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COMPOSITION RULES FOR PROBABILITIES FROM PAIRED
COMPARISONS!

By ROBERT B. LATTA
University of Kentucky

Let p,, be the probability that the outcome of a paired comparison
involving @ and b is favorable to a. This paper discusses composition rules that
generate p,. given p,, and p,.. The basic properties of composition rules are
developed via an axiomatic approach.

If p,p, = F(w, — wy), where F is a distribution function for a distribution that
is symmetric about zero, then the paired comparison model is a linear model
that is based on the distribution function F. It is shown that given any
composition rule, which obeys certain basic axioms, there exists a linear model
that generates an identical composition rule. )

The behavior of the composition rules are used to place a partial ordering on
the paired comparison models and in particular on the linear models. This
partial ordering is denoted as the extreme partial ordering. It is shown that
linear models based on distributions with short tails tend to be more extreme
than those based on distributions with long tails. The resulting partial ordering
includes the result that the Thurstone-Mosteller model is more extreme than the
Bradley-Terry model. :

The extreme ordering can also be used to place a partial ordering on
distributions according to the lengths of their tails. The relation of this ordering
to the s-ordering and r-ordering is examined.

1. Introduction and summary. Let p,, be the probability that subject a is chosen
over subject b (team a beats team b, x, is larger than x,, etc.). The knowledge of p,,
and p,. should convey some information concerning p,. This paper is primarily
concerned with composition rules that generate p,. given p,, and p,,.

The procedure of comparing two items at a time is known as the method of
paired comparisons. In a discussion of a paper by Bradley (1976), David presents a
hierarchy of paired comparison models and notes what they imply about the
composition rules.

A linear model for paired comparisons (c.f. David [1963] page 13) holds when
Pa = F(w, — w,), where F can be any distribution function which has the property
that F(x) =1 — F(—x). If we assume that F~!(p) exists and is unique for
p € (0, 1), then p,. = F[F '(p,) + F~'(ps,)] is the resulting composition rule.
There are several special cases of composition rules determined by linear models
that are of interest.

A composition rule can be viewed as a function that maps (0, 1) X (0, 1) into
[0, 1]. An axiomatic formulation of composition rules will be given and basic

Received June 1976; revised October 1977.

!This paper is based on part of the author’s doctoral dissertation at Stanford University. Research
supported by NIH Grant No. 5 TI GM25-18.

AMS 1970 subject classification. Primary 62J15.

Key words and phrases. Paired comparisons, Bradley-Terry model, Thurstone-Mosteller model,
s-ordering, r-ordering.

349

[
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 2
The Annals of Statistics. RIKGJY

®
www.jstor.org



350 ROBERT B. LATTA

properties of composition rules will be developed. An argument due to Debreu
(1958) is developed to show that under general assumptions all composition rules
can be derived from linear models.

The behavior of composition rules is used to place a partial ordering on the
linear models. The linear model based on F| is defined to be more extreme than the
linear model based on F, if, whenever p,, and p,. are elements of (3, 1), then the p,
generated by the F, model is greater than or equal to the p,. generated by the F,
model. It is shown that the model based on the uniform distribution is more
extreme than any linear model that is based on a distribution function which has a
unimodal density. Further, models based on distribution functions with short tails
tend to be more extreme than models based on distribution functions with long
tails. These results are applied to several linear models, inducing a partial ordering
on them. This partial ordering includes the result that the Thurstone-Mosteller
model is more extreme than the Bradley-Terry model.

The above partial ordering for linear models corresponds to a partial ordering
for distribution functions according to the length of their tails. It is shown that the
r-ordering of Lawrence (1975) implies this ordering. In other words, if F, is
r-ordered with respect to F, then the linear model based on F, is more extreme
than the linear model based on F,.

2. Axiomatic formulation of composition rules. In this section composition rules
are formally defined and several properties of composition rules are presented. Let
S be the abstract set representing the collection of possible subjects.

DEFINITION. p,, is the probability that the outcome of a paired comparison
involving a, b € S is favorable to a.

AxioMm 2.1. (No ties). p,, + p,, = 1 for everya, b € S.

AxioM 2.2. (Richness of S). For every a €(0,1) and a € S there exists
b € S such that p,, = «a.

Axiom 2.2 implies that S cannot be countable. Usually, in applications, only a
finite subset of S and probability relationships that can be generated in a simple
way are of interest.

DEFINITION. A composition rule is a function G that maps (0, 1) X (0, 1) into
[0, 1] with the property that p,. = G(p,, p,.) for every a, b,c € S such that
Pabs Poe € (Os 1)

ProPERTY 2.1. G(p,py) =1 — G(1 — p,, 1 — p)) for p,, p, € (0, 1).

PrOOF. By Axiom 2.2 there exists a, b, c € S such that p, = p,, and p, = p,..
By Axiom 2.1p,, =1~-p,andp, =1 — p,.

pac = G(pab’pbc) = G(pl’pZ)
D = G(pcb’pba) = G(l — P2 1 _pl)‘
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Hence
G(pl’p2)=pac=l_pca=l_G(1—p2’l_pl)' D

PROPERTY 2.2. G(p,, | — p)) =3 for p, € (0, 1).
Proor. By Property 2.1, G(p;, 1 —p))=1—-G(p;, 1 —p). I

PrROPERTY 2.3. Forp,,p,, 03 €0, 1)
P1=G(p3, 1 — p)) o ps = G(p1, p)) &P, = G(1 = py, py).
Proor. First assume p; = G(p,, p,)- There exists a, b, ¢ € S such that p,, = p,
and p,. = p,. Then
Pac = G(P1, P2) = P35
Also
P2 = Py = G(Ppas Pac) = G(1 — Py, P3)
Dy =P = G(paca pcb) = G(p3s 1 _Pz)-
Now assume p, = G(1 — p,, p;). Then there exists a,b,c € S such that

Poa = 1 — D andpac = P3.
Hence p, = G(1 — py, P3) = G(Poas Pac) = Poc-
Therefore p; = p,. = G(Pap> Poc) = G(p1, Po)-
Similarly p, = G(p3, 1 — p)) =p; = G(p1, py)- [

PROPERTY 2.4. For p € (0, 1), G(3,p) = p and G(p, 3) = p.

