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A BOUND FOR THE EUCLIDEAN NORM OF THE DIFFERENCE
BETWEEN THE LEAST SQUARES AND THE BEST
LINEAR UNBIASED ESTIMATORS

By J. K. BAKSALARY AND R. KaALA
Academy of Agriculture, Poznan, Poland

Haberman’s bound for a norm of the difference between the least
squares and the best linear unbiased estimators in a linear model with
nonsingular covariance structure is examined in the particular case when
a vector norm involved is taken as the Euclidean one. In this frequently
occurring case, a new substantially improved bound is developed which,
furthermore, is applicable regardless of any additional condition.

N

1. Statement of the problem. Let the triplet

1) (v, XB, V)

denote a linear model in which y is an n x 1 observable random vector having
X8 (henceforth signed by g) as its expectation and V as its dispersion matrix;
X is an n X p known matrix of rank r, Bisa p X 1 vector of unknown parame-
ters, and V is an n X n positive definite symmetric matrix, known or known
except for a positive scalar multiplier. Further, let P and Q be two projectors
on Q, the column space of X, the first of which projects orthogonally under the
Euclidean inner product signed by (., ), while the second projects orthogonally
under the inner product defined as

@) (U, V) = (u, V).
It is well known that

3) p* =Py

and

4 £=Qy

are the least squares and the best linear unbiased estimators of g, respectively.

Much attention has been paid in the literature to the problem of the equality
of (3) and (4), the practical importance of which is evident from the computa-
tional advantage of P over Q. The interest of most authors dealing with this
problem has been focused on developing criteria for the above-mentioned equal-
ity which, however, provide only categorical ascertainments and, in particular,
give the negative answer in case of a great as well as of a small departure of g*
from 4. In this light a method due to Haberman (1975, Section 3), based on a
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bound for a norm of the difference between these two estimators, appears to be
more informative for the problem and, therefore, more appropriate for practical
applications. The basic result for this method is the following.

If

5) P — PVIP| < 1,
then
(6) g — gt < ABYA=PIL_ g g,

1— [P — PVP|

where the sign ||+|| is used (according to the context) for a vector norm or for the
corresponding matrix norm.

A weak point of Haberman’s method is that the applicability of the bound in
(6) is restricted to those cases only for which condition (5) is satisfied. This is
a serious disadvantage, particularly as the unfulfillment of (5) does not preclude
the possibility of & — g*|| being small enough to suggest the use of the least
squares estimator. This can be shown by an example in which

Y1 1 10 a* 0 0
y=|y|, X=[(1 10|, V=0 »* 0],
Vs 1 01 0 0 ct

where a, b, ¢ > 0. Then

7 w_(Nnty it r

(7) po= (B BER ),
8 o — ay, + by, ay, + by, ,
®) # ( a+b a+b y3>

2—a—b 2—a—-»> 0
P—PV“P:Z— 2—a—b 2—a—0»> 0
0 0 4 — 4¢

From (7) and (8) it is seen that, regardless of the value of ¢, p* = £ whenever
a = b. But, on the other hand, the spectral radius of the matrix P — PV-P,
which is a lower bound for all its multiplicative norms (see, e.g., Ben-Israel
and Greville (1975), page 36), is

o(P — PV-'P) = max {|1 — (a + )2],|1 — cl},

and hence it is evident that, for any ¢ = 2 and a = b, the formula (6) is not
applicable, although both of the estimators are equal.

The purpose of this paper is to answer the question if it is possible to construct
a bound similar to that in (6) which, however, could be applied to any linear
model of the form (1), irrespective of any condition of the type (5). This problem
will be studied in the special case when the vector norm involved is chosen as
the Euclidean norm, which is the one most frequently employed in practice.
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As is known, the corresponding matrix norm is then the spectral norm. Both
these norms will be signed by ||«]],.

2. Solution. Assume that neither Q nor Q*, the orthogonal (under the Eu-
clidean inner product) complement of , is the trivial linear subspace {0}, for
then it follows from Haberman’s (1975) Theorem 2 that g* coincides with 2
and, therefore, the problem becomes uninteresting.

The key to answering the question stated above is the fact that the projector
Q that yields £ is unchangeable under the multiplication of V-, defining inner
product (2), by any scalar @ > 0. Replacing V~! in formulae (5) and (6) by
aV~?, the problem can be formulated as follows: to find the value of « > 0 such
that

aPYV7HI — P),
1 —||P — aPV-'P|,

is minimized, subject to the constraint that [P — aPV~'P||, < 1. Since the spec-
tral norm of a symmetric matrix is equal to its spectral radius, we have

|IP — aPV-'P|, = max {r,, —x,} ,

where x, and «, are the largest and the smallest eigenvalues of P — aPV-'P,
respectively. But

Ky = SUpj,,—, (0, (P — aPV~'P)u)
= SUP|y ), (Pu, (I — aV-1)Pu)
= SUP,cq,ul,=1 (U, (I — aV~)u)
=1—am N

where
%) m= inf,_en,“__‘F1 (u, V-lu) > 0.
Similarly,
k,=1—aM,
where
M = SUPu e, liuip=1 (w,V'u) =2 m.
Therefore

P — aPV~'P||, = max {l — am, —1 4 aM},

and hence it is seen that [P — aPV~'P|, < | whenever 0 < a < 2/M.
Thus the problem reduces to finding 0 < @ < 2/M to minimize

(10) aN ’

1 — max{l — am, —1 + aM)}

where N = |PV-(I — P)||; or, we note incidentally,
(11) N = SUP, g jujy-1 SUPven, viy=1 (U V7IV) .

The minimum of (10) is achieved for any 0 < a < 2/(M + m) and equals N/m.
This observation leads to the following.
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THEOREM. Let p* and fi, respectively, be the least squares and the best linear
unbiased estimators of pu = X B in the model (y,XB,V), and let Q + {0} and Q* =+ {0}.
Then

(12) 18 — £l = (N/m)lly — 2]}, »

where N and m are given in (11) and (9), or, equivalently,

12 — ]l = (/Y — 5[l
where v, is the largest eigenvalue of PV~}(I — P)V~'P, while 2, is the smallest
eigenvalue of PV~'P, excluding zeros.

It is now interesting to compare the bound obtained in this paper with the
special case (when the Euclidean vector norm is taken) of that given in (6).
This comparison is possible only if (6) is applicable,.that is if M < 2. Since
the bound in (6) is the value of (10) for a = 1, and the bound in (12) is the
minimum of (10), the latter cannot be weaker. Moreover, from the proof of
the theorem it follows that in the case of M < 2 < M 4 m, the bound in (12)
is stronger.

Finally note that if g* = £, then, by Haberman’s (1975) Theorem 2, the
bound in (12) is equal to zero. Since this occurs irrespective of any additional
condition, the present theorem may be viewed as an improvement (in the sense
of more detailed information) of all other criteria for the equality of the con-
sidered two estimators, whereas such a statement could not be referred to the
result of Haberman, as has been indicated by the example of Section 1.
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