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CONTRIBUTIONS TO THE THEORY OF NONPARAMETRIC
REGRESSION, WITH APPLICATION TO SYSTEM
IDENTIFICATION

By E. SCHUSTER AND S. YAKOWITZ
The University of Texas at El Paso and The University of Arizona

The objective in nonparametric regression is to infer a function m(x) on
the basis of a finite collection of noisy pairs {(X;, m(X;) + N))}i~,, where the
noise components N, satisfy certain lenient assumptions and the domain points
X; are selected at random It is known a priori only that m is a member of a
nonparametric class of functions (that is, a class of functions like C[0, 1] which,
under customary topologies, does not admit a homeomorphic indexing by a
subset of a Euclidean space).

The main theoretical contribution of this study is to derive uniform conver-
gence bounds and uniform consistency on bounded intervals for the
Nadaraya-Watson kernel estimator and its derivatives. Also, we obtain the
corresponding convergence results for the Priestly-Chao estimator in the case
that the domain points are nonrandom. With these developments we are able to
apply nonparametric regression methodology to the problem of identifying
noisy time-varying linear systems.

1. Introduction. Let (X,, Y,), (X5, Y,), - - - be independent bivariate random
variables identically distributed as a bivariate random variable (X, Y) whose joint
cumulative distribution function is F and whose joint probability density is f.

The nonparametric regression problem is the problem of estimating the condi-
tional expectation m(x) = E[Y|X = x]. Equivalently, the nonparametric regression
problem requires finding m(-), given observations

{(x,, m(X)) + N)}i_,

the N, being an independent mean-zero noise variable which may depend on X;.
We assume throughout a finite variance of Y, and we will later insist on some
regularity conditions for the “target™ function m(-). The “nonparametric” property
refers to the absence of a finite dimensional continuous parameterization of the
space of functions containing m(-). Such a finite dimensional parameterization
characterizes classical regression theory (described, for example, in Wilks (1962,
Section 10.3)).

Algorithms for nonparametric regression (NPR) are applicable to a great many
engineering activities which require estimating performance levels of a system as a
function of randomly chosen input values, assuming that the system response is
random or measured by instruments which introduce random error. (For example,
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140 E. SCHUSTER AND S. YAKOWITZ

consider consumer response at a given price level. The consumer response (ex-
pected number of sales) is only probabilistically related to the number of sales over
a certain period.)

In the case of multivariate X; values, NPR is relevant to estimating the shape of
ore bodies on the basis of core samples or the pressure head in oil or water aquifers
on the basis of well information. Use of NPR has been made in actuary science
(Gartside (1975)) and stock market prediction (Butler (1975)). Watson (1964)
obtains an estimate of blood pressure as a function of age.

The main subject of our theoretical investigation will be the Nadaraya-Watson
estimator (Nadaraya (1964), Watson (1964)) which we will refer to as the kernel
estimator. Rather complete references to the basic NPR schemes can be found in
Stone (1977).

The kernel estimator is given by

) m(x) = CiaYik((x - X)/a,)/a,)/ (iik((x = X))/ a,)/ a,).

In the above, a, is a sequence of positive numbers which converge to 0. k(-) is a
probability density function. The numerator in (1) is an estimator of [yf(x,y) dy
and the denominator is a Parzen (1962) estimator of the marginal density f. For
work on kernel estimators see also Schuster (1968), (1972), Rosenblatt (1969),
Nadaraya (1970), Benedetti (1974), (1975) and Butler (1975).

We now summarize the results of this study. The following assumptions will be
in force: '

() E[Y?] < oo, '
(i) g(x) > 0, all x, g being the marginal density of X.
(iii) m(x) has a continuous Nth derivative.
(iv) If the characteristic function of k is ¢, then f|u|"|y(u)|du < co.

In the section to follow, we give conditions under which for any e > 0,0 < j < N,
and any finite closed interval [a, b), there is a constant C such that for any positive
¢ and n sufficiently large

P[max, ¢, ¢,|m(x) — mO(x)| > e] < C/ (nay*’%).