Proofr. The result follows from Properties 2.2 and 2.3. []

It now becomes obvious that the existence of a composition rule imposes a
restriction on the interdependence of the values of p,,. The following conditions
also appear to be reasonable:

Axiom 2.3. (Symmetry). G(p,, p)) = G(p, py)-
AxioM 2.4. (Monotonicity). Assume p,, p,, p;3 € (0, 1). Then p, > p; =

G(py, p) > G(ps, po). If, in addition, G(p,, py) € (0, 1), then p, > p; = G(p,, py)
> G(p3a pZ)‘

PROPERTY 2.5. (Continuity). G(p,, p,) is continuous on (0, 1) X (0, 1).
PrOOF. Let a < B and define
G '[(a, B)] = {(P,p2) €(0, 1) X (0, D|G(py, o) € (o, B)}-

It is sufficient to show that G ~'[(a, 8)] is open. If (a, B) N[0, 1] = &, then
G ~'[(a, B)] = & and hence is open. Now assume (a, 8) N [0, 1] # &; then (a, B)
N, 1)#3. Let p €[(a, B) N (0, 1)]. By Property 24 G(p, 3) = p. Hence
G l(a, B)] # . Let (p}, p3) € G ~'[(a, B)]. Assume G(pi,p3) = v. Then & <y
<B.
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It is now sufficient in this case to show that (pj, p3) is an interior point of
G (e, B))-

First assume y € (0, 1). Choose v, and v, such that max{0, a} <y, <7y, <y.
By the richness Axiom 2.2 there exists a, b, ¢, d, e elements of S such that p,, = p},
Poe = P Pag = Y2 Pea = Y1- Therefore G(Poy; Poa) = Paa = Y2 A0 G(Pey, Ppa) = Pea
= v,. Axiom 2.4 and v, < y, <y imply that p,, <p,, and p,; <p,.. Let pf = p,,
and p} = p,,, then p, > pt and p, > pF imply G(p,, p) > v;.

Similarly let y < y; < min{1, 8}. Then there exists p}* > p}, p¥* > pj such that
Py <pt* and p, <p3* imply G(p,,p)) <7v;- Hence (p;,p) € (pf, p*) X
(p%, p¥*) implies G(p,, p,) € (v1, v3) C (a, B). Therefore (p}, p5) is an interior
point of G ~![(a, B)].

Now assume y = 0. Then, by the above argument if 0 < y; < min{1, 8}, there
exists pf* and p¥* such that p, <p¥* and p, < pF* imply G(p,, p,) < v3;. Axiom
2.4 implies

G(p1/2,p3/2) = 0.
Hence p; /2 <p, <p}* and p}/2 < p, < p3* imply
G(Pl’p2) G[O’v73) - (a’ B)
Hence (p}, p) is an interior point of G ~'[(a, B)]. The case where y = 1 is handled
similarly. [J

PROPERTY 2.6. (a) py, P, € [3, 1)= G(py, py) > max{p,, p,};
(®) py,p, €, %] = G(py, pr) < min{p,, p,}.
ProOF. (a) By Axiom 2.4 and Property 2.4,
G(pl’pZ) > G(%’pZ) = p2
G(pi,p2) > G(p1s 3) = Pr-
(b) is proved similarly. []

By virtue of Property 2.6, a composition rule exists only if the paired comparison
model is strongly transitive (Brunk [1960]). Nevertheless, models which are weakly
transitive have received considerable attention (e.g. de Cani [1969, 1972], Remage
and Thompson [1966], and Thompson and Remage [1964]) and are important in
certain applications (c.f. David [1963] page 13).

PROPERTY 2.7. (2) 1 >p, > 1 —p, >1=1< G(py, py) < pi;
(b) 0<p, <1 —p, <3=7>G(py,p) >pr.

ProoF. The result follows from Property 2.4 and Property 2.6. []

DErFINITION. Two composition‘rules are identical if G,(p,, p,) = G,(p,, P,) for
all (py, p) €10, 1) X (0, D).

PROPERTY 2.8. If G,(p,, p,) = Gy(py, p,) in one of the quadrants (0, 3) X (0, 3),
0, DHX@G D, @G 1) X(O,3),0r (3, 1) X (3, 1) then G, and G, are identical.
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PrOOF. Assume Gy(p;, py) = Gy(p,py) on (3, 1) X (3, 1). If p; =1 or p, =1,
then by Property 2.4, G\(p3, ps) = Go(p3 P)- If (93, p4) E [0, 3) X (0, 3)] then

Gi(p3ps) =1— Gl —py 1 — ps) by Property 2.1;
=1—Gy)(1 —psy 1 —py) by assumption;
= G,(P3 D) by Property 2.1.

If 1< 1—p; < ps <1 then G(p;, py) € [3,ps) by Property 2.7. Let G,(p3, py) =
Ds then

Ps = Gi(1 — p3, ps) by Property 2.3;
=Gyl —p3ps) by assumption.
Therefore

Ps = Gy(p3, py) by Property 2.3.

