ + 2 WD) (Zo1 — )" ] + winl g — )
(A7) = 2[m-lI(g_m—l >gm)wm W(m - 1)(W(m))_l(g_m—l - gm)(ﬁm—l - nu’m)9
1=2,3.-..
PrOOF. The proof is by induction. When / = 2, then the left-hand side of
(A7) =0 if g, >g;, and the left-hand side of (A.7) = wwy,(W(2)~X( g — £
(y — py) if g, < g,. Assume now that for / > 2 (I < n)
22 Wt (8 = 8n)” +Z e (WD) (G — )" ]
+w (g, — &-1)"
(A8) = 2Im—-l ll(g_m—l > gm)wm W(m - 1)(W(m))_l
><(g_m—l - gm)( IIm—l - :u'm)
Then
LHS(A.7) = LHS(A.8) + wu(g — &)~ + (Zlm_=llwm:u'm)wl( W(]))_l(g_l—l - 81)+
= RHS(A8) +0if g >g_,

= RHS(A.8) + w,W(I — 1)(W(1))_1(§1—1 - 81)(111—1 - :“‘1) if g <g_,
= RHS(A.7). 0
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