In the above expression, m? and mY? denote the jth derivatives. The main ideas of
the proof follow from Schuster’s (1968) Ph.D. dissertation where a more general
result is given in the case N = 0. In Section 3 we will see that the same convergence
result holds if the domain points X; of the sample are not random, but form a
partition of [a, b]. We believe that this is the first study to establish convergence
rates for the kernel estimator when Y is not bounded or to show that the
derivatives of the kernel estimator are consistent estimates of the corresponding
derivatives of the target functions. Of the studies known to us, Fisher and Yakowitz
(1976) obtain convergence bounds for an NPR scheme (the potential function
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method), and in that case, bounded convergence was obtained only for a com-
plicated norm. Nadaraya (1970) obtains convergence bounds for the kernel estima-
tor under the assumption that Y is bounded. Hansen and Pledger (1976) first
thought about estimating derivatives of regression functions without mentioning
any potential applications. We apply the derivative estimators to the problem of
identifying parameters of time-varying linear systems in the final portion of this
study.

2. Convergence rates for the Watson estimator and its derivatives. The follow-
ing notation is used. (X;, Y;), - + -, are independent bivariate random variables
identically distributed as a bivariate random variable (X, Y) whose joint cumula-
tive distribution function is F and whose joint probability density function is f.
Furthermore, with respect to some sequence of positive {a,}, we define

wa(x) = i, Yk((x — X,)/a,)/ (na,),

g(x) = [f(x, y) dy,

w(x) = [¥f(x,y) &,

m(x) = w(x)/g(x) = E(Y|X = x),

Y(x) = fexp(iux)k(u) du, where i*= —1,

that is, Y(x) is the characteristic function of k.
da(u) = 1/nZ5_ Yexp(iuX,) = [[ye™dF,(x, y),

where F, denotes the empirical distribution function associated with
(Xls Yl)’ s (X Yn)'
8a(x) = (na,) " 'T1_1k((x — X))/ a,),
m,(x) = wy(x)/g(x), 8u(x) >0
=0, otherwise.

If h is a real function having a kth derivative at a point x, #*)(x) will denote that
derivative.

In the following we do not attempt to prove our theorems under the most general
conditions, but rather try to establish the results under conditions covering most
applications while utilizing developments in the published literature.

LEMMA 1.. Let k be a continuous density satisfying the condition
limy o k()] = O,

and let {a,} be a sequence of positive numbers converging to zero. If there exists an
open interval containing the bounded, closed interval [a, b] on which the real function
h is continuous and if [?|h(u)| du is finite, for —c0 < ¢ <a <b <d < o, then

limn—»oosupxe[a, b]lff‘an_ lk(u/an)h(x - u) du - h(x)| = O'
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PrOOF. Let Z,(x, u) = a; 'k(u/a,){h(x — u) — h(x)} and let I = [x — d, x —
c], then

|féa, 'k((x — u)/a,){h(u) — h(x)}du| = |[,Z,(x, u) dul
< |1 qui<sy Za(x, w)au| + |[ 1 (u>8) Za(x, u) du|
< supy sl h(x — u) = B(X)| + |[1qu>syu ™ '(u/ a,) k(u/ a,) h(x — u) du|
+ |h(x)|f|u|>a/a,,k(u)d“
< supy<slh(x — u) = R(x)| + 8 7'supy s 4 [tk (1) f2|A(u)| du
+ RO 1> 574,k (1) du.
Let .
A= fAh(x) dx and B = sup,c,elh(2).
Then
SUP, < x < |/ 12, (%, u) du| < Supa<x<bsup|u|<a|h(x — u) — h(x)|
+A8 TSPy ys.5 /0 [tk (D)| + Bjuyss/a k(u) du

which tends to zero as we first let n tend to infinity and then let § tend to zero.
Now h(x) = [h(x)a, 'k(u/ a,) du, so the proof can be completed by observing that

Supa<x<b|f)°c°—ch(x)an_ ]k(u/an) du + fx——ogh(x)an— ]k(u/an) dul
< B(J&—oyja (u) du + [C39/%k(u) du)
which tends to zero as n tends to infinity (recall c <a <b <d).

COROLLARY 1. Let k be a univariate probability density function with lim,_, .
|uk(u)| = 0, and let k) be a continuous function of bounded variation for s =
0,1,---,N. If w9 is of bounded variation forj=0,1,---,N and if there exists
an open interval containing [a, b] on which w™) is continuous, then

lim,_, . Sup(g, 5| E[wP(x) — w(x)]|=0 for j=0,1,---,N.
PROOF.
E[ Wn(x)] =a, lE[ Yik((x — Xl)/an)]
= a, 'w(u) k((x — u)/a,) du
= a; ' [w(x — v) k(v/a,) dv —,w(x),

uniformly on [a, b], by Lemma 1.
Forj =1,

E[w{(x)] = a2 w(u) k((x — u)/a,) du
= an—][(w(x - D) k(v/an))lo—ooo + fw(])(x - D) k(v/an) dv]

—,w(x),
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uniformly on [a, b]. The argument for higher derivative follows by repeating the
above technique.
The following is Lemma 2.4 of Schuster (1969), page 1189.