If 1<p,<1—p;<1then
Gi(p3,ps) =1— G(1 — ps 1 — p3) by Property 2.1;
=1—=Gy)(1 —py 1 —p3) by the case above;
= Gy(p3, Ps) by Property 2.1.

If p, <3< p; then using Property 2.1 and the results above will show that
G,(Ps, py) = Gy(ps3, ps). Hence G, and G, are identical. The case of assuming
equality in one of the other quadrants is handled similarly. []

Figure 2.1 (Debreu, 1958) can be used to illustrate the meaning of some of the
above axioms and properties. The dotted lines are isoprobability or contour lines of
G(p;, P»)- In other words I, is the set of all points (p,, p,) such that G(p,, p,) = a.

(a) Axiom 2.4 implies that when a € (0, 1), then I, intersects the line p, = p,

i = {1, 2} at most one time.
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FiG. 2.1. Isoprobability lines for G(p,, p,).
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(b) Axiom 2.4 and Property 2.5 together imply that 7, is a continuous line for
a €(0,1).

(c) Property 2.1 implies that I, is the reflection of I,_, through (3, 3).

(d) Property 2.2 implies that I 5 is the straight line from (0, 1) to (1, 0).

(¢) Property 2.4 implies that I, passes through (a, 3) and (3, a).

(f) Axiom 2.3 implies that I, is the reflection of itself through the diagonal line
Py = Py

(g) Axiom 2.4 implies that I, and I do not intersect if a % 8.

(h) Property 2.7 implies that when a € (0, 1), then I, approaches (1, 0) and
©, 1).

3. Composition rules for linear models.

DEFINITION. A linear model for paired comparisons (c.f. David [1963] page 13)
holds if, for each s € S, there exists a real valued constant W, if there exists a
distribution function F such that F(x) = 1 — F(—x), and if, fora,b € §, P, =
Fw, — wy).

The definition of a linear model implies that Axiom 2.1 holds. Axiom 2.2 implies
F must be continuous.

Brunk (1960) imterprets linear models as intrinsic worth models. He lets the w,’s
denote the worths of the elements of S. Hence using these worths the elements of S
can be ordered.

DEFINITION. F is the defining distribution of a linear model if p,, = F(w, —
w,). The linear model is then said to be based on F. If F is absolutely continuous
and f is the density of F then f is the defining density of the linear model, and the
linear model is said to be based on the density f.

DEFINITION. % is the class of all cdf’s F such that F(x) = 1 — F(—x) and
F~!(p) exists uniquely for p € (0, 1).

AxioM 3.1. The set of probabilities { p,,} is generated by a linear model whose
defining cdf is an element of ¥.

When Axiom 3.1 holds then
Pac = F(w, = w,)
= F((w, = wy) + (w, = w.))
= F(F ™ (pa) + F(Ps))-
Hence the composition rule is
Ge(p1,p) = F(F_I(Pl) + F_I(Pz))'

DEFINITION. When Axiom 3.1 holds and the linear model is based on F, then
G(p,, p,) denotes the composition rule based on F.

The notation Gr(p,, p,) will be taken to imply that Axiom 3.1 holds.

Axiom 3.1 is consistent with Axioms 2.1 and 2.2. Hence all composition rules
generated by a linear model will satisfy Properties 2.1 through 2.4.
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THEOREM 3.1. Given a paired comparison model for which Axioms 2.1 and 2.2
hold, let G be the composition rule that this model generates. Then G satisfies Axioms
2.3 and 2.4 if and only if there exists a cdf F that satisfies Axiom 3.1 and defines a
composition rule Gy that is identical to G.

ProoF. First assume Axiom 3.1 holds. Then

Gr(p1, P2) = Gr(py p1)

and Axiom 2.3 holds.
Now also assume p;, p,, p; € (0, 1) and Ge(p,, p,) € (0, 1). Then

P >pse F Y (p) > F Y (p,y) since F € %;

& F~Y(p) + F~(py) > F~(ps) + F™(py)
since  |F~!(py)| < o0;

o F(F Y (p) + F~(p) > F(F'(ps) + F~(py))
since  Gg(py, py) € (0, 1).

Therefore the second part of Axiom 2.4 holds. The proof that the first part also
holds is similar except that the possibility that Gz(p,, p,) = 0 or 1 rules out the
strict inequality and the reverse implication.

Now assume Axioms 2.3 and 2.4 hold. Then Properties 2.5 through 2.8 can be
applied.

Following Debreu (1958) it can be shown that there exists a continuous strictly
increasing transformation T of [4, 1) into the reals such that 7(3) = 0 and the
isoprobability lines transform into parallel straight lines. The existence of such a
transformation T is a particular case of a problem of plane topology. The problem
can be roughly described as follows: given three families of curves in a plane, when
does there exist a topological transformation carrying them into three families of
parallel straight lines? In Figure 3.1 the three families are the isoprobability lines,
the vertical axis and the horizontal axis. After the transformation they are the lines
with slope of minus one, the vertical axis and the horizontal axis.

Since T is continuous and strictly increasing on [1, 1), then 7 ~! exists and is also
continuous and strictly increasing on [0, T(1)] where T(1) = lim,_,, 7(p). Define F
by ’

F(x)=T"'(x) if x€[0,T(1)

=1 if x> T(1)
=1-F(—-x) if x<O.

Then F is a cdf and is an element of ¥ (i.e., a linear model can be based on F.) It
remains to verify that the composition rule generated by F is the same as the
original one. Let p, € (3, 1) and p, € (3, 1). Assume G(p,, p,) = p3 € (3, 1). Then
G(py, p2) = G(ps, 3) implies T(p;) + T(p,) = T(ps) + T(.5), since T maps the
isoprobability line I, into a straight line with slope of minus one. Now T(3) = 0.
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Ia= {(p.p,) |G(P|,pg)=°}

P2
Pk -
% |
2§ p; B |
T(p2) KT(Ig)={(tt2)11=T(p)and G (py,pz)=a}
T(py) o-x\

o T (p.') T(p|)

FiG. 3.1. Effect of T on the isoprobability lines.

Therefore F(F~'(p,) + F~\(p,) = F(T(p5)) = F(F~'(p3)) = ps. The case for p,
= 1 is handled similarly.

It follows by Property 2.8 that since G, and G are identical on (3, 1) X (3, 1)
then they are identical on (0, 1) X (0, 1). ]

The following property was motivated by Noether’s 1960 paper in which he gave
a procedure for estimating the worths of a finite set of elements T C S using the
results of a set of paired comparisons involving the elements of 7' and assuming a
given linear model. Using these estimated worths, p,, can be estimated for all
a,b € T. He noted that if the defining cdf F(x) is replaced by F(cx) for some
¢ > 0 then the estimate of w, is changed to (1/c)w, but the resulting estimate of p,,
does not change.

PROPERTY 3.1. The composition rules based on F, and F, are identical if and only
if Ac > 0 such that F\(x) = Fy(cx) for all x € (— o0, 00)

PrROOF. Assume F(x) = Fy(cx). Then clearly
Gr (P1> P2) = Gr(P1,P2) forall (p;,p,) € (0,1) X (0, 1).

Now assume G (p, p;) = Gg,(py, P)- By Property 2.5 F and F, are continuous.
Hence for all x where F,(x) € (0, 1), 3¢, > 0 such that Fi(x) = Fycx). It is
sufficient to show that ¢, is a constant independent of x. Note Fy(x) =1 —
F(—x) and F,(x) = 1 — F)(—x), hence ¢, = c_,. Therefore it is sufficient to
show that ¢, = ¢ for all x > 0.
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Let 7 be any positive real such that Fi(r) € (3, 1). Let p, = F\(f) = Fy(c,?).

Gr (P P) = Gg(p,» p,) by assumption. Therefore
F\(2F(p)) = F(2F; (p))
F,(2t) = F,(2¢,0).

Hence ¢,, = ¢,.

Similarly, by an induction argument, it follows that ¢, = ¢, for all positive
integers /.

Let H,(p) = Gr(p, p)- Then H\(p) is a continuous function mapping (0, 1) onto
(0, 1). Hence 3p € (3, p,) such that H,(p) = p,. Therefore

Gr,(p,p) = p. = Gg(p, P)
F1(2FI_I(P)) =D = F2(2F2_I(P))-

Hence
F\(p)= lFl '(p) _%
Fyi(p) =31F'(p) =30t
Therefore
F\(1t) = Ey({c1)
and
P

It follows by an induction argument that for every positive integer &, ¢, o=
where o(t, k) = 127%,

Combining these two results, it follows that ¢, 4 ;, = ¢, where (2, k, ) = /2™*
for all positive integers k, /.

The set {#27%}k =1,2,- - - ,1=1,2,- - -, is dense in the set of all positive
reals. Hence by continuity F,(x) = F(¢,x) for all x > 0. ]

The following property concerns the rate of change of Gg(p,, p,). In particular if
3 < py < p, <1, then under certain conditions increasing p, will increase Gr as
much or more than increasing p,.

PROPERTY 3.2. If F is absolutely continuous and has a unimodal density f, then
3> 3= pil > |3 = P3| and Gp(pi, py) € 0, 1) imply

0 9
) GF(PI’P2)|(pppz)=(pi,pé) > 9 GF(PI’P2)I(PbP2)=(P'pP§)'
1 /23

ProoOF.
Gr(p1, py) = F(F~\(py) + F~\(py)

1
aGF(all”:,Pz) OF p(P‘ f(F~Y(py) + F~(py).
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Let
F_I(Pi,) = X
then
aF_'(p,.) _ 1
api pi=p] f(xi)

F(x)=1— F(—x) for all x € (— o0, o) implies f(x) = f(— x). Therefore zero is
a mode of f and

x| > |x"| = f(x") < f(x").

Hence
3= Pl > 5= pil= x| > x|
and
f(x1) < f(x).
Therefore
IGE(py; o) 5 3GH(p1, p) -
9p, (PP =(P},P2) P2 (P1, P = (P}, PD

4. Convolution models. One of the most popular of the early paired comparison
models is Thurstone’s Case V (1927). In this model it is assumed that each element
a involved in a paired comparison generates a sensation X, = Y, + w,. The Y,’s
are assumed to be independently distributed as N(0, 6%) random variables. The
variance o2 is assumed to be the same for all elements of s. The element that
produces the largest sensation is the one that is chosen. Hence

P, = CD([wa - w,][027] ‘l).
Using a scale change this becomes
Pab = @(Wa - wb)‘

Mosteller (1951) derived the same form for p,, when the sensations are correlated
with each other by a constant correlation coefficient. As a result of this and other
contributions by Mosteller, the model p,, = ®(w, — w,) is now commonly known
as the Thurstone-Mosteller model.

If Y, and Y, are independent and identically distributed according to some
absolutely continuous cdf that is not necessarily a normal cdf, then the resulting
special class of linear models can be considered as generalizations of Thurstone’s
case V. Here

Pa = Prob(X, > X,)
= F(wa - wb)
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where F is the cdf of Y, — Y,. In particular if H is the cdf of Y, and Y, then F is
the convolution of H(x) and 1 — H(— x). For this reason these models are denoted
as convolution models and H is denoted as the sensation distribution of the model.