LEMMA 2. Let k be a univariate probability density function with [|uk(u)| du
finite, and let k“? be a continuous function of bounded variation for j = 0,1, - - , N.
If g and its first N + 1 derivatives are bounded, and if €, is a sequence of positive
numbers such that lim,_,a,/¢, = 0, then there exist positive constants C, and C,
such that

P{sup,|g9(x) — g(x)| > &,} < Crexp(— Cyrela¥*?)
fOrj=O, la' : ,N.

REMARK. If we only assume g and its first N + 1 derivatives are bounded in an
open interval containing [a, b], then the conclusion of Lemma 2 holds for the sup
over [a, b].

If we assume that the characteristic function ¢ is absolutely integrable, then by
the standard inversion formula we may write :

w(x) = 2m) ™' fe~ " Y(a,u)p,(u) du.
Hence,
(2 wP(x) = (2m) ' [(— iuYe " Y(a,u)e,(u) du, 0<j<N.

LEMMA 3. Suppose k and w satisfy the conditions of Corollary 1 and suppose
wW(u) is absolutely integrable. If E(Y?) < oo, then there exists a constant C > 0
such that for every positive € and for n sufficiently large,

P{supi, w9 (x) — wO(x)| > ¢} < C/ (na¥*%?)
forj=0, 19' tt ,N.

PrOOF. Using the representation (2) for w?, we see that
supyg, W (x) — E[w(x)]]

= supy,, 41|(27) "' fwe " Y(a,u){,(u) — E[,(u)]} aul
< @2m) 7w a,u){$,(u) — E[$,(u)]}| du.
Thus,
Supyq, b]|w,({)(x) - E[w,(,’)(x)]|2
< (A7) (71w a,u){$n(w) — E[9,(w)]}| du)’
= (§7)//|woh(a,u)¥(a,0){é,(#) — E[$,(4)]}
X {¢,(v) — E[¢,(v)]}| du dv
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so that by the Schwarz inequality we have that
E[supy,, »[w9(x) = E[wP(x)]P]
< (A1 f1woip(a,u)d(a,0) | E= [[o,(w) — E,(w)]
E7[[,(0) — Ed,(0)] du do

= (@m) " 1w, 0)| EF[9() — E,(w)P] du}”
Now
E[|¢,(u) — E¢,(w)'] = (n")E[Zi_ (Y, — E[ V,e"*])P
— (n—l)E[IYeiux _ E[ YeiuX]lz] .
_ (n—l)(El YeiuX|2 _ |EYeiuX|2)
= (n"")(E[Y?] - |E[ Ye™ ) < E[ Y?]/n.
Thus we have shown
E[SUP[a,b]IWS{)(X) - E[w,({)(x)]lz]
< (%WZ)E[ Y2(f|ui(a,u)| du)z/n
= (372 E[ Y2)(f|w(u)| du)’/ (na2*¥).

By Corollary 1, Tchebychev’s inequality, and the above inequality, we have for n
sufficiently large

P{SUP[a, b]lwg)(x) - WU)(X)I > 5}
< P{sup[a,,,]|w,(,")(x) — E[wP(x)]| > e/2}
< (4/€)Esupy,, y|wP(x) — EwP(x)]? < C,/na¥*?
where
C, = 4E[ Y?)(J|wip(u)| du)’ /e
and the proof is complete.

THEOREM 1. Assume that the conditions of Lemmas 2 and 3 are in force and that
k, g, and w have continuous N + 1st derivatives. Assume further that g is bounded
away from 0 in an interval [a, b]. Then there is a constant C such that for any positive
¢ and for n sufficiently large

P[sup,,<plmiM(x) — mM(x)| >e < C/ (naZN?+e?),

PROOF. Since m = w/g, we may use the Leibnitz expansion m®™)(x) =
2’,:;0(2' )w(")(x)( g '(x))9 and the equivalent expansion for m{*)(x) to con-
clude that

() = m(0) = o V) (w0 77! () ™ w057 1() ).
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The theorem will follow when it is shown that for some C(k) and for » sufficiently
large,

) Plman, e P08 () " — w8 ()