The assumption that H is absolutely continuous implies that F is also absolutely
continuous. Hence it can easily be shown that F(x) = 1 — F(—x). The additional
assumption that F ~!(p) exists uniquely for p € (0, 1) insures that F € ¥, the class
of cdf’s that generate composition rules. All of the convolution models that will be
considered in this paper will have defining distributions F that are elements of &

The Bradley-Terry model in which p,, = A,/(A, + A,) is now also in common
use. It was first proposed by Zermelo in 1929 and was reintroduced and
popularized by Bradley and Terry in 1952. Ford also independently proposed it in
1957. Bradley (1953) derived p,, = A,/(A, + A,) = e™/(e™ + e™) = 1/(1 +
e~ ™) from a linear model based on the “squared hyperbolic secant” or logistic
density. Davidson (1969) demonstrated that the Bradley-Terry model can be
expressed as a convolution model using the extreme value distribution as the
sensation distribution. The composition rule that the Bradley-Terry model gener-
ates is Pac = Pab pbc/(pab Poc + (1 = pab)(l - pbc)) (Luce, 1959).

Let V,, = 2(p,, — 1/2). In terms of the V’s the Bradley-Terry composition rule
is Vo, =Vy + V3)/(1 + V,,V,). In a personal communication 7. Cover noted
that this is the Lorentz transformation for velocities.

Table 4.1 displays examples of convolution models along with their sensation
distributions and defining distributions. The composition rule for the triangle
model and the double exponential model is only partially defined. The remaining
parts of the composition rule can be constructed using Property 2.1. By Property
3.1 the listed defining distribution is unique up to a scale constant. The listed
sensation distribution is not unique.

5. The uniform model. The uniform distribution yields an interesting linear
model that is not a convolution model. The defining cdf is the U(—1, +1)
distribution, and the composition rule is as follows:

Gulppp)=p+p—3 if 0<p +p,—3<1I
=0 if p,+p,—3<0
=1 if py+p,—3> 1L

A proof that two i.i.d. random variables cannot have a U(— 1, + 1) distribution is
contained in a paper by M. L. Puri and Sen (1968). It then follows that the uniform
model cannot be a convolution model.

Make the transformation 0= pi - % and define GFQ(QI, Q) = G(py, Py —

(e, if O, = ; and @ = 3 then Q. = p,c = 3= Gr(Pup> Psc) — %
GE(Qu» ch)) Usmg the Q, values and G£ composition rule rather than the p
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values and the G composition rule, the uniform model has the following additive
form for its composition rule.

GO, Q) =01+ Q0 if —3<0+0,<;
= "% if “% >0, +Q
= +3 if 3<Q+ 0
This simple additive form for GZ(Q;, Q,) holds approximately for many other

linear models when Q, and Q, are near zero. Table 5.1 illustrates this numerically.
A more precise statement of the above fact is the following proposition.

PROPOSITION 5.1.  If a linear model has a defining cdf F(x) whose density f(x) is
continuous, finite and nonzero at x = 0, then for all « > 0,

GFQ(QI’ aQ,)
0, + ag,

(i.e., for p,, p, near % the composition rule behaves like that of the uniform model or
like any other composition rule whose cdf satisfies the above conditions.)

-1 as Q,—0

PRrOOF.
d d B . ~ 1
EGFQ(QI’ aQ)) = d_QlF(F 1(Q1 +5) + F l(an +5))
=AF~Y (0, +3) + F (a0, +3))

1 o
* [f(F“(Q1 +3)) * AF(a@, +3)) }
d
d_Ql(Ql +a0) =1+ a.
Now as @, —»0
d 1 a
57 G#(01, Q) _)f(O)[}@ + ]

d 1+«
—(Q, +a
) dQ] (Ql Ql)
Therefore by L’Hospital’s rule
G2(Q,,
£(Q1, aQy) 1 as 0, —0. 0

0, + aQ,

COROLLARY 5.1.  If a convolution model has a sensation distribution whose density
is square summable then G2(Q,, aQ))/(Q, + aQ)) =1 as Q, > 0.

ProOF. Let h(x) be the density of the sensation distribution. Then f(x) =
12 h(t)h(x + ) dt is the density of the defining distribution. It follows that f(x) is
continuous, finite and nonzero at x = 0 since & is square summable. []
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Note. All of the examples in Section 4 have sensation distributions whose
densities are square summable. Hence Corollary 5.1 applies to all of them. An
example of a linear model where Proposition 5.1 does not hold follows.

ExaMPLE 5.1. Let
1

4(|x)?
=0 otherwise,

Fix)=1+1lxr 0<x<1

fix) = -1<x<1 x#0

=%—-%x% -1<x<0;
F\p)=4p-3) »>}
=-4(p-1) p<i
Therefore if Q; > 0 and Q, > 0, then
GR(Q, 0) = 3407 + 402)* = (0} + 0})'.

Let a = 1; then G2(Q,, Q,) = 0,27. Therefore G&Q,, 0,)/(0; + Q;) — 1/2-2

# 1.
Table 5.1 gives some idea of how quickly different linear models approach the

uniform model as p, and p, approach 1.

Table 5.1.
Model Gr (51, .51 Gr (.55, .55) Gr (.6, .6)
Uniform 52 .6 7
Thurstone-Mosteller 519994 59922 .69382
Bradley-Terry 519992 .59901 69231
Cauchy .519980 .59765 .68343
Triangle .519899 59737 .68885
Double-Exponential 5198 595 .68
Example 5.1 514142 57071 .64142

6. Table of values for examples of linear models. This section consists mainly of
a brief table giving the values of composition rules for various (p,, p,) values. The
table lists values for the five composition rules listed as examples in Section 4 and
the one generated by the uniform model. The values of (p,, p,) used are p, =
.1,.2,.3,.4,.6,.7, .8 and 9. for i = 1, 2. Half of the entries in the tables appear to
be missing, but they can be computed using Axiom 2.2.: (G(p,, p,) = G(p,, p))).

7. A partial ordering on the linear models. The values of Gi(p,, p,) induce a
partial ordering on the linear models for paired comparisons. For example if
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Table 6.1.
Gr (p1, 1))
Model P\p, 6 7 8 9
A: Uniform 2 3 4 5
B: Thurstone-Mosteller 15192 22448 32999 5
C: Bradley-Terry 1 14286 .20588 .30769 .5
D: Cauchy 11091 12801 .16915 .5
E: Triangle 15279 22621 33192 5
F: Double Exponential 125 16667 .25 S5
A 3 4 5 .6
B 27817 37554 5 .67001
C 27273 36842 5 .69231
D 2 24202 31657 5 .83085
E 27234 38796 .5 .66808
F 25 ° 33333 5 5
A 4 5 .6 T
B 39317 .5 .62446 77552
C 3 39130 .5 63158  .79412
D 37844 5 68343 87199
E 38735 .5 63204 77379
F 375 5 66667  .83333
A 5 .6 v 8
B 5 .60683 .72183  .84807
C 4 5 60870 .72727 .85714
D 5 62156 .75798  .88909
E 5 61265 72766 .84721
F 5 .625 75 875
A T 8 9 1.0
B 69382 78164 86323  .93760
' C 6 .69231 77778 85714 93103
D .68343 75798 .83085  .90901
E .68885 77620 .86120 .94164
F .68 .76 .84 92
A 8 9 1.0 1.0
B 78164 85287 91403 .96454
C 7778 .84483 90323 95455
D v 75798 .80814 85871 91818
E 77620 .84919 91715 .97540
F .76 82 .88 94

363
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9 1.0 1.0 1.0
86323 .91403 95384 98313
85714 90323 94118 .97297
.8 .83085 .85871 .88909 .92970
86120 91715 .96491 99683
.84 .88 92 .96
1.0 1.0 1.0 1.0

93760 96454 98313  .99481
9 93103 95455 97297 .98780

90901 91818 .92970 .94874

94164 97540 99683 1.0

92 94 96 98

MTmOQw» | MmO QW >

Gr (.7, .8) = .95 and G (.7, .8) = .9, then the linear model based on F, can be said
to be more “extreme” at (p,, p,) = (.7, .8) than the linear model based on F,. The
following definition extends this idea.

DEFINITION. A linear model based on F, is more extreme than a linear model
based on F, if Gg(py,py) > Gr(py, py) for all (py, py) €[(3, 1) X (5, D] and is
strictly more extreme than a linear model based on F, if in addition G (p;, p3) >
Gr,(pi» p3) for some (pi,p3) €[, ) X (4, D]

The above definition can be applied to any composition rule, but in light of
Theorem 3.1, the rest of the paper will treat only linear models.

DEFINITION. Let Gy > Gp, G > Gp, Gp = Gp, Gp <Gp, G < G denote
R . 1 2 | P 2 1 2 l‘_ '2 1 2
G, is strictly more extreme than, more extreme than, identical to, less extreme
than, strictly less extreme than Gy, respectively.

ProPOSITION 7.1. If G > Gy, then
@) (p1,py) €100, %) x (0, %)]=> Ge(p1, p2) < G (P, p2)
®)1>p,>1-p, >%=> Gg (P P2) < G (P PY)
© 1>p, > 1= p; >3= Gg(p1, P) < Gg(p1, P2)
@Oo<p,<1-p < %=> Gr(p1, p2) 2 Gg(py, P2)
©0<p<1-p,< %=> Gr(p1; P2) 2 G (p1; P)-

ProOF.

(@) Gg(p1,p) =1— Gg(1 — py, 1 — p)) by Property 2.1
<1l- GF,,(I —pp 1 —py)
= GF,,(P1,P2);

(b) Gr(P1sP) = 4, >% and G (p1,P) = 4 >% by Property 2.7. Gr(qgp 1 —
P2) = P = Gg(4y 1 — py) by Property 2.3. Note that Ge(p, 1 —py) > Ge(p, 1 —
p,) for all p > 3. Hence Axiom 2.4 implies that g, < g, or Gr(p1, P2 < Gg(py, PD)-
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(c) Follows from (b) by Axiom 2.3.

(d) Follows from (c) by Property 2.1.

(e) Follows from (d) by Axiom 2.3. [

Assume Gp > Gp; then Figure 7.1 illustrates the typical relation between
Gr(P1> Py) and G (p), p,)- The relationships in the figure follow from Property 2.6,
Property 2.7 and Proposition 7.1.

Examination of Proposition 7.1 and Figure 7.1 reveals that if p, and p, are both
elements of (0, ;) or both elements of (3, 1), then the more extreme linear model
results in a composition probability that is closer to the extreme value of 0 or 1.
The relation reverses itself when p;, € (0, 1) and p, € (3, 1). Hence the extreme
ordering lives up to its name only when (p,, p,) is in either the upper right or lower
left quadrant. .

The “extreme” ordering is only a partial ordering as can be seen as follows:

Let F, be the double exponential distribution.

Let F, be the Cauchy distribution.

Then

G (.6, .6) = .68 and Gg(.8,.8) =.92

Gr,(:6,.6) = 68343 and Gj(8, .8) = .88909.

Hence neither is more extreme than the other.
An example of the extreme ordering is contained in the following proposition.