>/ {(N + 1)(1:)}] < C(k)/ (na2N ).
For notational convenience, we let

17]l(a, o) = SuPa<x<b|h(x)|-
Observe that (g~")¥~% may be expressed as an additive and multiplicative
combination of the terms g~', g, g®, - - -, g™, which are hypothesized to be
uniformly continuous on [a, b]. For this reason, the reader may verify that
(g ")®~P, as a function of the preceding terms, satisfies the uniform Lipshitz
condition which follows. Assume that for 0 < v < N

1817 = 8llia,5) <&

where 26 < min, ., .,g(x). Then, from consideration of the mean value theorem
for the expansion of (g~")®™~%, one concludes that there exists constants a; such
that

_ - _IN(N—k
||(g 1)(N 9 — (gl l)( )”[a, 5 S 21:=00‘u”g§u) - g(U)“[a, 5]

where (g, )™ ~® has been obtained by substituting the terms g; !, g{», - - -, g{™
into the expression for (g™ )*~® in terms of g~ !, g®, - - -, g™ mentioned
above.

Let E(g,) denote the event that for 0 < v < N,
”W(U) - WS.D)“[a, b) Hg(u) - gﬁv)“[a, b <& <8

Then we have from the preceding development and an easy error formula, that
(8 ) ™™ = w5 =) Pl
< (Sa + 187N Pl sy + Zalw Pl )
But from Lemmas 2 and 3, for » sufficiently large,
P[ E(s,)c] < {Zj.‘;(,(Cv/naf””slz) + C'exp(— C2n£12a3”+2)}
< (C, + 1)/ (na?N+%}).

In the above expression, E(e,) denotes the complement of E(e,). If

g < e/[(N + 1)(]]:[)(20‘,- + 118N 9|40y + 209-||W(k)||[a, b]):l’

then inequality (3) holds and the theorem is established.
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3. Nonparametric regression from noisy sampled data. Let {f(+;x)x € [0, 1]} be
a family of probability density functions. We let w(x) = [yf(y; x) dy and P, =
{xg X5+ * +, x,} where 0 < xy < x; < - -+ <x,=1is a partition of [0, 1]. Let
|P,| = max|x; — x;_,|. For fixed n, we will estimate w(+) by independent samples
{Y;Yi-, where Y, has density f(y; x,;). The estimator will be the analogue of w, in
Section II; that is,

wn(x) = 2';=1Y,~(X,- - xi—l)k((x - xi)/an)/an

where {a,}, k and its characteristic function are as in the preceding section. This
estimator was introduced in Priestley and Chao (1972) and was also studied by
Benedetti (1974, 1975).

The development to follow parallels the analysis in Section II. We define

¢,(u) = n~ "2 _, Y,exp(iux,).
Observe that E¢,(u) = n~'S"_ ,w(x,)exp(iux,). We use Lemma 1 and the following
Lemmas 4 and 5.

LEMMA 4. Let k be a probability density function having a bounded continuous
first derivative and satisfying 11m|u|_,°°|uk(u)| = 0. Assume {a,} is a sequence of
positive numbers converging to 0 such that na> — oo. If h is any function defined and
having a continuous first derivative on [0, 1] and if |P,| = 0(n""), then

lim, , ,SUp, < x<slan Bk ((x = x)/a)h(x)(x; — x;_y) — h(x)| =0
Jor any a, b such that 0 < a <b < 1.

Proor. From the definition of the Riemann integral we see

la, 252 1k((x = %)/ @ )h(x)(x — x_1) = foay k((x — u)/a,)h(u) dul
< Zha(M; — m)(x — x,2y)
where
M; = My(n), m; = m(n)

denote, respectively, the maximum and minimum of

{a; k((x — u)/a)h(u) : x,_, <u<x}, i=12---,n
Since a continuous function attains both its maximum and minimum on any closed
interval, we can use the mean value theorem to see that

0 <M, — m; < (|k((x — §)/a,)'(¢)|
+a,."|k’((x = §)/a)h@)(x; — x,_,)/ a,
for some § € [x;_,, x;]. Since k and k’ are bounded on (—0, ), & and A’ are

bounded on [0, 1], na? — o0, and n(x, — x;_,) = 0(1), we see that M,(n) — M(n) -
0 uniformly in i as » tends to oo. Thus one can verify that

lim n—-»oosupa<x<b|an 2i=lk((x - Xi)/a,,)h(xi)(xi — xi—l)
— foa, 'k((x — u)/ a,)h(u) du| = 0.