PROPOSITION 7.2. The Bradley-Terry model is more extreme than the double
exponential model.

p2 ZGF,J(pl -pz)
2GFu(p|,p2)Z%

1'2Grq (py, P,) 2GF, (py.py)

PisGry, (p, p,) ' >
AN

NI—

p2 2
Py EGFb(PhPa)

2 GF, (p,,pyp)
>l

06k, (p,,P,)<Gry (P, p,) e

<L |P2<Gey(p;,pp)
2 I
< Gra(Phpz)S?

1
2
Py

F1G. 7.1.Relation between Gr,(P1, P2) and Gg(py, py) assuming Gg, > Gp,.
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PrOOF. Let
g(pi,py) = Gy_r(p1, py) — Gpg (P Pa)

Tt (lp—lp;l)(l ) —[1=-2(1 = p)(1 = p))]

for (py, py) E[(%, 1) % (3, 1)]
gpup)[pipy + (1= p)(1 = p2)] = prp2 = [ P1p2 = 2,2:(1 = p))(1 = p2)
+ (1= p)(1 = py) = 2(1 = p))’(1 = py)’]
=2p,py(1 — p)(1 —p)) — (1 _Pl)(‘l —p) + 21 _P1)2(1 _P2)2
=1 =-p)(A-p)[2pp,— 1 +2(1 —p))(1 = p))]
=(1-p)(1 - p)2p, — D(2p, — 1)
> 0for (p,py) €[(3,1) x (3, 1)]- 0

8. The uniform model and the extreme partial ordering. THEOREM 8.1. The
uniform model is more extreme than any linear model that is based on a cdf F that
has a unimodal density.

Proor. Let p; >3 and p, > 3. By definition of a linear model, F(x) =1 —
F(—x). Hence f(x) = f(— x). Therefore f unimodal implies zero is a mode of f.
Hence (1) > f(t + s) for t > 0, s > 0. Let p; = F(A,). Then p; >1=4, >0, i =
1, 2. Also

b = % + f(A)'f(t) dt

Ge(p1,py) =5+ [ %A(2) d
Ge(p1py) — P = fﬁ:'wf(t) di = [f(r + A)) dr
< [of(2) dt

=P 3
Therefore Gg(p,, p,) < p, + p, — 3. The result follows by comparing the above
inequality with the uniform model composition rule. []

COROLLARY 8.1.  The uniform model is more extreme than any convolution model
which has a sensation distribution H which is absolutely continuous and unimodal.

ProOF. Let F be the convolution of H(x) and 1 — H(—x), then F will be
unimodal [Hodges and Lehmann (1954)]. ]

In order for the uniform model to be more extreme than a linear model based on
a cdf F it is not necessary that the density of F be unimodal, nor is it necessary that
the sensation distribution of a convolution model have a unimodal density. The
following example illustrates this.
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ExaMPLE 8.1. Let the sensation distribution have the density
h(t)=3 0<t<1 or 2<t<3

=0 otherwise.
It can easily be shown that the uniform model is more extreme than the linear
model with the above sensation density.
An example of a linear model that is strictly more extreme than the uniform
model will be necessarily based on a nonunimodal density. Such an example
follows:

ExampLE 8.2. Let f(x) = c|x| for —¢"1<x <c2.¢> 0is a scale factor.
Then

Si-——

CouUNTEREXAMPLE. The composition rule G based on the above distribution
is strictly more extreme than the composition rule based on the uniform model.

9. The extreme partial ordering and the length of the tail of the defining distribu-
tion. In Theorem 8.1 and Proposition 7.2, the distribution with the “smaller” tail
generates the more extreme linear model. This observation motivates the following
definition for a partial ordering on the distributions in ¥ according to the lengths

of their tails.

DeriNiTION.  If F,, Fy € %, then F, <,F, (F, is g-ordered with respect to F,) if
and only if Gy > G, (the linear model generated by F, is more extreme than the
linear model generated by F).

Van Zwet (1964) also defined a weak ordering on the elements in % according to
the lengths of their tails. He defined F, <,F, if and only if F,(0) = F,(0) =1 and
F;!(F,(x)) is concave-convex about the origin on the support of F), i.e., {x]|0 <
F(x) < 1}. Lawrence (1975) extended Van Zwet’s partial ordering by defining
F, <,F, if and only if F,(0) = F,0) =3 and F, (F,(x))/x is increasing (decreas-
ing) for x positive (negative) on the support of F,. Clearly F, <;F, implies F, <,F,.

THEOREM 9.1. Suppose F,, F, € § and F, <,F,, then Gy > G and hence

Proor. Lawrence’s definition implies that for any ¢ > 0, there exists constants
M (c), My(c) and M;(c) such that 0 < M ,(c) < My(c) < M,(c) < oo and
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(@) 0 < x < M,(c) implies F,(cx) > Fy(x);

(b) M(c) < x < My(c) implies F (cx) = Fy(x);

(©) M,(c) < x < M(c) implies F,(cx) < Fy(x);

(d) x > M,(c) implies F (x) = Fy(x) = 1.

Assume 1 >p, >p, >3, let F,'(p)) = A, and F, '(p,) = A,. By continuity
there exists d > 0 such that F,(dA,) = p,. By (b) above M (d) < A, < My(d).
Define F,(x) = F,(dx). Let F; '(p,) = A;. Then p, > p, implies A; > A,. By (a)
above F,(x) > Fy(x) for 0 < x < A,. Hence F,(4,) > F,(A,). By definition F,(4;)
= p, = F,(A,). Therefore since F, is strictly increasing on {x : F(x) € (0, 1)} it
follows that A, > A,. See Figure 9.1 for a graphical illustration. Hence

Fyp (x)
e
Fa (dx)= Fd (x)

I
|
|
I
!
|
|
|
[
[
[
[
[
[

,\
b3 B3 A81= M (d)=Ma(d)
FiG. 9.1.

Gr(p1, p2) = Fy(A) + B;) < Fy(A, + 4,)
< F,(A, + A,) by (c) and (d) above
= GF,,(Pva)-
It follows by Property 3.1 that G (p), py) < Gg(py,p2)- [
PROPOSITION 9.1. The Thurstone-Mosteller model is more extreme than the
Bradley-Terry model.

PrROOF. Van Zwet (1964) showed that if

1

Fa(x)—l—_r_—e—_: -0 <x <

Fy(x) = (277)—%f"_°°e_%’2dt -0 <x <
then F, <,F,. His proof only involves taking repeated derivatives of F,”'(F,(x))
and showing it is convex. F, is the logistic cdf and the Bradley-Terry model is
based on it. F,(x) is the standard normal cdf and the Thurstone-Mosteller model is
based on it. Also F, <;F,= F, <.F,. Hence by Theorem 9.1, the Thurstone-
Mosteller model is more extreme than the Bradley-Terry model. [



COMPOSITION RULES 369

Lawrence (1975) and Doksum (1969) both state that double exponential ;<
Cauchy which would imply that the double exponential model is more extreme
than the Cauchy model. It has already been noted that the double exponential
model and the Cauchy model cannot be ordered by the extreme partial ordering.
Both Lawrence and Doksum cite van Zwet (1964) for proof of their statement.
There is no mention of this s-ordering in van Zwet’s paper. A 51mple direct proof
that the ordering does not hold follows.

COUNTEREXAMPLE. If F,(x) = 1/@[arc tan x + (7/2)]
F(x)=3e* x<0
=1l-3¢e7* x>0,
Then Fy(x) < F,(x), F,(x) <, Fy(x), Fy(x) <:F,(x), and F,(x) <:Fy(x).

PROOF OF COUNTEREXAMPLE.

" F(x)] =tan{7r[1 —%e"‘] —%} for x > 0.
Let x, = .6.
A F[F,(A\x)] AF,”'[Fy(xo)]
0 0 0
B 29269 28577
z 56972 57154
1 .85731 .85731

Clearly F,"'[F,(x)] and F,” '[F,(x)] are neither starshaped nor convex on x > 0. []

THEOREM 9.2. Suppose
(A) f, and f, are densities whose associated cdf’s, F, and F,, are elements of &
(B) For every ¢ > 0 there exists N,(c) > N,(c) > 0 such that
(@) (7] < Ny(c) = f,(1) < cfolct)
(i) Ny(c) < [t] < Ny(c) = fo() > cfolct)
(i) [¢] > Ny(c) = f,(2) < cf(cP).
Then the linear model based on f, is more extreme than the linear model based on

Sae

Proor. It is sufficient to show that for all ¢ > 0 there exists constants M,(c),
M,(c), and M,(c) such that conditions (a), (b), (c) and (d) of Theorem 9.1 are
satisfied. See Figure 9.2 for a graphical illustration.

Note that c¢f,(cx) is the density of F, (cx).

Let x > N,(c). Then by Assumption B (iii)

JEh(0) dt < [Zef(ct) dt.
Therefore 1 — F,(x) < 1 — F,(cx) or Fy(x) > F,(cx).
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Area of I=Area of IT

FiG. 9.2

If Ny(c) =0, then 0 < x < N,(c) implies

155,(2) dt > [5cf.(ct) dt.
Therefore F,(x) — 5 > F,(cx) — 1 or F,(x) > F,(cx). Hence conditions (a), ), (¢
and (d) are satisfied with M,(c) = M,(c) = 0 and M;(c) = oo.
Now assume N,(c) > 0 and let 0 < x < N,(c). Then

[51,(2) dt < [3cf,(ct) dt.
Therefore F,(x) < F,(cx).
By continuity of F, and Fj there exists a A > 0 such that F,(cA) = F,(A). By the
above remarks N,(c) < A < N{(c).
Now let Ny(c) < x < A. Then by Assumption B (ii)

18%,(2) dt > [Acf,(ct) dt.

Therefore F,(A) — Fy(x) > F,(cA) — F,(cx) or F,(x) < F,(cx).
Finally let A < x < N,(c). Then by Assumption B (ii)

J2£,(8) dt > [icf(ct) at.

Therefore Fy(x) — Fy(8) > F,(cx) — F,(cA) or Fy(x) > F,(cx).

It follows that 0 < x < A implies F,(cx) > Fy(x) and x > A implies F,(cx) <
Fy(x). Hence conditions (a), (b), (c) and (d) of Theorem 9.1 are satisfied with
M(c) = My(c) = A and M(c) = . [

Theorem 9.2 can be made more general by use of nonstrict inequalities in the
assumptions. The resulting proof will need more details. Using the nonstrict
inequalities we can see that Theorem 9.2 can be thought of as a generalization of
Theorem 8.1. In Theorem 8.1 f, is the uniform density on (—1, +1) and f, is any
unimodal density that is symmetric about zero. Then cf,(cf) and f,(¢) will “inter-
sect” (cf,(ct) < f,(¢) changes to cf,(ct) > f,(f) or vice-versa) at most two times.
Hence if nonstrict inequalities are used in Theorem 9.2 then this pair of densities
(f, and f,) will satisfy the conditions.

The following tree summarizes some of the results concerning the extreme partial
ordering
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Any Model whose defining
distribution has a unimodal

Uniform distribution
Fxample 82 > Model Thurstone  Bradley  Double
defining distribution Mosteller > Terry > Exp
[ has nonunimodel ) Model Model ~ Model
density Example 8.1

defining distribution has
non-ummodel density

FiG. 9.3.
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