Lemma 4 now follows from Lemma 1 and the triangle inequality.
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LEMMA 5. Let k and {a,} satisfy the conditions of Lemma 4. Suppose also that
lim,_, |w/*%Pu)| = 0forj=0,1,- - - N and that the first (N + 1) derivatives of
k are continuous and bounded on (— o0, ) and that (na}*?) —,00. If w*V exists
and is continuous on [0, 1] then lim,_, sup, ,|E[w(x)] = w(x)| =0 for j =
0,1,--+,Nforany a,bwith0 <a<b<1

PrOOF. Let us first consider the case j = 0, then

E[wy(x)] = a; 27 1k((x — x)/ a)w(x)(x; = x,_,)
which, by Lemma 4, converges uniformly on [a, b] to w(x). The convergence of
derivatives is established, as in Lemma 1, by repeated integration by parts. For
i=1

E[wi(x)] = ;S k' ((x = x)/a)w(x)(x — %_))
and
a, [k ((x — u)/a,)w(u) du

= —a, Wk((x = u)/a,)lu=0 + a; '[ok((x — u)/a,)wP(u) du.

Since lim,_, |uk(u)| = 0, the first term on the right-hand side tends to zero

uniformly for x € [a, b], as n tends to infinity. Proceeding as in the proof of
Lemma 4 one obtains

limn—>oosupa<x<b|an_227=1k(1)((x = x)/a)w(x)(x% — x;_y)
—f(l)an_2k(l)((x - u)/an)w(u) dul =0
since na? — oo. The desired conclusion for i = 1 then follows from Lemma 1. The
proof for higher derivatives follows in a similar fashion.

THEOREM 2. Assume that the conditions of Lemma 5 are in force and that u™y(u)
is absolutely integrable. If 0 < a < b < 1, and if there is a bound V such that
f(y;x)dy <V, all x €[0,1],
then for every € > 0 there is a constant C > 0 such that for n sufficiently large,
P[supy, 5w (x) = w™(x)| > e] < C/ (a2 *?).

PrOOF.  Since the different samples are assumed independent, one can easily see
that

E[|9,(u) = E[$,(w)]P] = n 7221 E[ (Y, — w(x))’] < V/n.
The rest of the proof follows that of Lemma 3.
4. Identification applications. The study of estimation of derivatives through
nonparametric regression was motivated in part by our interest in identification of

time-varying linear systems using noisy measurements on a system trajectory. For
example, consider the time-varying linear differential equation

w(x) = 0(x)w(x), x €[0,1].
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Let us suppose that if » measurements are to be made, they are made at equally
spaced points 1/n,2/n, - - -, 1 in the unit interval. Thus, the noisy values { ¥;}7_,
are recorded, where the Y,’s are independent, have probability density functions
f(+; i/n), and means w(i/n) equal to the differential equation solution values at
i/n, 0 <i < n. We may estimate 6(x) by

8,(x) = wd(x)/w,(x), x €[0,1].

Error analysis of this identification technique may be undertaken with the results
of the preceding sections. Also, higher order systems may be identified if noisy
solutions associated with different forcing functions (inhomogeneous terms) are

available.
We have conducted some preliminary computer experimentation without making

much effort to adjust the parameters {a,} or to find a good kernel k(<). The
asymptotic distribution results in Schuster (1972) indicates one might take a, in the
neighborhood of O(n‘%) to O(n‘%). This also seems to be the case in the numerical
work reported in Watson (1964). Watson also reports that the choice of kernel does
not seem to affect convergence results so that one should use a kernel which is
relatively easy to compute. We used a standard normal density in much of our
empirical work with a, about on =3 where o? was the variance of the noise variable.
These empirical studies were sufficiently encouraging to indicate that the identifica-
tion applications considered here warrant additional theoretical and empirical
study.

The literature (e.g., Graupe (1972) and references therein) on system identifica-
tion is largely devoted to inference of parameters in time-invariant systems. Some
effort has been made to apply the method of quasilinearization (e.g., Yeh and
Tauxe (1971)) and gradient techniques (Seinfeld (1969)) to time-varying system
identification, but these approaches are constrained to assume a finite dimensional
function space for the unknown parameter. Sagar, Yakowitz, and Duckstein (1975)
and Yakowitz and Noren (1976) study a time-varying system identification scheme
which uses techniques of linear regression to get an estimate of the parameter
based solely on local noisy solution measurements to get parameter estimates 6(x)
for a grid of x values. Problems in ground water analysis, heat and pollution
diffusion, and petroleum engineering call for progress in time-varying system
identification. Because of the convergence of derivatives established in this paper,
nonparametric regression theory could seem to provide a promising avenue for
these problems, but much theoretical work remains to be done toward making
nonparametric regression as efficient as possible.
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